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We survey the so-called behavioral approach to systems and control theory, which was founded by J. C. Willems and his
school. The central idea of behavioral systems theory is to put the focus on the set of trajectories of a dynamical system
rather than on a specific set of equations modelling the underlying phenomenon. Moreover, all signal components are
treated on an equal footing at first, and their partition into inputs and outputs is derived from the system law, in a way that
admits several valid cause-effect interpretations, in general.
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1. Introduction

In his series of papers (Willems, 1986/87), J. C. Willems
introduced a novel approach to systems and control the-
ory, called the behavioral approach. Now, two decades
later, many researchers, both applied mathematicians and
theoretically inclined engineers, have taken up his ideas
and have formed a lively community devoted to advanc-
ing and extending behavioral systems theory. The survey
papers (Willems, 1991) and (Fuhrmann, 2002), as well as
the textbook (Polderman and Willems, 1998), are particu-
larly prominent outcomes of this endeavor.

The present paper offers a brief guided tour through
behavioral systems theory. Needless to say, the selec-
tion of topics is heavily influenced by the author’s per-
sonal interests, preferences, and a subjective point of view.
No claim of completeness is made concerning both the
presented results and the references. Indeed, there is no
doubt that many important contributions will remain un-
mentioned.

2. Starting point

To get started, the reader should be willing to abandon,
for the time being, the tendency to view a system as a
signal processor: inputs are fed into some “black box”,
something mysterious (or not so mysterious) happens in-
side the box, and outputs to be measured and regulated
leave the system. This is a very practical and useful point
of view, without doubt, for countless engineering appli-

cations. Nevertheless, thinking a bit more generally of
systems arising in physics, biology, or economics, and of
the mathematical models for them that have been studied
over the centuries (often without having a concrete engi-
neering application in mind), it seems more natural to see
a dynamical system as an interrelation of certain quanti-
ties of which it may be hard to tell which is the cause and
which the effect (both interpretations may be equally jus-
tified).

This leads us to the following very general and com-
prehensive definition of a dynamical system. Dynamical
systems evolve in time, and they interact with their en-
vironment through time-dependent functions, called sig-
nals or trajectories. Reflecting this general and broad
framework, Willems’ definition of a dynamical systems
involves three ingredients: first, a set T that is interpreted
as a mathematical model of time. Second, a set W in
which the signals take their values. Thus, a trajectory is a
function

w : T → W, t �→ w(t).

By W
T, we denote the set of all functions that are defined

on T and that take their values in W. The third and most
important part of the definition is the set B ⊆ WT formal-
izing the set of signals that can occur in the system, i.e.,
that obey the laws that govern the system (usually, dif-
ference or differential equations). Such signals will also
be called admissible. Thus we arrive at Willems’ famous
definition of a system Σ as a triple

Σ = (T, W,B).
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In most cases of relevance, T is a subset of R, and W is a
finite-dimensional vector space, say, W = Fq, where F is
a field (often R or C).

A slight modification of this definition was put for-
ward later on (Oberst, 1990): Let A denote the set of
scalar-valued signals, let q denote the number of (scalar)
signals occurring in the system and let B ⊆ Aq denote
the set of q-tuples of such signals that satisfy the system
law. Then a system Σ is determined by these three data,
Σ = (A, q,B). Of course, for W = Fq, Willems’ defini-
tion can be embedded into the modified version by putting
A = FT. However, not all signals of interest are really
functions in the classical sense of the word, for instance,
one may want to study distributional solutions to differen-
tial equations in order to incorporate phenomena such as
“impulses”, i.e., Dirac delta distributions, and other gen-
eralized functions. For the purposes of this paper, we will
use both definitions interchangeably.

3. First steps

A system Σ = (T, W,B) is called linear if W is an F-
vector space (F being a field) and B is an F-subspace of
WT. Clearly, this amounts to the formal requirement

w1, w2 ∈ W
T, λ1, λ2 ∈ F ⇒ λ1w1 + λ2w2 ∈ W

T

saying that each linear combination of signals is again a
signal and, more importantly,

w1, w2 ∈ B, λ1, λ2 ∈ F ⇒ λ1w1 + λ2w2 ∈ B,

that is, every linear combination of admissible signals is
again admissible (this is known as the “superposition prin-
ciple”). Let us assume that W = Fq in the following,
where F is a field.

For the definition of time-invariance, we need to re-
strict to time sets T ⊆ R that are closed with respect to
addition, that is,

t1, t2 ∈ T ⇒ t1 + t2 ∈ T.

Of course, this is satisfied by all of the predominant time
sets such as T = R or T = Z. We will restrict to these
two cases in the following, and we shall refer to T = R

as the continuous time case and to T = Z as the discrete
time case. Then we can define, for any t ∈ T, the shift
operator

σt : W
T → W

T, w �→ σtw,

where

(σtw)(τ) = w(t + τ) for all τ ∈ T.

A system Σ = (T, W,B) is called time-invariant (or shift-
invariant) if

w ∈ B, t ∈ T ⇒ σtw ∈ B.

An important question in the foundations of behav-
ioral systems theory is the existence of kernel representa-
tions. Given a linear, shift-invariant subset B ⊆ W

T, when
does there exist a linear system of difference or differen-
tial equations with coefficients in the base field F whose
solution set is precisely equal to B?

In discrete time, the answer has been known for quite
some time now, see, e.g., (Willems, 1991): The missing
property (besides linearity and shift-invariance) is called
completeness, and these three properties together are nec-
essary and sufficient for a discrete system to admit a rep-
resentation

B = {w ∈ (Fq)Z | Rw = 0}
for some Laurent polynomial matrix R ∈ F[s, s−1]g×q ,
which acts on w ∈ (Fq)Z by the unit shift operators sw :=
σw := σ1w and s−1w := σ−1w.

In continuous time, however, the analogous question
is still open to some extent. When can a time-invariant
linear subspace B ⊆ C∞(R, Rq) be written in the form

B = {w ∈ C∞(R, Rq) | Rw = 0}
for some polynomial matrix R ∈ R[s]g×q , which acts on
w ∈ C∞(R, Rq) by differentiation, that is, sw := dw

dt ?
Note that we need to restrict to smooth functions for Rw to
make sense for any polynomial matrix of arbitrary degree.
The interesting paper (Lomadze, 2007) sheds some light
on this problem.

The continuous and discrete time cases can be treated
in parallel by setting A = C∞(R, R) and D = R[s] in
continuous time and A = FZ and D = F[s, s−1] in dis-
crete time, where the action of d ∈ D on a ∈ A is defined
as above. Then

B = {w ∈ Aq | Rw = 0},
where R ∈ Dg×q is called a behavior with kernel repre-
sentation, and R is called a representation matrix for B.
We deal exclusively with such systems in the following
sections.

4. Milestones

Let A be a signal set that carries a D-module structure,
where D is a commutative ring. The most prominent ex-
ample is D = R[s] and A = C∞(R, R), with sa := da

dt as
outlined above. (The D-module structure reflects the fact
that applying any linear real-coefficient differential oper-
ator d ∈ D to any smooth function a ∈ A will produce
da, which is another element of A. Also, we have the
common rules of calculating with operators and signals,
similarly as in a vector space, except for the fact that, of
course, we cannot simply “divide” by a non-zero oper-
ator.) Similarly, D = F[s, s−1] and A = FZ provides
another example.
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In the seminal contribution to systems theory
(Oberst, 1990), U. Oberst realized that algebraic proper-
ties of A as a module over D have a great systems the-
oretic relevance, and that many of the pairs D,A that
turn up in systems and control theory satisfy a particularly
strong kind of duality enabling the translation of algebraic
properties to systems properties and vice versa. The prop-
erty in question is that A, as a D-module, is the so-called
injective cogenerator, see (Wood, 2000) for an overview.
In particular, this holds for the two pairs D,A from above.
We will stick to these two cases for the remainder of this
section, and we will present two theorems of fundamental
importance for systems theory as prototypes of the corner-
stones of behavioral systems theory.

Consider B = {w ∈ Aq | Rw = 0}, where R ∈
Dg×q . The i-th component wi of w is called a free vari-
able of B if for any choice of a ∈ A there exists w ∈ B
with wi = a. A behavior B is called autonomous if it has
no free variables.

Theorem 1. The following are equivalent:

1. B is autonomous.

2. Any representation matrix of B has full column rank.

3. If w ∈ B has bounded support, then w must be iden-
tically zero.

4. If w ∈ B satisfies w(t) = 0 for all t < 0, then w
must be identically zero.

5. B is a finite-dimensional F-vector space.

Notice that a true behaviorist would choose the
trajectory-oriented conditions 3 or 4 as the definition of
autonomy and the absence of free variables as a derived
characterization. From the algebraic point of view, how-
ever, the definition given above is easier to access.

In every non-autonomous system B, the signal vector
w ∈ Aq can be partitioned (possibly after a permutation of
the components of w) into two subvectors w = [uT , yT ]T ,
where u ∈ Am and y ∈ Ap with m + p = q, such that we
have

∀u ∈ Am ∃y ∈ Ap :

[
u

y

]
∈ B

and, moreover, the system {y ∈ Ap | [0, yT ]T ∈ B} ob-
tained from setting u ≡ 0 is autonomous. Clearly, u is
a vector of free variables in B, whose number of compo-
nents is as large as possible, and it is therefore called an
input. Similarly, y can be interpreted as the system’s out-
put. The numbers m and p = q − m are invariants of
B; indeed, it can be shown that p = rank(R) and that
any two representations of the same B must have the same
rank. In fact, since D is a principal ideal domain, we may
restrict to representation matrices with full row rank (this

is a consequence of the Smith form). Thus, a system is au-
tonomous if and only if it possesses a square non-singular
representation matrix. Partitioning the full-row-rank rep-
resentation matrix R = [−Q, P ] according to the partition
of w = [uT , yT ]T , we get an input-output representation[

u

y

]
∈ B ⇔ Py = Qu,

which has a solution y ∈ Ap for every choice of u ∈ Am.
Here, P is square and non-singular. Thus, we recover the
concept of input-output relations from classical systems
theory, but with the important difference that the partition
of the components of w into these two classes is not arti-
ficially prescribed but derived from the system law. It is
important to note that several distinct input-output repre-
sentations are possible for one and the same behavior. The
rational matrix

H := P−1Q ∈ F(s)p×m

(where F = R in continuous time) is called the trans-
fer matrix of B with respect to the chosen input-output
decomposition. There always exists at least one choice
of inputs and outputs that guarantees that the associated
transfer matrix is proper.

One of the central concepts of control theory is con-
trollability. This notion seems to be very strongly linked to
specific properties of state space systems. However, this
is not the case. Instead of steering the system from one
state to another, the appropriate question in the behavioral
framework is to force the system to go from one trajectory
to another (without violating the system law, of course). A
nice overview over the various controllability notions and
their relation with the concept of potentials in physics is
given in (Shankar, 2002).

We will call B controllable if it has an image repre-
sentation, that is,

B = {w ∈ Aq | ∃� ∈ An : w = M�}

for some matrix M ∈ Dq×n.

Theorem 2. The following are equivalent:

1. B is controllable.

2. Any representation matrix R of B is a left syzygy ma-
trix, that is, its rows generate the left kernel {z ∈
D1×q | zM = 0} of some M ∈ Dq×n.

3. For any w1, w2 ∈ B, there exists 0 < τ ∈ T and
w ∈ B such that

w(t) =

{
w1(t) if t < 0,

w2(t) if t > τ.
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4. Any full-row-rank representation matrix R ∈ Dp×q

of B is right invertible, i.e., there exists Y ∈ Dq×p

such that RY = I .

5. Any full-row-rank representation matrix R ∈ Dp×q

of B satisfies

rank(R(λ)) = p for all λ ∈ F,

where F is the algebraic closure of F. (This is for
continuous time. For the discrete case, we have the
same requirement for λ ∈ F \ {0}, which is due to
the fact that we work over Z here and not over N as
in the classical state space setting, and thus we are
dealing with Laurent polynomial matrices.)

Again, only the assertion 3 is formulated entirely in
terms of the system trajectories and should be seen as the
truly behavioral controllability condition. If it is satisfied,
one says that the trajectories w1, w2 can be concatenated,
and one calls w a connecting trajectory. Similarly as with
state space systems, τ can in fact be chosen independently
of the specific selection of w1, w2 for the system class un-
der consideration and, moreover, τ can be made arbitrarily
small in continuous time, but not in discrete time.

For state space systems ẋ = Ax + Bu, where
A ∈ Rn×n and B ∈ Rn×m, we set w = [xT , uT ]T and
R = [sI −A,−B] ∈ R[s]n×(n+m). In view of the condi-
tion 5, recalling that R = C, the behavioral controllability
concept coincides with the classical state space notion (via
the so-called Hautus test).

5. Further paths

The basic theory can be extended into countless direc-
tions. The following material highlights only three of
them.

5.1. Multidimensional systems. In her thesis (Rocha,
1990), P. Rocha started the study of two-dimensional sys-
tems from the behavioral point of view. That is, we have
two independent variables rather than only one, and thus,
for instance, in discrete time we have T = Z2.

The paper (Oberst, 1990) introduced a rigorous ap-
proach to discrete and continuous n-dimensional behav-
iors with kernel representations, that is,

B = {w ∈ Aq | Rw = 0}

with A = C∞(Rn, R) and D = R[s1, . . . , sn] for con-
tinuous time (where sia = ∂a

∂ti
) and A = FZ

n

and

D = F[s1, . . . , sn, s−1
1 , . . . , s−1

n ] in discrete time (where
sia = σia is the unit shift with respect to the i-th vari-
able).

The main difficulty from the algebraic point of view
is thatD is not a principal ideal domain here, and hence re-
sults using the Smith form of univariate polynomial matri-
ces do not carry over to this setting. Nevertheless, auton-
omy and controllability have been fully characterized also
in this situation, by various authors, see, e.g., (Pommaret
and Quadrat, 1999; Wood et al., 1999; Zerz, 2000) and the
references therein. It turns out that these notions have to
be refined into several weaker and stronger forms: For in-
stance, according to Theorem 1, one-dimensional systems
are autonomous if and only if they are finite-dimensional
as vector spaces over the underlying field. For systems in
dimension n ≥ 2, however, finite-dimensionality over F

implies the absence of free variables but not conversely,
and thus two non-equivalent autonomy-related properties
have to be distinguished here. However, the equivalence
of the first three assertions of Theorem 1 holds also in the
multidimensional setting.

Similar things happen for controllability, see, e.g.,
(Rocha and Wood, 1997). In (Pillai and Shankar, 1999),
we find a neat analytic interpretation of controllability in
the multidimensional continuous case: B is controllable
(i.e., it has an image representation) if and only if for all
w1, w2 ∈ B and all open sets U1, U2 ⊂ Rn whose clo-
sures are disjoint there exists w ∈ B such that

w(t) =

{
w1(t) if t ∈ U1,

w2(t) if t ∈ U2,

thus giving a nice multidimensional generalization of the
one-dimensional behavioral controllability paradigm (i.e.,
concatenability of trajectories). In this sense, the equiv-
alence of the assertions 1–3 of Theorem 2 is preserved
in the multidimensional setting (and likewise in the dis-
crete case, with the difference that the sets Ui are required
to be sufficiently far apart). However, even in a control-
lable system that can be represented by a full-row-rank
matrix R this R is not necessarily right invertible. In fact,
the multidimensional generalizations of the conditions 4
and 5 of Theorem 2 characterize a property that is stronger
than controllability.

5.2. Continuous time-varying systems. Dropping the
assumption of time-invariance, the simplest class of time-
varying systems arises from admitting coefficients from a
differential field K, say K = R(t), the field of rational
functions. Then we have the ring of linear differential op-
erators

D = K[s] = R(t)[s],

where s represents once more the differentiation operator.
A suitable signal set A is the set of functions a : R → R

that are smooth except for a finite set of exception points
E(a), that is, a ∈ C∞(R \ E(a), R). Formally, D looks
like an ordinary polynomial ring, but the important differ-
ence is that a coefficient k ∈ K does not commute with the
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operator d
dt unless k happens to be constant. This is due

to the product rule of differentiation d
dt (ka) = k′a + k da

dt
for k ∈ K and a ∈ A, which implies that

d
dt

k − k
d
dt

= k′.

Thus the main difficulty is that the ring D is not com-
mutative here. Several authors have studied systems of
this type (Bourlès, 2005; Ilchmann and Mehrmann, 2005;
Pommaret and Quadrat, 1998; Zerz, 2006). The main tool
is a non-commutative analogue of the Smith form which
is known as the Jacobson form. This makes it possible to
translate most results from classical one-dimensional sys-
tems to this setting, at least apart from the singularities
of the coefficients and the trajectories, i.e., in a generic
sense. The algebraic properties of multidimensional lin-
ear systems with time-varying coefficients were studied in
(Chyzak et al., 2005; Pommaret and Quadrat, 1999).

5.3. Discrete systems over finite rings. For applica-
tions in coding theory (Kuijper and Polderman, 2004; Lu
et al., 2004), it is of interest to replace the coefficient
field F of a discrete system by a finite ring of the form
Zm = Z/mZ, where m > 1 is an integer. Thus, we
set D = Zm[s, s−1], and s acts on a ∈ A = (Zm)Z

by the unit shift operator sa = σa. The main difficulty
from the algebraic point of view is that D is not a do-
main, i.e., it contains zero-divisors. Similarly as with
multidimensional systems, we cannot use the Smith form
and thus, in particular, we cannot restrict to representa-
tion matrices with full row rank. In fact, the sheer no-
tion of rank becomes ambiguous, since there are several
distinct rank concepts for matrices over rings with zero-
divisors. Also, we have two non-equivalent autonomy no-
tions, the stronger one corresponding to the absence of
bounded support trajectories besides zero, and the weaker
one amounting to the absence of free variables (Kuijper et
al., 2006; Zerz, 2007). In terms of a representation ma-
trix R ∈ Dg×q , the stronger notion is characterized by the
existence of X ∈ Dq×g and a non-zero-divisor d ∈ D
such that XR = dI while the weaker by the existence of
X ∈ Dq×g and non-zero elements d1, . . . , dq ∈ D with
XR = diag(d1, . . . , dq). Clearly, both conditions amount
to saying that R has full column rank if D is a domain (for
D = Zm[s, s−1]; however, this is true if and only if m is
prime, and then Zm is already a field, i.e., we are back to
the classical case). First results on the controllability of
such systems will be reported elsewhere.

6. Where to go from here

In this short outlook section, we mention a few recent de-
velopments of behavioral systems theory and several im-
portant topics that could not be treated in this survey for

brevity (the references are pars pro toto). The wide ar-
eas of stability and stabilization (Oberst, 2006) and of
controller synthesis (Praagman et al., 2007) in the be-
havioral context were not even touched. The same holds
for the equally significant topics of observability and ob-
server design (Valcher and Willems, 1999). The notion
of state is of paramount importance in systems theory
and admits a nice behavioral interpretation (Rapisarda and
Willems, 1997; Fuhrmann et al., 2007). Recently, periodic
systems (Aleixo et al., 2007) and rational representations
(Willems and Yamamoto, 2007) have been studied within
the behavioral framework, providing additional impetus
for future research.
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