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1. Introduction

Repetitive processes are a distinct class of 2D systems

(i.e., information propagation in two independent direc-

tions) of both system theoretic and application interest.

Their unique feature is a series of sweeps, termed passes,

through a set of dynamics, defined over a fixed finite du-

ration known as the pass length (denoted by α < +∞). If

we denote the pass index by the integer k ≥ 0 and use p
as the along-the-pass variable, then these processes evolve

over the domain 0 ≤ p ≤ α < ∞, k ≥ 0. Also, on each

pass an output, termed the pass profile, is produced which

acts as a forcing function on, and hence contributes to, the

dynamics of the next pass profile. This, in turn, leads to

the unique control problem in that the output sequence of

the pass profiles generated can contain oscillations that in-

crease in amplitude in the pass-to-pass (i.e., that indexed

by k) direction.

Physical examples include long-wall coal cutting and

metal rolling operations (see, for example, (Rogers and

Owens, 1992)). Also, in recent years applications have

arisen where adopting a repetitive process setting for ana-

lysis has distinct advantages over alternatives. For exam-

ple, they can be used to analyze an important class of

iterative learning control (ILC) schemes (Owens et al.,
2000). More recently, another application has arisen in

the context of self-servowriting in disk drives (Melkote

et al., 2003), and there are as yet unexploited links with

one approach to the analysis of spatially interconnec-

ted systems (D’Andrea and Dullerud, 2003) or, gene-

rally, systems described by partial differential equations

(Rabenstein and Trautmann, 2003).

Attempts to control these processes using standard

(‘classical’ 1D) systems theory/algorithms fail (except in

several very restrictive special cases) precisely because

such approaches ignore their inherent 2D structure, i.e.,

information propagation occurs in two independent di-

rections. For example, early work (for details, see, for

example, the references cited in Chapter 2 of (Rogers and

Owens, 1992)) advocated converting the dynamics of li-

near processes into those of a standard linear system using

the so-called total distance traversed variable. Such an ap-

proach ignores the finite length nature of these processes

and also the fact that the boundary conditions are reset

before the start of each new pass. In particular, this 1D

systems approach fails to provide a correct interpretation

of what stability means for these processes and hence can-

not then be used to design control laws to guarantee this

most basic property (and onwards to achieve the desired

performance). Hence the only way forward is to develop a

control and systems theory, and hence control algorithms,
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taking full account of the underlying process dynamics.

In this paper we consider the so-called discrete li-

near repetitive processes which can arise either from di-

rect modelling of a physical process or as a result of sam-

pling the dynamics of a differential process in the along-

the-pass direction. Their state-space model (Rogers and

Owens, 1992) has the following form over 0 ≤ p ≤
α, k ≥ 0, where k denotes the pass number or index:

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p),
yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p).

(1)

Here, on the pass k, xk(p) ∈ R
n is the state vector,

yk(p) ∈ R
m is the pass profile vector, and uk(p) ∈ R

r

is the vector of control inputs.

To complete the process description, it is necessary

to specify the boundary conditions, i.e., the initial state

vector on each pass and the initial pass profile. Here, no

loss of generality arises from assuming

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), 0 ≤ p ≤ α
(2)

where the n× 1 vector dk+1 contains known constant en-

tries and f(p) is an m× 1 vector whose entries are known

functions of p.

The development of a control systems theory for

these processes, with a follow through to control systems

design, for discrete linear repetitive processes has been

the subject of much profitable research effort. For an

overview of the major areas of processes see, for exam-

ple, (Rogers et al., 2007) and the references cited in this

monograph. As noted above, new applications are still

arising and in such cases there is clearly a need for high

quality software to assist in the analysis and design of con-

trol schemes for such applications in addition to suppor-

ting the ongoing theoretical developments. The purpose

of this paper is to report further extensions to the capabili-

ties of software for this purpose focusing, in particular, on

stability testing, control law design, and the simulation of

the resulting controlled process dynamics. The next sec-

tion summarizes the necessary background theory.

2. Background
Consider the case when the dynamics of a repetitive pro-

cess are linear. Then the following model includes the

process models which arise in most of the currently known

applications:

yk+1 = Lαyk + bk+1, k ≥ 0. (3)

In this model, yk ∈ Eα denotes the pass profile on the

pass k, Lα is a bounded linear operator which maps Eα

into itself and bk+1 ∈ Wα, where Wα is a linear subspace

of Eα. Also, the term Lαyk describes the contribution

of the pass k to the pass k + 1, and bk+1 represents the

inputs and other effects which enter on the current pass.

The advantage of using such a model is that the stability

theory can be developed in terms of this general model

and then specialized to the particular one of interest.

Recall now that the unique control problem for repe-

titive processes is that the sequence of the pass profiles yk,

k ≥ 0, generated can contain oscillations that can incre-

ase in amplitude in the pass-to-pass direction (k). Hence

a natural definition of stability is to require that bounded

input sequences produce bounded output (pass profiles)

sequences. This leads to the following definition.

Definition 1. (Rogers and Owens, 1992) Suppose that ||·||
denotes the norm on Eα. Then linear repetitive processes

described by (3) are asymptotically stable provided there

exist real numbers Mα > 0 and λα ∈ (0, 1) such that

||Lk
α|| ≤ Mαλk

α, k ≥ 0 (where || · || is also used to denote

the induced operator norm).

If this property holds then the sequence of pass profi-

les generated converge strongly in k to the so-called limit

profile y∞ := limk→∞ yk, which is the unique solution

of the linear equation

y∞ = Lαy∞ + b∞, (4)

where b∞ = limk→∞ bk.

Consider now a discrete linear repetitive process de-

scribed by (1) and (2). Then in this case asymptotic sta-

bility holds if, and only if, all eigenvalues of the ma-

trix D0 lie in the open unit circle in the complex plane.

Also the corresponding limit profile is a 1D discrete li-

near system with a state matrix (with D = 0 for simpli-

city) Alp := A + B0(Im − D0)−1C. Hence if an exam-

ple is asymptotically stable then its repetitive dynamics,

after a sufficiently large number of passes have elapsed,

can be replaced by those of a 1D discrete linear system—

this property is of obvious interest in terms of applications

but does not mean that only 1D systems concepts need to

be applied to these processes. Note, however, that this

property is, in effect, independent of the process state dy-

namics and, in particular, of the state matrix A. This is

due to the finite pass length and can result in the limit pro-

file having unacceptable dynamics along the pass, e.g., the

case when A = −0.5 + β, B = 0, B0 = 0.5 + β, C =
1, D = D0 = 0, where β is a real scalar. In this case

Alp = β and hence the limit profile is unstable along the

pass if |β| ≥ 1.

To avoid an unstable limit profile, it is necessary to

strengthen the concept of stability and this can be achie-

ved by demanding that the property of the above definition

holds for all possible values of the pass length. This is ter-

med stability along the pass, and for the processes consi-

dered here the necessary and sufficient properties are that

(i) all eigenvalues of the matrices D0 and A lie in the open
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unit circle in the complex plane, and (ii) all eigenvalues of

the transfer-function matrix

G0(z) := C(zIn − A)−1B0 + D0

lie in the open unit circle in the complex plane for all

|z| = 1. As the example above demonstrates, 1D stability

of the state matrix A is also only a necessary condition for

stability along the pass (another reason why these proces-

ses cannot be analyzed by direct application of 1D linear

systems theory).

The three necessary and sufficient conditions for sta-

bility along the pass given above can be tested by direct

application of 1D linear systems stability tests, e.g., Ny-

quist plots. A major drawback, however, is that such te-

sts do not provide a basis on which to also address the

question of control law design for stability and/or per-

formance. This has led in recent years to the use of Li-

near Matrix Inequality (LMI) techniques (see, e.g., (Boyd

et al., 1994)), and there now exists a large volume of

results on the design of physically implementable con-

trol laws (for a detailed description refer, for example,

to (Sulikowski, 2006; Gałkowski, Lam, Rogers, Xu, Suli-

kowski, Paszke and Owens, 2003) and the references the-

rein).

The basic LMI based condition for stability along

the pass is as follows, where from this point onwards a

symmetric positive definite (resp. negative definite) ma-

trix, say M, is denoted by M � 0 (resp. M ≺ 0.)

Theorem 1. (Gałkowski, Lam, Rogers, Xu, Sulikowski,

Paszke and Owens, 2003) A discrete linear repetitive pro-
cess described by (1) and (2) is stable along the pass if
there exist matrices P � 0 and Q � 0 satisfying the fol-
lowing LMI:[

ÂT
1 PÂ1 + Q − P ÂT

1 PÂ2

ÂT
2 PÂ1 ÂT

2 PÂ2 − Q

]
≺ 0. (5)

This last result is a sufficient, but not necessary and

sufficient, condition for stability along the pass and hence

it can be conservative. Unlike alternatives, however, it

provides a direct route to control law design. For example,

if stability along the pass does not hold for a given exam-

ple, then a stabilizing control law is the minimum needed.

From the discussion above, it is clear that a control law

which only uses current pass information alone (e.g., the

state feedback law uk+1(p) = Fxk+1(p)) cannot guaran-

tee stability along the pass, i.e., these processes cannot be

controlled by direct application of 1D linear systems con-

trol laws. Instead, the control law must be activated by

a combination of current and previous pass information,

and one particular case is

uk+1(p) = K1xk+1(p) + K2yk(p) = K

[
xk+1(p)
yk(p)

]
,

(6)

where K1 and K2 are matrices to be computed.

Currently the only effective approach for the compu-

tation of the control law matrices here to ensure stability

along the pass for the controlled process is through the use

of LMIs. In particular, introduce

Â1 =

[
A B0

0 0

]

and

Â2 =

[
0 0
C D0

]
.

Then the following result gives an LMI based sufficient

condition for stability along the pass of the controlled

process where from this point onwards we use the nota-

tion X � 0 (respectively X ≺ 0) to denote a symmetric

positive-definite (respectively negative-definite) matrix.

Theorem 2. (Gałkowski, Lam, Rogers, Xu, Sulikowski,

Paszke and Owens, 2003) Suppose that a control of the
form (6) is applied to a discrete linear repetitive process
described by (1). Then the resulting controlled process is
stable along the pass if there exist matrices Y � 0, Z � 0
and N such that the following LMI is feasible:⎡⎢⎣ Z − Y 0

0 −Z

Â1Y + B̂1N Â2Y + B̂2N

Y ÂT
1 + NT B̂T

1

Y ÂT
2 + NT B̂T

2

−Y

⎤⎥⎦ � 0,

where

B̂1 =

[
B

0

]
, B̂2 =

[
0
D

]
.

If this condition holds, then

K = NY −1. (7)

An alternative route is based on the following result.

Theorem 3. (Gałkowski, Lam, Rogers, Xu, Sulikowski,

Paszke and Owens, 2003) Suppose that a control of the
form (6) is applied to a discrete linear repetitive process
described by (1). Then the resulting controlled process
is stable along the pass if there exist matrices P1 � 0,
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P2 � 0, P = diag{P1, P2} � 0, N1 and N2 such that the
following LMI is feasible:[

−P ΦP + RN

PΦT + NT RT −P

]
� 0,

where
Φ = Â1 + Â2,

N =

[
N1 N2

N1 N2

]
.

If this condition holds, then

K = NP−1. (8)

Necessary and sufficient conditions for stability

along the pass of the controlled process under this and

alternative control laws can be written down but this does

not lead, in almost all cases, to control law design tools. In

contrast, computations with LMIs are well understood and

easily implemented. Moreover, for design studies, there is

clearly a need to produce a toolkit which also includes

options to simulate the controlled process and graphically

display the results. In fact, there has been previous work

in this area—it is first reviewed in the next section, and

then substantial need features added in recent work are

detailed and illustrated.

3. Toolkit
A core problem encountered during control related ana-

lysis of repetitive processes is how to visualize the pro-

cess dynamics. This problem was considered in, e.g.,

(Gramacki, 1999; Gramacki et al., 2005; Hładowski et al.,
2006) but the resulting software was difficult to extend

and/or based on commercial environments.

To overcome such limitations, the development of

a new toolkit has been initiated in the SCILAB (Scilab,

2008) environment. The main advantage of this option

over alternatives is the open-source license of SCILAB and

a rapidly growing number of users. An introduction to

the SCILAB environment is given in (Gomez et al., 1998)

and (Campbell et al., 2006) and the LMI component

in (Nikoukhah, Delebecque and Ghaoui, 2008). The ove-

rall aim is to produce high quality reliable software to sup-

port the analysis and design of control laws for use with,

for example, experimental facilities (Ratcliffe et al., 2005)

where ILC control laws designed in a repetitive process

setting have been experimentally verified.

The remainder of this paper describes how this tool-

kit has been developed/enhanced in the following major

areas:

• The visualization of the process dynamics: 3D plots

and 2D plots (both along-the-pass and pass-to-pass).

• Stability analysis in an LMI setting.

• Control law design based on the use of LMIs.

• Options to use a pre-specified input or reference vec-

tor (for the controlled case) or to specify such prior

to simulating the process response.

• A user-friendly interface.

A first version of this toolkit is described

in (Hładowski et al., 2006), where the major feature

was the simulation of the response of an example (toge-

ther with some very basic control law design algorithms).

This provided the starting point for the developments

reported here where the first of these was the rewriting

of functions that do not depend on the model structure to

accept much more general parameters and hence facilitate

easier extensions to the toolkit. Moreover, after the initial

release it became obvious that much stronger type checks

are required. This is motivated by the fact that the linear

repetitive process model contains many variables that

are error prone. This has led to the development of new

functions for dealing with this task.

Effort was also directed to the development of a new,

vastly improved help system. It is based on standard SCI-

LAB templates but contains many more illustrative exam-

ples. Moreover, a number of potential pitfalls are expla-

ined. In-depth attention was also paid to the presentation

of the results. In the new version, the drawing engine was

rewritten to allow much easier use in scripts—all the func-

tions have a much clearer syntax. Moreover, the plotting

routines were extended to handle degenerate cases (such

as a plot of a single point on a single pass). In order to

ensure readability, a maximum of 32 passes can be drawn

simultaneously using different colors for clarity. Additio-

nally, due to the extended LATEX support, creating multi-

ple plots is much faster (from O(n) to O(1) calculations

of plot surfaces), and the plot surface is calculated only

for data required for plotting—when, for example, user

requests an “along-the-pass” plot for points 7, . . . , 18 for

α = 100 only the first 18 points are calculated. If neces-

sary, it can be requested to calculate the entire surface.

Compared with the previous version, the 3D plots are

now given in full color to better visualize the range of va-

lues in them. The main toolkit window is shown in Fig. 1.

Moreover, the LATEX support has been greatly extended.

3.1. Stability analysis and control law design. In

terms of stability analysis, asymptotic stability (and hence

the construction of the resulting limit profile for the pro-

cesses considered in this paper) is simple to check as

it requires that all eigenvalues of the matrix D0 in (1)

have modulus strictly less than unity (Benton, 2000). A

test for this property is implemented in the toolkit as
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Fig. 1. Main toolkit window.

Fig. 2. Stability analysis window.

stAsymptotic1. An LMI interpretation is also imple-

mented as stAsymptoticLMI1. (This is based on the

fact that all eigenvalues of the matrix D0 lie in the open

unit circle in the complex plane if, and only if, there exists

a matrix Q � 0 such that DT
0 QD0 −Q ≺ 0 which has an

obvious LMI interpretation.)

Asymptotic stability is always a necessary con-

dition for stability along the pass and hence sho-

uld be established for a given example before proce-

eding to stability along the pass where in the tool-

kit the condition of Theorem 2 can be implemented

using stAlongThePassLMI1.

One of the main reasons for selecting SCILAB as the

host platform for the toolkit was the excellent LMI so-

lver available for this platform as LMITOOL: A Package
for LMI Optimization in SCILAB (Nikoukhah, Delebecque

and Ghaoui, 2008). Note also that provision is available

to easily include the existing or newly developed tests by

simply implementing a single SCILAB function with no

need to change the GUI, as illustrated in Fig. 2. (Practical

stability is another property which lies between asympto-

tic stability and stability along the pass and is not discus-

sed here.)

In the case of control law design, one approach wo-

uld be to use the LMI tools already available in SCILAB

and code the methods by hand. However, this approach re-

quires substantial knowledge about the internal data struc-

tures used by the LMI solver and this is not ideal. Conse-

quently, a set of ready-to-use control law design templates

have been incorporated into the toolkit. Moreover, expan-

ding it to include additional control law design methods is

a simple task.

3.2. LATEX export. The presentation of simulation re-

sults can be a time consuming task, especially when we

have to compute with large dimensioned matrices, which

are often encountered in this area. To simplify this tedious

task, the toolkit was equipped with LATEX export capabili-

ties. An essential novelty is the fact that the user needs to

write the LATEX file, adding the tags that will be replaced

by the simulation results, instead of using a complicated

syntax of the previous toolkit version. It is possible to in-

clude any number of plots, both 2D and 3D. On each plot

any number of points/passes can be displayed, which is

an essential difference with the “interactive” plots discus-

sed earlier. Note, however, that 32 points/passes on each

plot can be displayed in unique colors—a substantial im-

provement over the previous version. The process of plot

selection is simplified by the use of an interactive wizard.

It is also possible to export simulation data from the script.

3.3. Usability enhancements. One of the design goals

was to make this new toolkit as user friendly as possible.

To achieve this, a “new system wizard” for entering va-

rious process parameters was implemented. Since most

of the model parameters are matrices, the basic method to

define these is the SCILAB convention for entering matri-

ces (exactly the same as in MATLAB). To simplify this

process, it is also possible to enter the matrix element by

element (see Fig. 3).

To make the end product available for a broader au-

dience, the Windows operating system version employs

an easy to use multilingual (currently Polish and English)

installer based on the Nullsoft Install System (NSIS) (Null-

soft, 2008). This system is widely regarded to be a very re-

liable, free solution that produces a small overhead code.

Additionally, the NSIS can package and verify all the fi-

les included into the prepared compilation. Moreover,

as an additional safety measure, for each installed file

the Message-Digest Algorithm 5 (better known as MD5)

checksum is calculated using the MD5 library (“IGx*”

Lieder, 2008). This value is used when upgrading and

uninstalling the toolkit—if a change is detected, the user

can choose to leave the file intact. Essentially, this feature

provides protection against accidental deletion of manual

changes.

During the installation phase, an existing LATEX in-

stallation is automatically detected. Currently, the most

popular MiKTeX distribution is supported by the installer,

but any standard LATEX can be used.
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Fig. 3. Matrix wizard windows: main and the matrix entry.

4. Implementation details
The toolkit consists of a TCL/TK GUI frontend and a

number of SCILAB script files and functions. All the ba-

sic process parameters are included in the lrp structure

which is implemented as a new type based on tlist
(typed list; native SCILAB datatype) with the following

fields:

• lrp_Sys_Cla — (string), the name of the data

type.

• The lrp.mat field of the type lrp_Sys_Cla_
Mat used for storing the model matrices—see (1).

Currently, it contains the values of A, B, B0, C, D,

D0.

• The lrp.dim field of the type lrp_Sys _Cla_
Dim used for storing the model dimensions. Curren-

tly, it has the following fields:

– alpha — (positive integer), the pass

length (number of points on each pass), denoted

by α in (1),

– beta — (positive integer), the num-

ber of passes over which the simulation will

run,

– n, r, m — (positive integers), the di-

mensions of state, input and output vectors, re-

spectively.

• The lrp.ini field of the type lrp_Sys _Cla_
Ini used for storing the initial conditions. Currently,

it has two fields.

• x0, y0 — (real matrices), the boundary con-

ditions, see (2). Note that xk+1(0) in (2) is here de-

noted by x0 for simplicity.

• controller — (list), the list of known control

laws for the process; see below.

• indController — (positive integer),

the index of the current control law. This field con-

tains the index of the currently active control law.

If indController=1, then no control law is ap-

plied.

• stability — (list), the list of performed stabi-

lity tests; see below.

Note that the model of (1) does not impose any con-

straints on the number of passes, and hence to simulate the

process response it is necessary to bound it by some finite

value selected by the user—hence the parameter beta in

the lrp structure.

4.1. lrp.controller field. The controller field of

the lrp_Sys_Cla datatype is a dynamically increasing

list that contains a number of tlist structures. Each

element holds the results of control law calculations. By

design the first element of the controller list (i.e,

lrp.controller(1)) is a copy of all the system ma-

trices. This “controller” is necessary in order to retain the

matrices defining the uncontrolled process.

When new control law matrices are computed, new

tlist is added to the lrp.controller field. This

field is defined by the user and the toolkit does not enforce

any constraints on its structure. The only requirement is

that the following three fields must be present:

• functionName, which holds the function name

without the .sci suffix,

• displayName, which is used when the user-

friendly description of the method is needed,

• solutionExists of the boolean type, which

informs the user as whether or not it is possible to

obtain control law matrices for the example under

consideration by the design method being conside-

red.

In order to introduce a new control law, the user must (i)

give it a name (e.g., controllerExample) and (ii) im-

plement a set of three functions and one .tex file:

• controllerExample (the same name as a con-

trol law name)—the main function used for calcula-

ting the (constant) control law matrices given a pro-

cess state-space model. This approach allows fa-

ster calculations but also imposes an important draw-

back: it is not possible (without changes to the core
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toolkit files) to simulate the controlled process to as-

ses the effects of varying the control law matrix (K).

(LMI designs produce a family of such K.) The ad-

dition of this feature is a subject for future work.

• setcontrollerExample
(set+controller name)—changes the system matri-

ces to those for the controlled process (e.g., replace

the A matrix by A+B ·K, where K is the calculated

(constant) control law matrix).

• writecontrollerExample
(write+controller name)—a SCILAB function

for exporting the results (e.g., controller matrices,

parameters, etc.) to LATEX; it can be blank if no

export is required.

• describecontrollerExample.tex
(describe+controller name)—an introduc-

tory text in LATEX to be inserted when using the LATEX

export capabilities; it can be left blank.

It must be stressed that the toolkit files written by the

user must be placed in the appropriate directories. This is

explained in the help file. Note also that SCILAB enforces

a maximum function name length of 25 characters.

4.2. lrp.stability field. The stability field of the

lrp_Sys_Cla datatype is a dynamically increasing

list that contains a number of tlist structures. Each

element represents a performed stability test.

When the user checks a new stability condition, new

tlist is added to the lrp.stability field. This

field is defined by the programmer and the toolkit does

not enforce any constraints on its structure. The only requ-

irement is that there must be a field solutionExists
of an integer type (note here the difference between

lrp.stability and the lrp.controller field

where a boolean type is used instead) which informs

the user whether the system is stable, unstable or the me-

thod used is inconclusive. The solutionExists field

can have the following values:

• −1 – the test is inconclusive. In this case the only

alternative is to use another test.

• 0 – the process is unstable.

• 1 – the process is stable.

Obviously, SCILAB works in finite precision arithmetic

and hence numerical errors can influence the results.

To implement a stability test, the user should write a

function that returns an lrp structure and is given 1 as the

only argument. Note here that a better solution would be

to use a “by variable” (or by pointer) passing method, but

this is not implemented in SCILAB. This function must be

placed in the stability directory of the toolkit.

To save memory, the lrp.stability field is dy-

namically created. If the user does not complete any sta-

bility tests, then this field does not exist.

4.3. Boundary conditions. The boundary conditions

of (2) can be entered either as a set of values or by pro-

viding a function that returns the appropriate value given

the pass k and the point number p.

By default, if the user does not supply the boundary

conditions, they are zero state vector on each pass and a

unit step applied at p = 0 in each channel of the initial

pass profile.

5. CoolMatrix type
One of the difficulties of implementing system theoretic

results in the SCILAB code is that very often the matri-

ces are indexed from 0 or even by a negative value (a

case commonly encountered in the analysis of the so-

called “wave” processes). SCILAB natively supports ma-

trices and vectors indexed only from 1. While chan-

ging all the indices to start from 1 may seem simple, it

can lead to many difficult-to-detect errors. To overcome

this difficulty, the new version of the toolkit includes the

CoolMatrix matrix type that allows the user to index the

matrices as required (from 0 or any other value, including

negative numbers). The functions used for this type are

designed for fast prototyping and hence provide a strict

error checking—any attempt to use a wrong index causes

an error. This type has been made compatible with the

standard SCILAB matrix type.

The disadvantage of this addition to the toolkit is the

overhead caused by this type. This is not very signifi-

cant, as in the early/prototyping phase of a design exer-

cise, small or medium dimensions will often be encounte-

red. Moreover, experience has shown that the efficiency of

the toolkit is greatly dependent on the LMI solver. Obvio-

usly, the user is not forced to utilise this data type; stan-

dard SCILAB types can be used without limitation.
An example of using CoolMatrix is given below.

--> x=new_mtx([-2,-3],[1 2; 3 4])
x =

is a CoolMatrix (-2..-1, -3..-2)
1. 2.
3. 4.

--> x(-2,-3:-2)
ans =

is a CoolMatrix (-2..-2, -3..-2)

1. 2.

--> x(1,:)
!--error 10000

Wrong index of dimension 1. Is: 1,
Allowed range: <-2, -1>, inclusive.
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at line 64 of function %mtx_e called by :
x(1,:)

Here the symbol "−−>" denotes the SCILAB prompt.

Note that the SCILAB notation of “extending” the size of

the matrix when called with an index larger than its for-

mer size is not supported (see the above example), as this

is very error prone.

6. Illustrating the toolkit in iterative
learning control

Iterative learning control is a technique for controlling

systems operating in a repetitive (or pass-to-pass) mode

with the requirement that a reference trajectory rref(p) de-

fined over a finite interval 0 ≤ p ≤ α − 1 be followed to

high precision. Examples of such systems include robo-

tic manipulators that are required to repeat a given task to

high precision, chemical batch processes or, more gene-

rally, the class of tracking systems.

Since the original work (Arimoto et al., 1984), the

general area of ILC has been the subject of intense rese-

arch effort. A possible initial source for the literature here

is the survey paper (Ahn et al., 2007). One approach in

ILC is to construct the input to the plant or process from

the input used on the last trial plus an additive increment

which is typically a function of the past values of the me-

asured output error, i.e., the difference between the achie-

ved output on the current pass and the desired plant out-

put. As such, it places the analysis of ILC schemes firmly

outside the standard (or 1D) control theory—although it is

still has a significant role to play in certain cases of prac-

tical interest.

In essence, ILC has the structure of a repetitive pro-

cess and to illustrate some of the main features of the to-

olkit (as it currently stands) we now detail the design of

an ILC control law based on an LMI setting and then give

the results of performance assessment via simulation. The

starting point is a process described by a 1D discrete linear

time invariant state-space model of the form

x(p + 1) = Ax(p) + Bu(p),
y(p) = Cx(p),

0 ≤ p ≤ α − 1,

(9)

where x ∈ R
n (u ∈ R

r, y ∈ R
m) denotes the state, input

and output vectors, respectively. The initial state vector is

taken as x(0) = d0. In many practical cases, a physical

process is required to repeat the same task over a finite

duration. One example here is a gantry robot whose task

is to place items on a moving conveyer under synchroni-

zation, i.e., to collect an object (or a workpiece) from a

specified location and place it on the conveyer and then

return to pick up the next one and so on. Once the ope-

ration has been completed for, say, the k-th item, then (in

principle at least) all input, output and state dynamics ge-

nerated during this and all previous trials are available for

use to update the control input vector to be applied for

the item k + 1 and so on. This is the core ILC problem,

i.e., use information from the previous trial (or trials) to

update the control input vector applied from trial to trial

in order to sequentially improve performance and, in par-

ticular, force the system to produce a desired trajectory,

say yref(p), with “acceptable” dynamics along each trial.

To introduce the ILC setting, we use the integer sub-

script k ≥ 0 to denote the current trial and rewrite the

model of (9) as

xk(p + 1) = Axk(p) + Buk(p),
yk(p) = Cxk(p),

(10)

and take the control objective to force the tracking error

on the trial k as

ek(p) = yref(p) − yk(p), (11)

p = 0, 1, · · · , α − 1, k ≥ 0, where yref(p) denotes the

reference signal to be learnt. Then a known result is that,

in its strongest form, the convergence of the ILC scheme

is equivalent to the property of linear constant pass length

repetitive processes known as stability along the pass. In

the repetitive process case, this is equivalent to uniform

bounded input bounded output stability (defined in terms

of the norm on the underlying function space), i.e., inde-

pendent of the pass length.

Introduce now the following additional variables,

(i.e., the state increment from trial-to-trial ηk+1(p) and the

input update Δuk+1(p)):

ηk+1(p + 1) = xk+1(p) − xk(p),
Δuk+1(p) = uk+1(p) − uk(p).

(12)

Then

ηk+1(p + 1) = Aηk+1(p) + BΔuk+1(p − 1), (13)

and consider also a control law of the form

Δuk+1(p) = K1ηk+1(p + 1) + K2ek(p + 1). (14)

Then we can write the following state-space model for the

error dynamics of the ILC scheme considered:

ηk+1(p + 1) = Âηk+1(p) + B̂0ek(p),
ek+1(p) = Ĉηk+1(p) + D̂0ek(p),

(15)

where
Â = A + BK1,

B̂0 = BK2,

Ĉ = −C(A + BK1),
D̂0 = (I − CBK2).
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Following the analysis in (Hładowski et al., 2007),

the solution of the ILC problem here is equivalent to con-

trol law design for stability along the pass in the repetitive

process interpretation of the system dynamics. The follo-

wing result is an LMI based solution to this problem.

Theorem 1. The ILC problem considered here is stable
along the pass if there exist matrices X1 = XT

1 � 0 and
X2 = XT

2 � 0, R1 and R2 for which the following LMI
is feasible:

M =

⎡⎢⎢⎢⎣
−X1 0

0 −X2

AX1 + BR1 BR2

−CAX1 − CBR1 X2 − CBR2

X1A
T + RT

1 BT −X1A
T CT − RT

1 BT CT

RT
2 BT X2 − RT

2 BT CT

−X1 0
0 −X2

⎤⎥⎥⎥⎦ ≺ 0.

If this condition holds, the control matrices K1 and K2 in
(14) are given by

K1 = R1X
−1
1 ,

K2 = R2X
−1
2 .

As an example consider the gantry robot ILC experi-

mental test facility described in (Ratcliffe et al., 2006).

For this facility, approximations for the dynamics of

each axis have been obtained by frequency response te-

sts and then approximation based on approximate Bode

gain plots. If in the case of the X-axis the resulting model

is sampled with a period Ts = 0.02 seconds, the resulting

state-space model is of the form (15) with

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.24 1 0 0 0
−0.0032 −0.24 −0.2 −0.57 −0.37

0 0 −0.77 1 0
0 0 −0.06 −0.77 −0.31
0 0 0 0 −0.0088
0 0 0 0 −0.62

0.18 −0.65 −0.14 −0.054 0.5

0 0
0.77 0.85
0 0

0.64 0.7
1 0

−0.0088 1
0.56 −0.79

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Fig. 4. Reference signal for the X-axis.

B̂0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

0.21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D̂0 =

[
2.6 · 10−15

]
,

Ĉ =
[
6.3 · 10−15 −9.8 · 10−15 −1.1 · 10−15

1.1 · 10−15 −8.9 · 10−16 8.9 · 10−15

7.5 · 10−15
]
.

The application of Theorem 1 now gives (with computa-

tions performed within the toolkit)

K1 =
[
0.0228188 −0.0816981 −0.0171825

−0.0066907 0.0629192 0.0697179

−0.2238190
]
,

K2 = 0.0259195.

In order to assess the performance of the resulting

design, consider the reference signal shown in Fig. 4.

Simulating this process in the toolkit for α = 30 po-

ints and β = 5 trials gives Fig. 5, from which it is clear

that the ILC error has decayed to 0, i.e., the reference si-

gnal is achieved by this design.

7. Conclusions and future work
The SCILAB toolkit whose development was described in

this paper has already proven useful in the analysis and

control law design for discrete linear repetitive processes

of the form considered here. Its basic functions include
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Fig. 5. Evolution of the ILC error.

the simulation engine and the stability analysis/control

law design abilities. Moreover, the user is able to export

the results to the valid LATEX compatible format text file.

Software development for this toolkit is an ongoing

process; there are many options which remain to be im-

plemented. Representative samples of the ongoing deve-

lopment work include the following topics:

• support for new classes of processes (such as “wave”

or semi-linear) and for a differential process model

where the dynamics along the pass are governed by

a linear matrix differential equation coupled with di-

scretization methods,

• the addition of new control law design algorithms,

• control law design for stability and performance

(e.g., ensuring that a reference signal is tracked, the

minimization of the influence of the external distur-

bances),

• the handling of processes with uncertainty in the

state-space model,

• an installer for the Linux/Unix version.

In some applications, it is necessary to use a pass

state initial vector sequence which is an explicit function

of points along the previous pass profile. It is known that

these alone can cause the process to be asymptotically

unstable (and hence unstable along the pass). There has

been a considerable amount of research effort directed to

this case, see (Rogers et al., 2007), which has produced

computable stability tests and also some algorithms for

stabilizing control law design. Clearly, work is required

to include these within the toolkit. Results of this work

will be reported in due course.
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