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The paper presents an algorithm which solves the shortest path problem in an arbitrary deterministic environment with
n states with an emotional agent in linear time. The algorithm originates from an algorithm which in exponential time
solves the same problem, and the agent architecture used for solving the problem is an NN-CAA architecture (neural
network crossbar adaptive array). By implementing emotion learning, the linear time algorithm is obtained and the agent
architecture is modified. The complexity of the algorithm without operations for initiation in general does not depend on the
number of states n, but only on the length of the shortest path. Depending on the position of the goal state, the complexity
can be at most O(n). It can be concluded that the choice of the function which evaluates the emotional state of the agent
plays a decisive role in solving the problem efficiently. That function should give as detailed information as possible about
the consequences of the agent’s actions, starting even from the initial state. In this way the function implements properties
of human emotions.
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1. Introduction

This paper considers the complexity issues of the problem
of finding the shortest path in an arbitrary deterministic
environment with an emotional agent. The searching me-
thod is on-line, combined with planning. Off-line search
methods which first derive a plan that is then executed
cannot be used to solve the path planning tasks, since
the topology of the state space is initially unknown to
the agent and can only be discovered by exploring, i.e.,
executing actions and then observing their effects. On-
line search methods, also called real-time search methods,
update modifiable parameters after each visit of a state
and can discover certain environments goal state in poly-
nomial time (Koenig and Simmons, 1992), while off-line
methods sometimes require exponential time (Whitehead,
1991).

Whitehead (1991) analysed the search time comple-
xity of unbiased Q-learning for problem solving tasks on
a restricted class of state spaces. The results indicate that
unbiased search can be expected to require time modera-
tely exponential in the size of the state space. He pro-

posed a learning algorithm to reduce the search. The al-
gorithm, called Learning with an External Critic (LEC),
is based on the idea of a mentor who watches the learner
and generates immediate rewards in response to its most
recent actions. This reward is then used temporarily to
bias the learner’s control strategy. The LEC algorithm re-
quires time at most linear in the size of the state space and
under appropriate conditions is independent of the state
space size, requiring time proportional to the length of the
optimal solution path. Here the research is moving toward
supervised learning.

With the emotion learning algorithm proposed in this
paper the agent solves the problem autonomously, using
the concept of state evaluation, connecting it to the con-
cept of feeling.

2. Emotion learning: Consequence driven
systems approach

Emotion has been identified as one of the key elements
of intelligence and of the adaptive nature of human be-
ings (Damasio). The emotion based agent learning tries to

silvanap@unet.com.mk


410 S. Petruseva

BEHAVIORAL ENVIRONMENT

GENETIC ENVIRONMENT

wai

w1j

waj

emotional state evaluation

a  s 
c  e 
t  l 
i  e 
o c 
n t 
   o 
   r 

w1*

wa*

   x1     xj xnxi

v

ya

ym

y1

s
t

wm*

Fig. 1. CAA architecture.

develop artificial mechanisms that can play the role that
the emotions play in human life. These mechanisms are
called “artificial emotions”.

In the last 20 years there have been several pointers
toward the issue of feelings and emotions as features ne-
eded for developing an artificial intelligent creature. Seve-
ral issues in emotional agent design initiated the problem
of emotion based learning in autonomous agents (Botelho
and Coelho, 1998; Bozinovski, 1999a; Bozinovski 2002;
Bozinovski, 2003). The problem is how to define emo-
tion based learning and how to implement it in a useful
manner. A computational model of an emotion that can
be used in the learning system of an agent is presented in
this paper.

This paper argues that emotion learning is a valid ap-
proach to improve the behaviour of artificial autonomous
agents.

L.M. Botelho and H. Coelho (1998) argue that adap-
tive behaviour may be achieved through a process of emo-
tion learning. Emotion learning refers to the improvement
of the agent’s emotion process itself. Since emotion is one
of the agent’s control processes, improved emotion entails
improved behaviour (Botelho and Coelho, 1998).

We shall now consider how the consequence driven
systems approach is connected with emotion learning.

Consequence driven systems theory is an attempt to
understand the agent personality; it tries to find an archi-
tecture that will ground notions such as motivation, emo-
tion, learning, disposition, anticipation, curiosity, confi-
dence and behaviour among others, which are usually pre-

sent in discussions about the agent personality (Bozino-
vski, 2002; 2003).

Consequence driven systems theory originated in an
early reinforcement learning research effort to solve the
assignment of credit problem using a neural network in
1981.

Consequence programming is understood as a
subgoal-goal programming in model-free tasks. It is as-
sumed that an agent is entering an unknown environment,
looking for a known goal. The agent knows that a conse-
quence of reaching a subgoal is a chance of reaching the
goal. So, it will learn how to develop a policy of reaching
a subgoal. Since there is no model, the agent will have
to learn by doing, in real time. The process of reaching
a subgoal driven by the fact that the goal may follow as a
consequence is denoted as consequence programming or
consequence managing (Bozinovski, 1995).

The Crossbar Adaptive Array (CAA) architecture
was designed to solve the maze learning problem. The
CAA architecture effort from the start was challenged by
the mazes defined in the computer game Dungeons and
Dragons, where there is one goal state but many rewar-
ding and punishment states along the way. CAA adopted
the concept of dealing with pleasant and unpleasant sta-
tes, feelings and emotions (Fig. 1) (Bozinovski, 1999b).
In contrast to reinforcement learning concept, CAA does
not use any external reinforcement r; it uses only the cur-
rent situation X as input. The CAA approach introduces
the concept of state evaluation and connects it to the con-
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cept of feeling, which is used as an internal reinforcement
entity (Bozinovski, 1982).

We will now describe the CAA architecture; the mo-
dified CAA architecture which is used in this paper will
be explained further on.

The consequence driven systems theory assumes
that the agent should always be considered as a three-
environment system. The agent expresses itself in its be-
havioural environment where it behaves. It has its own in-
ternal environment where it synthesizes its behaviour, and
it also has access to a genetic environment from where it
receives its initial conditions for existing in its behavio-
ural environment. The genetic and the behavioural envi-
ronment are related. All the initial values are received
from the genetic environment. The genetic environment
is supposed to be a genotype reflection of the behavioural
one. From the genetic environment CAA receives a string,
denoted as a genome string or simply the CAA input ge-
nome. The input genome can have several chromosomes,
but the most important one is the memory chromosome. It
contains values W of the crossbar learning memory. So,
if the genetic environment properly reflects the desirable
or undesirable situations in the behavioural environment,
then the genome string will properly inform the newborn
CAA agent about the desirable (as well as undesirable)
situations in the behavioural environment. Having initial
emotional values of the desirable situations and using the
emotional value back propagation mechanism, CAA will
learn how to reach those situations. Having defined pri-
mary emotional values by the input genome, CAA learns
behaviour in the environment by means of emotional va-
lue back propagation using its learning rule (Bozinovski,
1995).

One main module of the CAA architecture is its me-
mory module (Fig. 1.), a connectionist weight matrix W.
Each memory cell waj represents the emotional value to-
ward performing action a in the situation j. It can be inter-
preted as a tendency, disposition, motivation (Bozinovski,
2002), expected reward, or by other terms, depending on
the given problem for which CAA is used as a solution ar-
chitecture. From the emotional values for performing ac-
tions in a situation k, CAA computes an emotional value
vk of being in the situation k. Having vk, CAA considers
it as a consequence of the action a performed previously
in a situation j. So, it learns that performing a in j has as
a consequence emotional value vk, and on that basis it le-
arns the desirability of performing a in j. Using crossbar
computation over the crossbar elements waj , CAA per-
forms its crossbar learning procedure, which has 4 steps:

(1) state j: choose an action in state j, aj =
Afunc{w∗j}. Let it be action a: let the environment
return situation k;

(2) state k: feel the emotion being in state k : vk =
V func {w∗k};

(3) state j: learn the emotion towards a in j : waj =
U func(vk);

(4) change state: j = k, go to 1,

where w∗k means that computation considers all the po-
ssible values of the k-th column vector. The functions
Afunc{·} and V func{·} are convenient to be defined in
such a way as to assure the convergence of the above pro-
cedure. This is the so-called on-route acting method. The
learning rule, the function U func{·} denoted as crossbar
learning rule as used in CAA, is waj = waj + vk, or em-
phasizing the rule of emotion: emotionaj = emotionaj +
emotion(k), where emotionaj is an emotion toward per-
forming action a in situation j, and emotion (k) is emo-
tion being in situation k. The learning procedure descri-
bed above is actually an emotion value back propagation
procedure (secondary reinforcement procedure) (Bozino-
vski, 1982).

Another variant of the CAA method is the so-called
off route acting method (or the point acting variant):

(1) state j: choose an action in state j, aj =
Afunc{w∗j}. Let it be action a: let the environment
return situation k;

(2) state k: feel the emotion being in state k : vk =
V func {w∗k};

(3) state j: learn the emotion toward a in j : waj =
U func(vk);

(4) choose j; go to 1.

The on-route variant follows a route and applies the
CAA learning method. In the off-route variant, the me-
thod can be applied at any state; the state can be chosen
randomly or use some next-state-choosing policy (Bozi-
novski, 1995).

The new algorithm described in this paper uses this
off-route acting method.

The CAA approach introduced learning systems that
can learn without external reinforcement. In the philo-
sophy of the CAA approach all the external reinforce-
ment learning rules are classified into the supervised le-
arning class. In the supervised learning system, a supervi-
sor (e.g., a teacher) can give an external reinforcement of
agent behaviour, and/or advice on how the agent should
choose the future actions. In unsupervised (self supervi-
sed) systems, having no external teacher of any kind, the
agent must develop an internal state evaluation system in
order to compute an emotion (internal reinforcement).

3. At-subgoal-go-back algorithm

The at-subgoal-go-back algorithm (Bozinovski, 1995; Pe-
truseva and Bozinovski, 2000) solves the problem of fin-
ding the shortest path from the starting state to the goal
state in an environment with n states. The domains which
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are concerned are environments with n states, one of
which is a starting state, one is a goal state, and some of
them are undesirable and should be avoided. It is assu-
med that a path exists from the initial state s to the goal
state g and the algorithm holds for environments which
have graph representation with the following constraint:
if there is a path from the initial node to some other node
j, then there must be a path from that node j to the goal
node. This problem is solved with the CAA agent archi-
tecture explained in Section 2.

The method which CAA uses is the backward cha-
ining method. It has two phases: (1) search for a goal
state, and (2) when the goal state is found, define the pre-
vious state as a subgoal state. The search is performed
using some searching strategy, in this case random walk.
When, executing a random walk, a goal state is found, a
subgoal state is defined, and this subgoal becomes a new
goal state. The process of moving from the starting state
to the goal state is a single run (iteration, trial) through the
graph. The next run starts again from the starting state,
and will end in the goal state. In each run a new subgoal
state is defined. The process finishes when the starting
state becomes a subgoal state. That completes the solu-
tion finding process.

CAA has a random walk searching mechanism im-
plemented as a random number generator with uniform
distribution. Since there is a path to the goal state by as-
sumption, there is a probability that the goal will be found.
As the number of steps in a trial approaches infinity, the
probability of finding a goal state approaches unity (Bozi-
novski, 1995).

The time complexity of an on-line search strongly
depends upon the size and the structure of the state space,
and upon a priori knowledge encoded in the agent’s initial
parameter values. When a priori knowledge is not ava-
ilable, the search is unbiased and can be exponential in
time for some state spaces. Whitehead (Whitehead, 1991;
1992) showed that for some important classes of state spa-
ces reaching the goal state for the first time, moving ran-
domly can require a number of action executions that is
exponential in the size of the state space. Because of this,
for the state spaces which are concerned for this algori-
thm, it is assumed that the number of transitions between
two states from the starting state to the goal state in every
iteration is linear function of n (the number of states).

The agent starts from the starting state and should
achieve the goal state, avoiding undesirable states. From
each state the agent can undertake one of maximum m
actions, which can lead to another state or to a certain ob-
stacle. The agent moves in the environment randomly, and
after a few iterations it learns a policy to move directly
from the initial state to the goal state, avoiding undesira-
ble states, i.e., it learns one path. After that it learns the
optimal solution – the shortest path.

The initial knowledge is memorized in the ma-
trix Wm×n. The elements of the matrix W , wij(i =
1, . . . , m; j = 1, . . . .n) give information for the states and
are used for computing the actions; they are called SAE
components (state – action – evolution). The elements of
each column (j = 1, . . . , n) give information for the sta-
tes. The initial values of the elements of the column are
all 0 if the state is neutral, with values −1 if the state is
undesirable, and with values 1 if the state is a goal.

The learning method for the agent is defined by 3
functions whose values are computed in the current and
the following state. They are (Bozinovski, 1995):

(1) The function for computing an action in the current
state; let it be some function

yj = Afunc
a

(waj), j = 1, . . . , n; a = 1, . . . , m.

This function is of a neural type and is defined in the
following way:

i = yj = arg max
a∈A(j)

{waj + sa} ,

j = 1, . . . , n; a = 1, . . . , m.

sa is the action modulation variable, which pre-
sents a searching strategy. The simplest searching
strategy is random walk, implemented as s =
montecarlo[−0.5, 0.5], where montecarlo[interval ]
is a random function which gives values uniformly
distributed in the defined interval. With this function,
the agent selects the actions randomly. Having that,
NN-CAA (Neural Network CAA) will perform ran-
dom walk until the SAE components receive values
which will dominate the behaviour.

(2) The function for the estimation of the internal, emo-
tional value of being in a state, computed in the con-
sequence state. From the emotional values of perfor-
ming the actions, CAA computes an emotional value
of being in a state. The emotional value of being in
a state k is computed as vk = Vfunc

i
(wik) where

Vfunc(·) is a carefully chosen function for solving
the given task. Having vk, CAA considers it as a
consequence of the action i performed previously in
a state j. The functions vk, k = 1, . . . , n are compu-
ted in a “neural” fashion:

vk = sgn

(
m∑

a=1

wak + Tk

)
.

Tk is a neural threshold function (or a warning func-
tion) whose values are

Tk =

⎧⎪⎨
⎪⎩

0 if ηk = m,

ηk if pk ≤ ηk < m,

0 if ηk < pk,
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where pk is the number of positive outcomes, ηk is
the number of negative outcomes that should appear
in the current state. The threshold function T plays
the role of a modulator with which CAA will evaluate
the states that are on the way.

(3) the function for updating the memory, computed in
the current state. It learns that performing i in j
has as a consequence the emotional value vk, and
on that basis it learns, using some function wij =
Ufunc(vk). The learning rule in NN-CAA is defined
by waj = waj + vk; SAE components in the pre-
vious state are being updated with this rule, using the
desirability of the current state.

The CAA at-subgoal-go-back algorithm for finding
the shortest path in a stochastic environment is given in
the following frame (Bozinovski, 1995):

CAA AT-SUBGOAL-GO-BACK ALGORITHM:
repeat

forget the previously learned path
define the starting state
repeat

from the starting state
find a goal state moving randomly
produce a subgoal state using the CAA learning
method
mark the produced subgoal state as a goal state

until starting state becomes a goal state
export the solution if better than the previous one

forever.

The experiment needs several iterations. When the
goal state is reached, the previous state is defined as a
subgoal. The goal is considered a consequence of the pre-
vious state, from which the goal is reached. Every sub-
goal becomes a new goal. With this algorithm, except in
the first iteration, the agent does not go to the end goal
state, but it starts a new iteration when it reaches a sub-
goal. A subgoal is a state which has a positive value for
some of its elements w[i, j]. The process of learning fi-
nishes when the initial state becomes a subgoal. It means
that at that moment the agent learnt one path; it learnt a
policy how to move directly from the initial state to the
goal state, avoiding undesirable states. Through the pro-
cess of learning in every iteration, the elements w [i, j]
change, so that when the initial state becomes a subgoal,
they have values that enable deterministic moving from
the starting to the goal state. The algorithm guarantees fin-
ding one solution, i.e., a path from the starting state to the
goal. For solving the shortest path problem, another me-
mory variable should be introduced, which will memorize
the length of the shortest path, found in one reproduction

period. The period in which the agent finds one path is
called the reproductive period and, in general, in one re-
productive period the agent cannot find the shortest path.
After finding one path, the agent starts a new reproductive
period when it learns a new path, independent of the pre-
vious solution. The variable shortest path is transmitted
to the following agent generation in a genetic way. In this
way the genetic environment is an optimisation environ-
ment which enables the memorisation of the shortest path
only, in a series of reproductive periods. This optimisation
period will end in finding the shortest path with probabi-
lity 1. Since the solutions are continuously generated in
each learning epoch, and because they are generated ran-
domly and independently of the previous solution, then,
as time approaches infinity, the process will generate po-
ssible solutions with probability 1. Among all possible
solutions the best solution, the shortest path, is contained
with probability 1. Since CAA will recognize and store
the shortest path length, it will produce the optimal path
with probability 1 (Bozinovski, 1995).

3.1. Estimation of the complexity of the at-subgoal-
go-back algorithm. Finding the shortest path with the
at-subgoal-go-back algorithm is in exponential time be-
cause the agent should learn all paths from the initial state
to the goal state. The number of paths from one node
to another in a graph is an exponential function of n, the
number of nodes in the graph. This assertion is proved
with two theorems (whose proofs can be found in (Petru-
seva, 2006a)).

Theorem 1. If A is the adjacency matrix for the graph G
with n nodes, then the element cij of the matrix Ak shows
the number of paths with length k from the node i to the
node j.

Note: This result is known, but because the author
could not find the proof, the result is proven and the way it
is proven is used for the estimation of the number of paths
from one node to another, depending on n, the number
of nodes (and m, the number of arcs from a node) in the
graph. (Petruseva, 2006a).

Since the agent learns one path in every reproductive
period, it is necessary to express the total number of paths
from the initial state to the goal state as a function of the
number of states n (and the number of actions m in every
state). The following theorem shows that dependence and
gives the estimation of the lower and the upper boundary
for the number of paths with length s from one node to
another in a graph with n nodes.

Theorem 2. The number of paths with length s from the
node i to the node j, bij

s , can be estimated as cmks−2
min ≤

bij
s ≤ mks−2

max, for s ≥ 2, where c is some constant, m is
the number of arcs which go out of i, kmin and kmax are
the minimum and the maximum number of arcs which can
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enter a certain state in the graph (ij are indices, s − 2 is
power).

The number of all paths B from the initial state i to
the goal state g is the sum of all paths from i to g with
length d, d+1, d+2, . . . , n−1−p, where d is the length
of the shortest path, and n − 1 − p is the length of the
longest path.

B is estimated by

Ω

[
m

(
kn−p−2
min − kd−2

min

kmin − 1

)]
.

S, the number of reproductive periods, is greater than or
equal to B, so S can also be estimated by

S = Ω

[
m

(
kn−p−2
min − kd−2

min

kmin − 1

)]
,

i.e., S is an exponential function of n, the number of nodes
(Petruseva, 2006a).

4. Motivation for the proposed linear time
algorithm

The main motivation for the proposed linear time algori-
thm is the exponential time at-subgoal-go-back algorithm.
In order to decrease its complexity, dynamic program-
ming is applied, and one “intersolution”—polynomial
time algorithm—is obtained with complexity Θ (n2) (Pe-
truseva, 2006b). This polynomial algorithm is, in fact, an
immediate predecessor of the linear algorithm proposed in
this paper.

The conclusion on this algorithm was that defining
the function v in the subgoals in such a way as to precisely
measure the consequences of the agent’s actions (starting
from the goal) gives drastic improvement of the speed of
convergence of the algorithm. Since this function does not
give information about the consequences of the agent’s
actions from the start state to the goal, considering the
definition of the emotions, the motivation was to change
learning functions so that the emotion function would me-
asure the consequences of the agent’s actions even from
the start state, i.e., to implement emotion learning all the
time. So the linear time algorithm was obtained, which
implements breadth-first searching. In addition, it turned
out that, in general, the learning time is independent of n,
the number of states, and the algorithm can be applied to
an arbitrary environment!

In the next sections the proposed linear time algori-
thm will be presented with some preliminary notions.

5. Models and planning

By a model of the environment we understand anything
that the agent can use to predict how the environment will

respond to its actions (Sutton and Barto, 1998). The mo-
del can be completely specified or incompletely specified
(Bozinovski, 1995). A completely specified model assu-
mes knowledge of all states, transition values, and transi-
tion probabilities. An incompletely specified model is one
in which some of the mentioned information is missing. A
special class of an incompletely specified environment is
a model-free environment. In most cases, such an environ-
ment can be imagined as a cave in which even the number
of states is unknown. A basic assumption is that when
the problem solving agent finds a target state, it will re-
cognize such a state. For practical purposes, a model-free
environment is often given by a maximal number of po-
ssible states and a maximal number of actions per state.
An agent is to enter the cave and learn by doing, from the
consequences of its trials.

Models can be used to mimic or simulate experience.
The model is used to simulate the environment and pro-
duce simulated experience.

The word “planning” is used in several different ways
in different fields. It is used to refer to any computational
process that takes a model as input and produces or im-
proves a policy for interacting with the modelled environ-
ment.

Model → Planning → Policy
In this paper planning is viewed primarily as a search

through the state space for a path to a goal. The difference
between learning and planning methods is that whereas
planning uses simulated experience generated by the mo-
del, learning methods use real experience generated by the
environment. Learning methods require only experience
as input, and in many cases they can be applied to simula-
ted experience just as well as to real experience.

Learning and planning are deeply integrated in the
sense that they share almost all the same machinery, dif-
fering only in the source of their experience (Sutton and
Barto, 1998).

Peng and Williams (1992) used a combination of
planning strategies based on dynamic programming with
learned world models for effective learning. They propo-
sed a prioritizing scheme in the Dyna architecture in order
to improve its efficiency. They demonstrated, using sim-
ple tasks, that the use of such prioritizing schemes leads
to drastic reductions in the computational effort and cor-
responding dramatic improvements in the performance of
the learning agent.

Knowledge about the connections of the states in the
environment is considered as a part of the model of the
environment in this paper. The agent learns this partial
model of the environment through real experience, i.e.,
in every successor state s it learns the first predecessor
state s′ and the action taken in s′ which leads to s. When
the agent finds the goal state, simulated experience is ge-
nerated in these predecessor states (marking the shortest
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path). After that, in the planning phase, it moves through
the optimal path using this simulated experience.

6. New emotion learning algorithm and
the modified CAA architecture

The following notation is used in this paper: S denotes
the finite set of states of the state space, A(s) is a finite
set of actions that can be executed in s ∈ S, the size of
the state space is n = |S|. This algorithm can be applied
for solving the shortest path problem in an arbitrary de-
terministic environment with n states. The assumption is
that there is a path from the initial state to the goal state
and the maximal number of actions which the agent can
undertake in every state is the constant m (m < n).

Figure 2 shows a domain which is an environment
with n states, one of which is a starting state (6), one is a
goal state (10), and some states are undesirable and should
be avoided. The agent starts from the starting state and
should learn to move along the shortest path to the goal
state, avoiding undesirable states. From each state, the
agent can undertake one of possible m actions, which can
lead to another state or to a certain obstacle. By succ(ai, s)
we shall denote the next state which is achieved from s, or
the obstacle which can appear after executing the action
ai in s.

The agent uses direct learning (emotion learning) ba-
sed on real experience (which implements breadth-first
searching), combined with planning (based on simula-
ted experience). The agent architecture used is shown
in Fig. 3. It is a modified CAA architecture explained
in Section 2. The memory module W is widened with
the memory elements ps[j] and pac[j] (j = 1, . . . , n),
ps[j] is the element for memorizing the first predecessor
state s from which the state jis achieved, and pac[j] is
the element for memorizing the action chosen in that state
s, which leads to j. So, the memory elements ps[j] and
pac[j] (j = 1, . . . , n) are used for learning the partial mo-
del of the environment in the phase of model learning.

This phase is being accomplished simultaneously
with the phase of direct learning. When the agent finds the

Fig. 2. Arbitrary environment.

goal state, simulated experience is generated using these
elements. In fact, these elements are used for finding the
optimal path from the starting state to the goal state, which
is being marked backwards – from the goal state to the
starting state. The state values V [j] (j = 1, . . . , n) are
not being computed from the elements w[i, j] in j (as in
the CAA method) but from the previous value V [s] in the
predecessor state s.

For our new emotion learning algorithm the three le-
arning functions explained in Section 2 are given in the
following way:

1. The function Afunc for choosing an action in a state
j is:

(a) In the exploring phase until the goal state is found,
in every state the agent chooses and explores every
action from that state one by one, i.e., y(j) = a (a =
1, . . . , m);

(b) When the goal is found and simulated experience
is generated from the partial model, the agent uses
this simulated experience in the phase of planning,
moving through the optimal path, by choosing the
actions in every state from the initial to the goal state
with the function

y(j) = argmax
a∈A(j)

w(a, j).

2. The function Vfunc for computing the emotional
state of the agent in a state k is

V (k) =

⎧⎪⎨
⎪⎩
−100 if the state k is undesirable,

V (j) + 1 otherwise (j is the first

predecessor of k).

3. The function Ufunc for updating the memory ele-
ments w[a, j] is given by

w[a, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V [k] if the action a in j leads to the

state k which is not passed

before

−100 if the action a in j leads to an

obstacle or to a previously

learned state.

Initially, all V (j) = 0, w(a, j) = 0 (j = 1, . . . , n,
a = 1, . . . , m), except for the undesirable states j,
w[a, j] = −1 (a = 1, . . . , m), and for the goal state g,
w[a, g] = 1 (a = 1, . . . , m).

In the exploring phase, in every state j (except for
undesirable states) the agent explores every action from
that state. The agent chooses the actions in the state one
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by one. After taking an action in j, if the successor state
k is not an undesirable state or a previously passed state,
the agent (1) goes in that state; (2) updates the value V (k)
from V (k) = 0 to V (k) = V (j)+1; (3) in k the agent me-
morizes (learns) the previous state j and the action which
leads to k; (4) updates the value w[a, j] = V [k] and re-
turns to j. The value w[a, j] = V [k] means that taking
the action a in j the agent will learn that the shortest path
from the initial state to the next state k is V [k].

After exploring all actions from the initial state s, the
agent has found (learned) all consequence states ss with
V (ss) = 1 (the initial state has V (s) = 0). After that,
the agent goes in every state ss with V (ss) = 1 one by
one and explores their actions in the same way. So, after
being in all these states (with V (ss) = 1 and exploring
their actions), the agent finds all states ss with V (ss) = 2
and goes in each of these states, and so on.

When the agent finds the goal state, this exploring
phase finishes and simulated experience is generated from
the partial model which the agent has learned: every me-
mory element w[i, j] from the predecessor states from the
goal state to the initial state, for which the state j and the
action i was memorized in the phase of model learning,
gets some high value (100). In this way the shortest path
is marked from the goal state to the initial state. In the
planning phase the agent moves through the optimal path
using simulated experience.We can consider these predecessor states which be-
long to the optimal path as subgoals which lead to the
goal. The algorithm is given in Fig. 4.

The algorithm uses the so-called off road acting me-
thod, mentioned in Sec. 2., because the agent always cho-
oses the states with the same state value one by one (this
is also called the point acting variant). The learning pro-
cedure in every state j can be described as follows:

repeat
state j: choose an action a in state j : y(j) = a

if obtained state is k, and if it is not previously learned
state, then
Begin

state k: compute the emotion in the state k:

V (k) =

{
−100 if the state is undesirable,

V (j) + 1 otherwise.

If k is not undesirable state, learn the predecessor state
j and the action a which leads to k : Ps[k] = j;
Pac[k] = a;

state j: learn the emotion toward a in j : w[a, j] =
V (k);

End;
if the action leads to an obstacle, or if the obtained
state is a previously learned state, then w[a, j] =
− 100;

Begin
s   initial   state ; 

      k=0; 
learning(s);  
while k=0  do
 begin                                                        

          successors; 
          s=snew; 

end
end.

Fig. 4. Emotion learning algorithm.

until all actions a ∈ A(j) in the state j are explored one
by one
choose j.

The state value V (s) is defined as an emotional value
of the agent being in the state s. In the case of solving the
problem of finding the shortest path from the initial state
to the goal state, V (s) measures the shortest distance of
the state s from the starting state.

Wittek (1995) explains that human emotions are
energy complexes composed of pictures, whose elements
are thoughts, words, and acting from the past. They are
consequences of our previous thinking, speaking and ac-
ting (previous experience). Emotions are part of our cha-
racter, personality: we have built them, and we can also
unbuild them. If we become aware that the emotion which
is active is not positive, we can change it sooner or later,
by positive thinking, opposing a positive thoughtful com-
plex. But if it is not the case, the emotion is a consequ-
ence from the past, from our previous way of thinking and
acting. In this implementation of emotion learning, the
emotional value V (s) expresses the consequence of the
agent’s actions: taking an action from the previous state
and being in the state s, the agent learns in s that the shor-
test path from the starting state is V (s). V (s) summarizes
the whole acting of the agent from the initial state to the
state s. So, the function of the emotion V should measure
the consequence of the agent dealing and of its actions as
much as possible (about the task which has to be accom-
plished). The algorithm is presented in Fig. 4.

The procedures learning, successors, simulating-
exp, and planning are given below.

Procedure learning(s)
begin
i = 0;
repeat
i = i + 1;
take the action ai in s: y[s] = ai

compute ss = succ (ai, s);
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Fig. 3. Modified CAA architecture.

if ss is not undesirable state, obstacle or previously
learned state, then
begin
go in ss and learn the emotional value in ss:
V (ss) = V (s) + 1;
learn the predecessor state s and the action ai which
leads to ss :
Ps(ss) = s; Pac(ss) = ai;

update the emotional value w[ai, s] toward taking the
action ai in s:
w[ai, s] = V (ss);

return to state s;
end;

if ss is a goal state then
begin
k = 1;
simulating-exp;
planning;

end;
else

begin
if ss is undesirable state then V [ss] = −100;
if the action leads to an obstacle, previously learned,
or undesirable state then w(ai, s) = −100;
end;

until k = 1
end.

Procedure successors
Begin
∀ state s1 for which V (s1) = V (s) + 1
repeat

choose state s1
snew = s1;
learning (snew);

until k = 1
end.

Procedure simulating-exp
begin
s′=goal state;
repeat

subg = ps[s′];
act = pac[s′];
w[act, subg] = 100;
s′ = subg;

until s′ = startingstate
end.
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Procedure planning
begin
s = startingstate;

repeat
a = arg maxai w(ai, s);
ss = succ(a, s);
s = ss;

until s = goalstate
end.

7. Estimation of the complexity of
the algorithm

If we call this algorithm an emotion-learning algorithm,
the following theorem gives the estimation of its comple-
xity.

Theorem 3. Without the operations for initiation, in
general, the emotion-learning agent with the emotion le-
arning algorithm finds one shortest path from the initial
state to the goal state in an arbitrary deterministic envi-
ronment in time which does not depend on n, the number
of states, but only on the length of the shortest path (it is
task dependent), but in the worst case, depending on the
position of the goal state, it can be at most O (n). The only
assumption is that there is a path from the initial state to
the goal state, and the maximal number of actions in each
state is the constant m.

Proof. Let the environment be presented with an arbitrary
directed graph G with n nodes (Fig. 5).The connection be-
tween nodes is arbitrary. Between two nodes there may be
return arcs. Some arcs can lead to undesirable nodes (un)
or to obstacles. Let the maximal number of arcs which
can go out of a node be m (this is the graph representa-
tion for the environment in Fig. 2). The assumption is that
there is a path between the starting node (S) and the goal
node (G).

The agent finds one shortest path from the initial to
the goal node because it first finds all nodes with shortest
distance d = 1 from the initial node, i.e., all nodes s with
V (s) = 1, and then, from the nodes s with V (s) = 1 it
finds all nodes with the shortest distance d = 2 from the
initial node, i.e., all nodes s with V (s) = 2 (the nodes
which are not passed before). If this is not the case, i.e.,
if some node with V (s) = 2 has a distance d = 1 from
the start node, it means that there is an arc from the initial
node to that node, and this is in contrast to the assump-
tion that from the start node all nodes with the shortest
distance d = 1 are found. By mathematical induction, let
us assume that from all nodes s with V [s] = i − 2 the
agent finds all nodes with the shortest distance d = i − 1
from the initial node. Let us assume that in the next step
from one node with V [s] = i − 1, the agent finds the goal
node with the shortest distance d = i from the initial node.
Because there is a path from the initial to the goal node by

assumption, the goal node will be reached, and d = i is the
shortest distance of the goal node from the initial node. If
it this not the case, i.e., if there is a shorter path, then there
is an arc from some node s with V [s] = 0, or V [s] = 1,
or . . . V [s] = i − 2 to the goal node, which is in contrast
to the assumption that from the previously found nodes s
with V [s] ∈ {0, 1, . . . , i − 2} all nodes with the shortest
distance d ∈ {1, . . . , i − 1} are found. When the agent
finds the goal node, the exploring phase is finished, and it
does not have to find all nodes with V (s) = i.

In every state s which the agent passes, it memori-
zes the first predecessor state and the action taken in that
predecessor state which leads to s. The next predecessor
states (together with the action) which lead to s are not me-
morized. Using the memory elements ps(s) and pac(s),
the agent plans the optimal path (from the goal state to the
initial state). So, the agent finds one shortest path from the
initial state to the goal state.

For the initiation of the elements w[i, j] (i =
1, . . . , m; j = 1, . . . , n) the time needed is Θ(mn). Wi-
thout operations for initiation, the time does not depend
on n in a general case, but only on the shortest distance
from the initial to the goal state, and in the worst case, de-
pending on the position of the goal state, the complexity
can be at most O(n).

Depending on the structure of the domain and the po-
sition of the goal state, we can obtain different estimations
for the complexity. Below are some examples (for which
the time needed for initiation is not considered).

The worst case complexity can be estimated for the
domains in Figs. 6(a) and 6(b), where the actions from
every state lead to previously unexplored states and then
the number of states s with V (s) = 1 is m, the number
of states with V (s) = 2 is mm = m2, and so on, with
V (s) = i is mi (i is the shortest distance from the initial
to the goal state). When the agent is in one state j, the ma-
ximal number of operations for choosing an action, going
to the next state, verifying whether that state is an undesi-
rable or a previously passed state, or an obstacle, updating
the element w[i, j] and the elements prs[j] and pac[j], can
be at most a (a is a constant). Because in every state j the
maximal number of actions is m and so the agent does m
transitions for exploring all actions, the number of opera-
tions for exploring all actions and updating the elements
w[i, j] can be at most am. The total number of operations
can be estimated as

F (n) < am + am2 + am3 + · · · + ami+1 + bi

+(cm + d)i,

where the first term is the total number of operations for
exploring all actions in the initial state, the second term is
the total number of operations for exploring all actions in
the states with V (s) = 1, and so on, and the term ami+1
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is the total number of operations for exploring all actions
in the states with V (s) = i (the states which have the
same shortest distance from the initial state as the goal
state); bi is the maximal number of operations for genera-
ting simulated experience, and (cm + d)i is the maximal
number of operations for moving along the optimal path in
the planning phase (b and c are constants). For the domain
in Fig. 6(a) many states remain unexplored. The comple-
xity can be estimated by O(mi+1). It depends only on the
length of the shortest path i and does not depend on n.

For the domain in Fig. 6(b) all n states are explored
and the total number of operations can be estimated by

F (n) < am + am2 + am3 + · · · + ami+1 + bi

+ (cm + d)i

= am(1 + m + m2 + m3 + . . . mi) + bi

+ (cm + d)i
= amn + bi + (cm + d)i.

The term 1 + m + m2 + m3 + · · · + mi is the total
number of the states explored, which is n.

In this case, depending on the position of the goal
state, the complexity can be at most O(n). In every
other case where some of the actions can lead to previo-
usly explored states, the complexity can be decreased; for
example, for the graph in Fig. 5, the maximal number of
operations which the agent does for finding the shortest
path can be estimated in the following way:

F (i) < am + 3am + 4am + 3am + 2am + bi

+ (cm + d)i
= am(1 + 3 + 4 + 3 + 2) + bi + (cm + d)i
< am(1 + 3 + 5 + 7 + 9) + bi + (cm + d)i
= am[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
− (2 + 4 + 6 + 8)] + bi + (cm + d)i

= am[9 · 10/2− 2(1 + 2 + 3 + 4)] + bi

+ (cm + d)i
= am[(2i + 1)(i + 1) − 2i(i + 1)/2] + bi

+ (cm + d)i
= am[(i + 1)(2i + 1 − i)] + bi + (cm + d)i
= am(i + 1)(i + 1) + bi + (cm + d)i

= am(i + 1)2 + bi + (cm + d)i.

The complexity does not depend on n, but only on the
length of the shortest path. It can be estimated by O(i2).
�

One can conclude that the basic difference between
this algorithm and the at-subgoal-go-back algorithm is in
the definition of the function V for the evaluation of the in-
ner state of the agent, because this function gives decisive
information about the process of agent learning. The at-

subgoal-go-back algorithm has a different choice of func-
tions of learning, and its complexity is exponential.

If we compare these two algorithms, we may conc-
lude the following: with the at-subgoal-go-back algorithm
in every iteration the function V evaluates the state only
with three values: with 1 if the state is a goal or subgoal,
with 0 if it is neutral state and with −1 if the state is un-
desirable. The agent must pass through one path several
times to learn it. It must learn all paths, compare them,
and conclude which one is optimal. The function V for
this algorithm changes its values even from the goal state
and it does not give information about the agent’s actions
from the initial state to the subgoals. For learning one
path, the time needed is O(n2) because the initial state
becomes a subgoal after at most n iterations, and the as-
sumption is that the number of transitions in one iteration
is a linear function of n. Since the agent should learn all
paths from the initial to the goal state, the time needed is
an exponential function of n (Sec. 3.1).

Wittek (1995) and Glasser (1963) explain that human
emotions are consequences of previous experience (thin-
king and acting). If we want to describe or understand our
emotions properly, we should not say: “I feel good” or
“I feel bad”, but we should ask ourselves “Why do I feel
good?” or “Why do I feel bad?”, and we should look at
their components, i.e., thoughts and pictures which appear
when some emotion is active, as precisely as possible. In
this way, we should come to the cause of our emotion, and
if it is negative, we can transform it into a positive one, by
positive thinking (Wittek, 1995).

In the at-subgoal-go-back algorithm the function for
the evaluation of the emotion in a state, v(s), is defined in
the sense “good” (with the value 1), “bad” (with the va-
lue −1) and “neutral” (with the value 0). In this case this
function does not give precise information about the con-
sequences of the agent’s actions: from the starting state to
the goal, the states in which the agent has been have the
emotional value 0, only the undesirable states which are
on the road to the goal are estimated with the value −1,
the other states are treated equally, i.e., as neutral. Even
in the goal (subgoal) state the value of v is changed into
1 and this function has an equal value in all subgoals, i.e.,
all subgoals are treated equal with the value 1 regardless
of their distance from the goal. In this case, we also have
emotion learning (a positive emotion when the agent is
in the goal (subgoal) state, negative in undesirable states
and neutral in neutral states) but the evaluation is more
general; the function has only three values. In this case
learning is slow.

The three learning functions of the new algorithm are
changed. The agent explores every action in a state and
the function V gives more detailed information about the
consequences of the agent’s actions concerning the pro-
blem which has to be accomplished, starting even from
the initial state. In this case of solving the shortest path
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Fig. 6. (a) Domain for which the complexity can be estimated with O(mi+1). Many states remain unexplored; (b) domain for which
all states are explored and the complexity can be estimated with O(n).

problem, this function measures in every state the shortest
distance from the initial state. In this way, this function
implements properties of human emotions. The process
of learning is speedy because the agent finds the goal state
in one iteration, and, in general, it does not have to explore
all states. For the phase of exploring, until the agent finds
the goal state, the time needed can be a polynomial or an
exponential function of the length of the shortest path and
in this case it does not depend on n, but in the worst case,
depending on the position of the goal state (when the goal
is near the end of the state space), it is at most O(n). For
the phase of generating simulated experience, when the
shortest path is marked from the goal to the initial state,
the time needed is only a linear function of the length of
the shortest path i. And for the phase of planning, when
the agent moves through the shortest path, the time needed
is also a linear function of i.

Other differences between these two algorithms can
be summarized as follows: the at-subgoal-go-back algori-
thm deoes not learn the model of the environment and the
searching method is on-route, while the proposed linear

time algorithm learns the partial model of the environ-
ment, the searching method is off-route and the algorithm
can be applied in an arbitrary deterministic environment.

We can conclude that the function V which expres-
ses the emotional, internal state of the agent should carry
the information for solving the problem, i.e., it should be
defined in such a way so that it gives an answer in every
passed state as to what the solution of that problem in that
state is. In fact, this function should measure the con-
sequences of the agent’s actions as precisely as possible,
starting from the initial state.

8. Conclusion

This paper presents an algorithm which solves the shortest
path problem with an emotional agent. The domains for
which the algorithm can be applied are arbitrary determi-
nistic environments with n states. The only assumption is
that there is a path from the initial to the goal state. The
maximal number of actions which the agent can undertake
in one state is m (constant). The algorithm originates from
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an algorithm which in exponential time solves the same
problem. By implementing emotion learning, an algori-
thm which implements breadth-first searching is obtained
and the function which evaluates the emotional state of the
agent is defined in such a way as to give as detailed infor-
mation as possible about the consequences of the agent’s
actions starting even from the initial state. In this way, wi-
thout operations for initiation, the complexity in general
does not depend on n, the number of states, but it is task
dependent—it depends only on the length of the shortest
path. In the worst case, depending on the position of the
goal state, the time needed can be at most O(n).
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