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ACTUATOR FAULT TOLERANCE IN CONTROL SYSTEMS WITH PREDICTIVE
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Mechanisms of fault tolerance to actuator faults in a control structure with a predictive constrained set-point optimizer are
proposed. The structure considered consists of a basic feedback control layer and a local supervisory set-point optimizer
which executes as frequently as the feedback controllers do with the aim to recalculate the set-points both for constraint
feasibility and economic performance. The main goal of the presented reconfiguration mechanisms activated in response
to an actuator blockade is to continue the operation of the control system with the fault, until it is fixed. This may be
even long-term, if additional manipulated variables are available. The mechanisms are relatively simple and consist in
the reconfiguration of the model structure and the introduction of appropriate constraints into the optimization problem
of the optimizer, thus not affecting the numerical effectiveness. Simulation results of the presented control system for a
multivariable plant are provided, illustrating the efficiency of the proposed approach.
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1. Introduction

On-line set-point optimization is one of the main issues
in modern control systems, as economically optimal set-
points fluctuate with changes in disturbance inputs, in
process parameters and external requirements. When all
these changes are much slower (or abrupt but rare) than
the dynamics of the feedback controlled process, then the
standard multilayer control system structure, with steady-
state economic optimization (usually using a comprehen-
sive nonlinear process model) in a higher optimization
layer, repeated much less frequently than the sampling pe-
riods of underlying feedback controllers, usually leads to
satisfactory results. However, in practice it is often not
the case, as the dynamical changes of disturbances can
be of a similar variability as the dynamic processes in the
controlled plant. Then the classical structure described
above is not sufficient and the set-points should be opti-
mized more frequently. The best solution would be to re-
peat the nonlinear steady-state model adaptation and eco-
nomic steady-state optimization more frequently, even as
frequently as the feedback controllers execute. However,
this is usually not realistic due to the complexity of these
tasks. If the underlying feedback control structure con-
sists of two layers: a feedback control layer and a supervi-

sory advanced (Model Predictive Control – MPC) control
layer, then usually supervisory MPC controllers not only
perform feedback control and constraint handling tasks,
but are also supplemented with a simple steady-state op-
timization recalculating optimal set-points to counteract
constraint violation and performance deterioration due to
more frequent disturbance changes (Blevins et al., 2003;
Kassmann et al., 2000; Qin and Badgwell, 2003; Tatjew-
ski, 2007). A possible solution here is also a unified ap-
proach, where the optimization tasks of both the predic-
tive controller and the set-point optimizer are integrated
(Tvrzska de Gouvea and Odloak, 1998; Zanin et al., 2000;
2002; Ławryńczuk et al., 2007a). In the cases when the
supervisory feedback control layer is not needed, one of
the sound solutions can be to apply a supervisory predic-
tive set-point optimizer, capable of adjusting the set-points
in a way to control both optimality and constraint satis-
faction (as basic feedback controllers are usually uncon-
strained, of a PID or an MPC type), as initially proposed
in (Ławryńczuk et al., 2007b). The presentation of the op-
timizer and the possibilities of handling actuator faults in
the resulting control structure is the subject of this paper.
The goal of the optimizer is to generate possibly optimal
set-points for the feedback controllers in such a way that
also the constraints put on manipulated and output vari-

{Marusak,Tatjewski}@ia.pw.edu.pl


540 P.M. Marusak and P. Tatjewski

ables are fulfilled. To achieve this goal, the optimizer uses
not only models of the process (dynamic and static) but
also models of the basic feedback controllers. The algo-
rithm of the optimizer is formulated in such a way that
only a numerically efficient, quadratic optimization prob-
lem must be solved at each sampling instant.

Model-based predictive algorithms are particularly
susceptible to modifications capable of coping with ac-
tuator or sensor faults due to the possibility of appropri-
ate modifications of the process model and the constraints
(Marusak, 2007a-b; Marusak and Tatjewski, 2004). In
particular, it is possible to incorporate mechanisms of
fault tolerance to actuator faults into the discussed con-
trol structure with the predictive set-point optimizer. As it
is now practically a standard that information about ac-
tuator faults can be made available for the supervisory
control systems, see, e.g., (Qin and Badgwell, 2003), it
is assumed in the paper that fault detection and isolation
methods yielding such information are applied. In partic-
ular, it is assumed that actuator output measurements are
available. In such a case the detection and isolation of
the fault and the resulting control algorithm reconfigura-
tion can be done practically during one sampling instant.
The reader interested in process diagnostics may find in-
formation about this topic, e.g., in (Korbicz et al., 2004;
Kościelny, 2001; Venkatasubramanian et al., 2003; Yen
and Ho, 2003; Zhang, 2007) and in the references therein.
Information concerning, particularly, actuator fault diag-
nosis can be found, e.g., in (Lunze and Supavatanakul,
2002; Lunze and Schröder, 2004; Blanke et al., 2006).

The mechanisms of fault tolerance proposed in the
paper consist in adding equality constraints into the opti-
mization problem solved at each iteration by the set-point
optimizer, as soon as the failure is detected. These equal-
ity constraints do not change the properties of the problem
they are added to, and the essential advantage of the pre-
dictive set-point optimizer discussed in the paper, i.e., its
numerical efficiency, being a result of its formulation as a
quadratic programming problem, is preserved. Moreover,
it should be emphasized that the control system under
consideration is nonlinear with set-point optimizer using,
among others, a nonlinear steady-state process model (ex-
ploited during fault accommodation). Additionally, con-
straints on both the manipulated and output variables are
taken into consideration by the optimizer. The reconfigu-
ration solutions proposed so far utilized linear controllers
that do not take into consideration the constraints exist-
ing in the system, see, e.g., (Lunze and Steffen, 2006;
Richter et al., 2007, Staroswiecki et al., 2007) and ref-
erences therein. The systems discussed in the paper, due
to the character of diagnostic signals, are in fact hybrid
systems. As the analysis of properties and, in particular,
the stability of this kind of system is not the main topic of
the paper, for details the reader is referred to (Bemporad
et al., 2000a; Bemporad et al., 2000b; Biswas et al., 2005;

Mignone et al., 2000).
The investigation of properties of the fault-tolerant

control systems proposed in the paper is conducted us-
ing an example of a control system of a nonlinear MIMO
plant affected by actuator faults. The problem of theoret-
ical analysis of the discussed control system, which uti-
lizes successive linear approximation of the steady-state
process model, is difficult and dependent on the properties
of the control plant, as it is usually the case with nonlin-
ear problems. Therefore, simulation, as an investigation
method, is applied.

In the next section the predictive feedback controller
will be first reminded, in particular, an unconstrained one.
Section 3 contains a description of the predictive set-point
optimizer. In Section 4 the mechanisms introducing toler-
ance to actuator faults into the control system under con-
sideration are discussed. Section 5 contains a description
of simulation experiments, performed in the control sys-
tem of a MIMO nonlinear plant (an evaporator), indicat-
ing the efficiency of the proposed solutions. The paper is
summarized in Section 6.

2. Predictive control algorithms

In the receding horizon predictive control algorithms ma-
nipulated variables are generated using the prediction of
future behavior of the control plant, taking into account
the constraints that exist in the control system. This makes
it possible to create favorable mechanisms taking into con-
sideration information about faults that occurred in the
system, see, e.g., (Marusak, 2006; 2007a-b; Marusak and
Tatjewski, 2004). Typically, the predictive control algo-
rithms are formulated as minimization problems of a per-
formance function subject to the constraints imposed on
manipulated and output variables, see, e.g., (Camacho and
Bordons, 1999; Maciejowski, 2002; Rossiter, 2003; Tat-
jewski, 2007):

min
Δu

ny∑

j=1

p∑

i=1

κj ·
(
yj

k − yj
k+i|k

)2

+
nu∑

j=1

s−1∑

i=0

λj ·
(
Δuj

k+i|k
)2

(1)
subject to the constraints

Δuj
min ≤ Δuj

k+i|k ≤ Δuj
max, (2)

i = 0, . . . , s − 1, j = 1, . . . , nu,

uj
min ≤ uj

k+i|k ≤ uj
max, (3)

i = 0, . . . , s − 1, j = 1, . . . , nu,

yj
min ≤ yj

k+i|k ≤ yj
max, (4)

i = 1, . . . , p, j = 1, . . . , ny,

where yj
k is a set-point value for the j-th output, yj

k+i|k is
the j-th output value for the (k + i)-th sampling instant
predicted at the k-th sampling instant using the control
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plant model (it depends on past and future values of ma-
nipulated variables), uj

k+i|k are future values and Δuj
k+i|k

are future changes in the manipulated variables, κj ≥ 0
and λj ≥ 0 are weighting coefficients, p and s denote pre-
diction and control horizons, respectively, and ny , nu de-
note the number of outputs and inputs, respectively. Gen-
erally, the constraints on the output values (4) may cause
emptiness of the admissible set of the problem (1)–(4).
This is the reason why these constraints are usually treated
as soft constraints. We omit the presentation of the prac-
tically important but standard modifications of the opti-
mization problem (1)–(4) to treat the constraints (4) as soft
ones, as the techniques are well known in the predictive
control literature, see, e.g., (Camacho and Bordons, 1999;
Maciejowski, 2002; Tatjewski, 2007).

The optimal vector of changes in the manipulated
variables is obtained as a solution to the optimization
problem (1)–(4). From this vector, the elements Δuj

k|k,
corresponding to the current sampling instant, are taken
and applied in the control system. Then optimization is
repeated at the next sampling instant.

It should be pointed out that the way the predicted
output values yj

k+i|k are derived depends on the kind of
the plant model exploited by the algorithm. If the lin-
ear model is used, then the problem (1)–(4) is a standard
quadratic programming problem. Unfortunately, using the
algorithm based on a linear plant model for the nonlinear
plant may be insufficient if control in a wide range of set-
points is needed. On the other hand, if a nonlinear model
is used, then the problem (1)–(4) is, in general, nonlin-
ear and nonconvex instead of linear-quadratic. In such a
case the computational burden needed to solve this prob-
lem can be prohibitive making practical implementation
of the predictive algorithm more difficult and unreliable.
A possible solution to these difficulties could be to use
fuzzy predictive controllers based on a collection of lin-
ear models or controllers based on an on-line linearization
approach, see, e.g., (Tatjewski, 2007) and a survey paper
(Mayne et al., 2000), where also other approaches to the
predictive control based on nonlinear models are given or
referenced.

Let us introduce the following vectors:

y =
[
y1

k,y2
k, . . . ,y

ny

k

]T
,

yj
k =

[
yj

k+1|k, . . . , yj
k+p|k

]T

,

Δu =
[
Δu1

k,Δu2
k, . . . ,Δunu

k

]T
,

Δuj
k =

[
Δuj

k|k, . . . ,Δuj
k+s−1|k

]T

,

u =
[
u1

k,u2
k, . . . ,unu

k

]T
,

uj
k =

[
uj

k|k, . . . , uj
k+s−1|k

]T

,

and, by analogy, the vectors umin, umax and Δumin,
Δumax of lower and upper bounds on the values and

changes of the manipulated variables u, and ymin, ymax

vectors of lower and upper bounds on the values of the
output variables y. Using this vector notation, the perfor-
mance index (1) can be described by the following equa-
tion:

JMPC =
(
y − y

) · κ · (y − y
)

+ ΔuT · λ · Δu, (5)

where
y =

[
y1

k,y2
k, . . . ,y

ny

k

]T

and every vector yj
k =

[
yj

k, . . . , yj
k

]T

is of length p,

κ =
[
κ1, . . . ,κny

] · I , every κj = [κj , . . . , κj ] is of
length p, λ = [λ1, . . . ,λnu

] · I , every λj = [λj , . . . , λj ]
is of length s.

If the prediction is performed using a linear process
model, then the superposition principle can be used and
the vector of predicted output values y can be decomposed
in the following way:

y = ỹ(up,yp) + A · Δu, (6)

where

ỹ(up,yp) =
[
ỹ1

k, ỹ2
k, . . . , ỹ

ny

k

]T

,

ỹj
k =

[
ỹj

k+1|k, . . . , ỹj
k+p|k

]T

is the free response of the

control plant, A is a dynamic matrix composed of coef-
ficients of the control plant step response:

A =

⎡

⎢⎢⎢⎣

A11 A12 . . . A1nu

A21 A22 . . . A2nu

...
...

. . .
...

Any1 Any2 . . . Anynu

⎤

⎥⎥⎥⎦ , (7)

Amn =

⎡

⎢⎢⎢⎣

am,n
1 0 . . . 0 0

am,n
2 am,n

1 . . . 0 0
...

...
. . .

...
...

am,n
p am,n

p−1 . . . am,n
p−s+2 am,n

p−s+1

⎤

⎥⎥⎥⎦ ,

(8)
am,n

i (i = 1, . . . , pd) are step response coefficients of the
control plant describing the influence of the n-th input on
the m-th output, pd is equal to the number of sampling
instants after which the coefficients of the step responses
can be assumed as settled (pd ≥ p), see, e.g., (Tatjewski,
2007).

The free response ỹ(up,yp) depends, in general,
on vectors of values of manipulated and output variables
from the past up, yp, and its form depends on the kind of
the process model that was used to obtain the prediction.

In the case of the DMC control algorithm, step re-
sponses are used as the model

ŷm
k =

nu∑

n=1

pd−1∑

j=1

am,n
j · Δun

k−j + am,n
pd

· un
k−pd

, (9)
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where ŷm
k is the m-th output of the control plant model

at the k-th sampling instant, Δun
k is a change of the n-th

manipulated variable at the k-th sampling instant, un
k−pd

is the value of the n-th manipulated variable at the (k −
pd)-th sampling instant. The predicted values of output
variables are described by

ym
k+i|k = ŷm

k+i + dm
k , (10)

where dm
k = ym

k − ŷm
k−1 is assumed the same at each sam-

pling instant in the prediction horizon (a DMC-type model
of unmeasured disturbances). Thus, the final formula is as
follows:

ym
k+i|k = ym

k +
nu∑

n=1

pd−1∑

j=i+1

am,n
j · Δun

k−j+i (11)

+ am,n
pd

·
nu∑

n=1

pd+i−1∑

j=pd

Δun
k−j+i

−
nu∑

n=1

pd−1∑

j=1

am,n
j · Δun

k−j

+
nu∑

n=1

i∑

j=1

am,n
j · Δun

k−j+i|k.

In (11) only the last component depends on future changes
in the manipulated variable. The rest of the prediction
is the element of the free response. Thus, rewriting the
predictions in a vector form, one obtains (6).

The prediction was detailed for the step response
model because it was used in the example. However, in the
case of algorithms that are based on difference equations,
the prediction also can be divided into the part dependent
on past values of output and manipulated variables and
the part dependent on the future changes of the manip-
ulated variables, see, e.g., (Camacho and Bordons 1999;
Maciejowski, 2002; Tatjewski, 2007). Thus, the predic-
tion is still expressed in the form (6) but the free response
is different (it depends not only on past values of manipu-
lated variables but also on past values of output variables).
Moreover, it can be shown that the part depending on deci-
sion variables is still described by the dynamic matrix, the
same as in the DMC algorithm. In fact, it is the case for
all predictive control algorithms regardless of the model
they are based on provided that this model is linear. For
details, see (Tatjewski, 2007).

The performance index (5) together with the predic-
tion (6) can be written in the following form:

JMPC =
(
A · Δu − ỹ

)T

· κ ·
(
A · Δu − ỹ

)
(12)

+ ΔuT · λ · Δu,

where ỹ = y − ỹ(up,yp).

If it is minimized without taking constraints into con-
sideration, then the following analytical, unconstrained
solution is obtained:

Δu =
(
AT · κ · A + λ

)−1

· AT · κ · ỹ. (13)

The above formula represents a linear feedback con-
trol law, generally with feedback from past process inputs
and outputs (Camacho and Bordons, 1999; Maciejowski,
2002; Tatjewski, 2007). During the last years an alter-
native approach has emerged. It consists in designing an
explicit piecewise-linear MPC control law, see, e.g., (Be-
mporad et al., 2002; Jones et al., 2007; Kerrigan and Ma-
ciejowski, 2004; Tondell et al., 2003). It can be a very
efficient approach for relatively simple problems. How-
ever, in general, the number of controllers the algorithm
switches between may happen to be significant, which is
the main drawback of the approach.

3. Predictive set-point optimizer

In the standard multilayer structure consisting of a sepa-
rate feedback control layer and a steady-state economic
optimization layer, the set-point values for the feedback
controllers are calculated in the economic optimization
layer much less frequently than the feedback controllers
execute (say, every hour as compared to every minute (Qin
and Badgwell, 2003)). The following optimization prob-
lem is solved in the steady-state optimization layer:

min
y,u

JE(y,u) (14)

subject to
umin ≤ u ≤ umax, (15)

ymin ≤ y ≤ ymax, (16)

y = F (u, w̃) , (17)

where F : R
nu × R

nw → R
ny , F ∈ C1 is a steady-

state plant model, usually nonlinear, nw is the number of
disturbances affecting the plant, y is a vector of dimen-
sion ny of the set-point values, u is a vector (of dimen-
sion nu) of steady-state values of manipulated variables
related to y through the steady-state plant model, w̃ is a
current disturbance estimate, umin, umax are vectors of
lower and upper bounds on manipulated variables u, and
ymin, ymax are vectors of lower and upper bounds on the
output values y.

The control structure discussed in this paper and
shown in Fig. 1 operates in a different manner. The opti-
mization problem is solved by the predictive set-point op-
timizer at the same sampling frequency as the feedback
controllers execute. It can be formulated as a modifi-
cation of the problem (14)–(17) of the steady-state eco-
nomic optimization, as initially indicated in (Ławryńczuk
et. al, 2007b). The modification consists in: adding to
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Fig. 1. Control system structure considered.

this problem the constraints (2)–(4) in the form used in
the predictive control algorithm, using a linearized ver-
sion of the steady-state process model (17) (linearization
may be performed at each iteration or less frequently, if
it is sufficient), and adding the dynamic models of the
process and of the feedback controllers (or together, the
dynamic model of the process with the controllers). The
optimization problem solved by the optimizer has thus the
following form:

min
y,u

JE(y,u) (18)

subject to
umin ≤ u ≤ umax, (19)

ymin ≤ y ≤ ymax, (20)

y = F (uk−1, w̃k) + Hk · (u − uk−1) , (21)

Δuj
min ≤ Δuj

k+i|k ≤ Δuj
max, (22)

i = 0, . . . , s − 1, j = 1, . . . , nu,

uj
min ≤ uj

k+i|k ≤ uj
max, (23)

i = 0, . . . , s − 1, j = 1, . . . , nu,

yj
min ≤ yj

k+i|k ≤ yj
max, (24)

i = 1, . . . , p, j = 1, . . . , ny,

y = ỹ(up,yp) + A · Δu, (25)

u = R(y,yp,up), (26)

where (21) is a linearization of the steady-state plant
model, uk−1 is a vector of manipulated variable values
applied to the plant at the last sampling instant, Hk is
the ny × nu matrix that contains the partial derivatives of
the function y = F (u, w̃), see, e.g., (Ławryńczuk et al.,
2007b) for details.

It is a key feature of the optimizer that it uses not
only the steady-state plant model (21) but also a dynamic

model of the controlled plant, as the predicted output vari-
able values yj

k+i|k (i = 1, . . . , p, j = 1, . . . , ny) are cal-
culated iteratively on the prediction horizon using a feed-
back controlled plant model. This can be implemented as
a separate dynamic model of the plant (25) and the model
of the feedback controllers (26). These are typically PID
controllers or simple unconstrained MPC controllers (13).
Thus their models are linear functions of set-points y and
past values of the output variables yj

k−i and the manip-

ulated variables uj
k−i. Therefore, in the case of the PID

controllers, (26) becomes

uk = uk−1+r0·ek+r1·ek−1+r2·ek−2, (26a)

where r0, r1, r2 are vectors containing parameters of the
controllers, ek−i = yk−i − yk−i are vectors containing
values of control errors at the (k− i)-th sampling instants.
In the case of the unconstrained MPC controllers, (26) be-
comes

uk = uk−1 +
(
AT · κ · A + λ

)−1

· AT · κ · ỹ. (26b)

A big advantage of the set-point optimizer is that it
can be relatively easily designed for existing basic feed-
back control systems, extending their capabilities. Thanks
to the inclusion of the controlled plant model and the con-
straints (22)–(24) in the optimization problem (18)–(26),
the constraints put on the manipulated and output vari-
ables on the prediction horizon are taken into considera-
tion during the set-point generation.

In the example discussed later, a DMC analytical
controller (a special case of (13)) will be used as the feed-
back controller. It is also possible to use one combined
model of the basic feedback controllers together with the
plant. In the example, the PI controller was treated in this
way.

4. Actuator fault tolerance

4.1. Modification of dynamic models. After detecting
and isolating a fault, both the set-point optimizer and the
basic feedback controllers should be appropriately mod-
ified. The first modification is based on the introduction
of the following equality constraints into the control prob-
lem solved at each iteration by the optimizer (Marusak and
Tatjewski, 2004):

Δuf
k+i|k = 0, i = 0, . . . , s − 1, (27)

where f is the number of the manipulated variable af-
fected by the fault (blockade). It should be emphasized
that the constraints (27) are imposed on all manipulated
variable changes from the whole control horizon. The in-
troduction of these constraints means in practice a mod-
ification of the dynamic control plant model used by the
optimizer.
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The second modification is first introduced to the
model of basic feedback controllers (26). If several SISO
PID controllers are used, then the model of the appropriate
PID controller should be removed from the set of equal-
ity constraints (26a) and its output replaced by the output
value of the blocked actuator. In the case of analytical
predictive controllers (26b), they should be reconfigured
as described in (Marusak, 2007a) and their model, used
by the set-point optimizer, should be updated. The recon-
figuration consists in the modification of the dynamic ma-
trix (7). The modification is relatively simple and consists
in eliminating, from the dynamic matrix (7), the columns
describing the dependence of output variables on the ma-
nipulated variable affected by the failure:

A =

⎡

⎢⎢⎢⎣

A11 . . . A1(f−1) A1(f+1)

A21 . . . A2(f−1) A2(f+1)

...
. . .

...
...

Any1 . . . Any(f−1) Any(f+1)

. . . A1(nu−1) A1nu

. . . A2(nu−1) A2nu

. . .
...

...
. . . Any(nu−1) Anynu

⎤

⎥⎥⎥⎦ , (28)

where f is the number of the manipulated variable af-
fected by the actuator blockade.

The vector of future increments in the manipulated
variables will also change:

Δu =
[
Δu1

k, . . . ,Δuf−1
k ,Δuf+1

k , . . . ,Δunu

k

]T

,

(29)
as well as the weighting matrix λ:

λ = [λ1, . . . ,λf−1,λf+1, . . . ,λnu
] · I. (30)

Thus, the performance index (12) and the control
law (13) change. The updated control law should be also
included in the formulation of the optimization problem
solved by the set-point optimizer.

4.2. Modification of the steady-state model. The
modification of a steady-state process model is based on
the introduction of the following equality constraint:

uf = uf
bl, (31)

where f is the number of the manipulated variable af-
fected by the fault, uf

bl is the output value of the actua-
tor. The introduction of the constraint (31) into the inte-
grated optimization problem (18)–(26) can substantially
improve the quality of control, as it will be illustrated in
an example. The reason is that this means an update of the
steady-state process model y = F (u, w̃) used to calcu-
late an economically optimal operating point. After such

a change the controller possesses information that it has
a limited possibility of achieving some set-point values y
because of the actuator blockade. Thus, the optimizer can
change the set-points appropriately till the failure is fixed.

4.3. Case with constrained outputs. In the case of
constraints imposed on the values of the output variables
it can be useful to introduce a safety zone near the con-
straints after the failure detection and isolation. In such a
case one should modify the constraints (20) in the follow-
ing way:

ymin + rmin ≤ y ≤ ymax − rmax, (32)

where rmin, rmax are vectors shifting the output con-
straints; each component of such a vector is nonnegative
(rj

min ≥ 0, rj
max ≥ 0, j = 1, . . . , ny). The introduction

of nonzero elements in vectors rmin, rmax aims at tak-
ing into account the changes in the output signal that may
increase after the fault occurrence (Marusak, 2006). The
introduction of safety zones, as presented, results in fact in
shifting the set-point values, which is a common practice
in industry.

4.4. Application of an additional manipulated vari-
able. If in the control system affected by the actuator
blockade a new process input can be used as an additional
manipulated variable, it can dramatically improve the ob-
tained control performance, see, e.g., (Marusak, 2007a;
Marusak and Tatjewski, 2004). In the case of analyti-
cal predictive controllers, such a change consists in the
modification of the dynamic matrix. This time, columns
describing the dependence of the output variables on the
supplementary manipulated variable are added to the dy-
namic matrix (Marusak, 2007a):

⇓

A =

⎡

⎢⎢⎢⎣

A11 . . . A1nu
A1(nu+1)

A21 . . . A2nu
A2(nu+1)

...
. . .

...
...

Any1 . . . Anynu
Any(nu+1)

⎤

⎥⎥⎥⎦ . (33)

Moreover, the vector of future increments in the manipu-
lated variables changes to

Δu =
[
Δu1

k, . . . ,Δunu

k ,Δunu+1
k

]T
, (34)

and the weighting matrix λ is modified as

λ = [λ1, . . . ,λnu
,λnu+1] · I. (35)

As in the previous case, the control law (13) must be recal-
culated and the model of basic feedback controllers (26)
updated.
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Remark 1. As is demonstrated in this section, the modi-
fications that should be introduced into the control system
in response to the actuator fault are just slightly compli-
cated. This is because it is easy to add constraints to the
optimization problem solved on-line at each algorithm it-
eration, anyway. If it is needed, also the process model
may be changed with relative ease. Thus, the proposed
fault accommodation mechanisms demand little effort (in
fact, the optimization problem may become simpler when
some decision variables are eliminated) and are very effi-
cient, as is demonstrated in the next section, provided the
diagnostic information is correct.

5. Simulation experiments

5.1. Control plant. The control plant under investiga-
tion is an evaporator, described thoroughly in (Newell and
Lee, 1989), with one of the output variables controlled by
means of a PI level controller. The diagram of the control
plant is shown in Fig. 2.

Fig. 2. Diagram of the control plant.

The output variables of the plant are: L2 – level
of the liquid in the separator (stabilized near L2 = 1 m
by a PI controller with parameters Kp = 5.6 and
Ti = 8.84 min), X2 – product composition, P2 – pres-
sure in the evaporator. Manipulated variables are:
F2 – product flow (the variable used to stabilize L2
level), P100 – steam pressure, F200 – cooling water flow,
F3 – circulating flow (used in some experiments as a ma-
nipulated variable). It was also assumed that the feed flow
rate F1 is a measured disturbance. The notation is as-
sumed the same as that in (Newell and Lee, 1989), where
equations describing the control plant are presented. It
is also assumed that the manipulated variables are con-
strained:

P100min ≤ P100 ≤ P100max, (36)

F200min ≤ F200 ≤ F200max, (37)

where P100min = 0 kPa, P100max = 400 kPa,
F200min = 0 kg/min, F200max = 400 kg/min (Newell
and Lee, 1989).

5.2. Control system structure. For the control plant,
an analytical, unconstrained DMC predictive controller
and a set-point optimizer were designed. The manipu-
lated variables of the controller are: steam pressure P100,
cooling water flow F200 and in some experiments circu-
lating flow F3, and the controlled variables are: product
composition X2 and pressure in the evaporator P2. As a
dynamic control plant model, the model composed of step
responses obtained near the operating point X2 = 25%,
P2 = 42 kPa was used. The following values of the
controller parameters were assumed: κX2 = κP2 = 1,
λP100 = λF200 = 0.1, λF3 = 5, prediction horizon
p = 100, control horizon s = 10.

It was also assumed that the product composition is
constrained (a requirement on the quality of the product),
with X2min = 25%. The following economic perfor-
mance index was used:

JE = c1 · P100 − c2 · F2, (38)

where c1 = 0.01 and c2 = 1 are the prices of the energy
put into the process and of the product, respectively. The
constraint imposed on the set-point X2 was as follows:

X2min + rX2
min ≤ X2, (39)

where X2min = X2min, rX2
min = 1% is the value shifting

the constraint, after the detection of a failure, in order to
take into account changes in the output signal caused by
the controller action.

5.3. Experiments. First, the experiments with control
systems not affected by any failure were made, as the ref-
erence case for the remaining experiments. In Fig. 3, the
case of the X2 composition set-point constraint change
rX2
min = 1% at the initial point of the simulation is de-

picted. Moreover, the disturbance F1 (feed flow rate)
changed from F10 = 10 kg/min to F10 = 9.7 kg/min
at t = 100 min, which resulted in a modified P2 set-point
trajectory calculated by the optimizer, as can be seen in
Fig. 3.

In the second case, it was assumed that the distur-
bance signal F1 was changing according to

F1(t) = F10 + F1a · sin
(2πt

To

)
, (40)

where F1a = 0.35 kg/min, To = 250 min. The obtained
responses are shown in Fig. 4.

During the next experiment it was assumed that an
actuator failure occurred at the beginning. After fault de-
tection and isolation the safety zone is introduced into the
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Fig. 3. Responses of the control system with a predictive set-point optimizer to a X2 set-point constraint change and a step change
in the disturbance F1 from F10 = 10 kg/min to F10 = 9.7 kg/min; left – outputs: X2 and P2 (dashed lines represent
set-points), right – manipulated variables: P100 and F200.

Fig. 4. Responses of the control system with a predictive set-point optimizer to a X2 set-point constraint change and changes in the
disturbance variable F1; left – outputs: X2 and P2 (dashed lines represent set-points), right – manipulated variables: P100
and F200.
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constraint put on the set-point according to (39), in order
to minimize the risk of its violation. In the 100-th minute
of the experiment, the disturbance F1 (feed flow rate)
changed from F10 = 10 kg/min to F10 = 9.7 kg/min.
The results obtained in the case of the actuator blockage
of the manipulated variable F200 are presented in Fig. 5.

Before any mechanisms of fault accommodation
were used, the output variables were far from their set–
point values and the X2 composition constraint was vi-
olated between the 110-th and 150-th minutes (responses
marked with dotted lines in Fig. 5). Unfortunately, only
a slightly better result was obtained after the modification
of the analytical controller and dynamic models in the set-
point optimizer (dashed lines in Fig. 5). Crucial for the
control system performance was the modification of the
steady-state process model by the inclusion of the con-
straint (31) into the optimization problem of the set-point
optimizer. The response of the product composition X2
achieves then the desired set-point and it is only near the
110-th minute that the constraint on X2 is active for a
short period of time (solid lines in Fig. 5).

In the next experiment it was assumed that a fail-
ure of the F200 manipulated variable actuator occurred
at the beginning and that the disturbance signal F1 was
changing according to (40). The obtained results are pre-
sented in Fig. 6. This time, if none of the mechanisms of
fault accommodation were used, the X2 composition vi-
olated the constraint from the 120-th minute (dotted lines
in Fig. 6). The economic optimization index calculated
as a sum of temporary values of (38) was equal to 1003.8.
(This means that losses were generated.) The modification
of the analytical controller and dynamic models in the set-
point optimizer brought, unfortunately, a small improve-
ment in control system operation (dashed lines in Fig. 6).
Now, the performance index is equal to 967.1 (losses are
a little bit smaller than in the case when nothing was done
after the blockade). After the modification of the steady-
state process model (the inclusion of the constraint (31)
in the set-point optimizer), the response of the composi-
tion X2 fulfills the assumed purity criterion (solid lines in
Fig. 6) and the production yields profits—the performance
index is equal to –419.3.

5.3.1. Application of an additional manipulated vari-
able. During the next experiment it was assumed that
a failure of the P100 manipulated variable actuator oc-
curred at the beginning. Moreover, the disturbance F1
changed at the 200-th minute, from F10 = 10 kg/min to
F10 = 10.5 kg/min. When the actuator blockade was
not taken into consideration at all (dotted lines in Fig. 7),
the composition X2 settled very slowly and was far from
the set-point value. After the change in the disturbance
F1, the obtained response is unacceptable—the product
composition X2 constraint is violated all the time starting
from about the 205-th minute and the violation is huge.

Fig. 8. Steady-state characteristics X2(F200) and P2(F200)
of the control plant with a blockade of the actuator for
the manipulated variable P100; F10 = 10 kg/min.

The reconfiguration of the dynamic models in the set-
point optimizer changed the situation only a little (dashed
lines in Fig. 7). After the change of the disturbance, the
quality constraint is still violated (but the violation is not
so big now).

An experiment was also made with a change in the
steady-state control plant model. However, numerical
problems with solving the optimization task of the set-
point optimizer occurred. The numerical procedure re-
turned the message that there is no admissible set. Af-
ter checking the steady-state characteristics of the plant it
was found out that it was impossible to achieve compo-
sition X2 = 26% for the existing constraints (Fig. 8).
This problem deepens with an increase in the value of the
disturbance variable F1. In such a case one should either
reformulate the control goals or, if it is possible, use an
additional manipulated variable. In the example consid-
ered, there is an input variable that can be used as the next
manipulated variable; it is the circulating flow F3 (Newell
and Lee, 1989).

After the application of the flow F3 as the additional
manipulated variable, much better control performance
was obtained. This time, after the blockade of the P100, it
is possible to stabilize the product composition X2 on the
set-point value 26% (solid lines in Fig. 7), which was im-
possible before. Even after the change in the disturbance
variable F1, the product quality constraint is violated only
during a limited period of time and then the composition
X2 settles on the set-point value 26%.

6. Conclusions

A control structure with a predictive set-point optimizer
supervising the plant with unconstrained feedback con-
trollers was considered. The mechanisms of actuator fault
toleration introduced into the set-point optimizer were
proposed. They are easy to apply and efficient, mak-
ing the task of optimization not more difficult than in
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Fig. 5. Responses of the control system with a predictive set-point optimizer; a blockade of the actuator F200: not taken into consid-
eration – dotted lines, taken into consideration by: adding only constraints (27) – dashed lines, adding also constraint (31) –
solid lines; left – outputs: X2 and P2 (dashed lines – set-points), right – manipulated variables: P100 and F200.

Fig. 6. Responses of the control system with a predictive set-point optimizer to changes in the disturbance F1; a blockade of the
actuator F200: not taken into consideration – dotted lines, taken into consideration by: adding only constraints (27) – dashed
lines, adding also constraint (31) – solid lines; left – outputs: X2 and P2 (dashed lines – set-points), right – manipulated
variables: P100 and F200.
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Fig. 7. Responses of the control system with a predictive set-point optimizer; a blockade of the actuator P100: not taken into consider-
ation – dotted lines, taken into consideration by: adding only constraints (27) – dashed lines, taken into consideration and with
additional manipulated variable – solid lines; left – outputs: X2, P2 and P2 set-point, right – manipulated variables: P100,
F200 and F3.

the case without faults. The optimization problem of the
predictive set-point optimizer remains an easy-to-solve
quadratic programming problem.

The proposed mechanisms were successfully used in
the constrained control system of a nonlinear MIMO plant
(an evaporator). An improvement in the control system
operation was achieved despite the relative simplicity of
the mechanisms applied. (They consist in adding certain
constraints to the optimization problem solved at each it-
eration by the set-point optimizer.)

In the set-point optimizer both the linear dynamic
model of the controlled plant and the on-line linearized
steady-state process model are used. The use of the latter
is essential for the effectiveness of the actuator fault ac-

commodation mechanisms discussed in the paper. They
rely on information about the actuator fault delivered
as a diagnostic signal, usually from the actuator’s self–
diagnostic system.

It is possible to improve the control system operation
in the faulty situation if an additional manipulated variable
can be used. In favorable conditions, it can even help to
continue control system operation with the performance
close to that before the occurrence of the fault.
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