
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 4, 561–568
DOI: 10.2478/v10006-008-0049-0

SUBOPTIMAL FAULT TOLERANT CONTROL DESIGN WITH THE USE
OF DISCRETE OPTIMIZATION

ZDZISŁAW KOWALCZUK, KRZYSZTOF E. OLIŃSKI

Department of Decision Systems
Gdańsk University of Technology, ul. Narutowicza 11/12, 80–952 Gdańsk, Poland

e-mail: {kova,kolin}@pg.gda.pl

This paper presents a concept of designing fault tolerant control systems with the use of suboptimal methods. We assume
that a given (nonlinear) dynamical process is described in a state space. The method consists in searching (at the off-line
stage) for a trajectory of operational points of the system state space. The sought trajectory can be constrained by certain
conditions, which can express faults or failures already detected. Within this approach, we are able to use the autonomous
dynamics of the process in order to minimize a control cost index (a sub-optimality property). The search itself is based on
finding a cheapest path in a graph structure, which represents the system’s dynamics described in the state space. Such a
cheapest path (if it exists) represents the sought trajectory. Another (on-line) design stage consists in tracking this trajectory
by an executive controller.

Keywords: optimal control, fault tolerant systems, nonlinear models, operations research, discrete optimization.

1. Introduction

In this paper, without making a distinction between a fault
and a failure (Chowdhury and Chen, 2006), we shall dif-
ferentiate between faults that are admissible and inadmis-
sible during the system operation. Dealing with admissi-
ble faults implies modifying an original process model so
as to take into consideration all effects invoked by these
faults. The occurrence of any fault from the group of
inadmissible faults requires introducing some additional
constraints for the sought trajectory of the operational
points of the process. The subject of this work can thus
be placed within the field of fault tolerant control, FTC
(Zhang, 2007). We assume that a given dynamical process
is represented by a state-space model, which describes
both autonomous and forced dynamics of the process.
Such a model can be either linear or nonlinear with soft
and hard nonlinearities (equivalent to the lack of deriva-
tives of a function in some points of its domain).

During the first, off-line stage, we try to find a trajec-
tory in the state space of the process model, which should
satisfy two principal conditions (Kowalczuk, Rudzinska-
Kormanska and Olinski, 2007; Kowalczuk and Olinski,
2007). Firstly, the sought trajectory circumvents the areas
(called forbidden zones) associated, for instance, with in-
admissible faults previously detected and identified. Sec-

ondly, we can utilize the autonomous dynamics of the
process in order to minimize an assumed control cost
indicator.

An operational workspace, being a subset of the state
space, is composed of a set of segments. For each seg-
ment, a set of representative values, which reflect the
properties of the process dynamics within the area of a
given segment, is determined.

The searching procedure applied is based on find-
ing a cheapest path in a graph structure (Kowalczuk
et al., 2007; Kowalczuk and Olinski, 2007), which rep-
resents the dynamics of the process described in the state
space.

A discrete optimization algorithm is utilized in
searching the state-space graph for the cheapest path con-
necting the nodes containing the initial and terminal points
of the sought trajectory.

The second, on-line executive stage consists in track-
ing the reference trajectory by an executive controller.

2. Formal description

We start the general problem formulation by defining the
autonomous and forced components of the dynamics of
a given process. Let us assume that the function which

{kova,kolin}@pg.gda.pl

562 Z. Kowalczuk and K.E. Oliński

describes the process dynamics has the following form:

ẋ(t) = f(x(t),u(t), t) (1)

and belongs to the class

f : R
n × R

m × R → R
n. (2)

Consider the following decomposition of (1) into two
parts:

ẋ = ẋx + ẋu = fx(x, t) + fu(x,u, t), (3)

where fu(x, 0, t) = 0. With the above, let us introduce the
following nomenclature:

• ẋx = fx(x, t) represents the autonomous dynamics,

• ẋu = fu(x,u, t) portrays the forced dynamics,

• xx,xu are their two corresponding state contributors.

Let us now present several definitions (Kowalczuk
et al., 2007; Kowalczuk and Olinski, 2007) vital for this
work.

Definition 1. Any sequence E(u) of consecutive states
of a given dynamical system for a feasible control input
u from a set U is said to be a system’s trajectory or a
trajectory of operational points of the system state space.

Definition 2. A bounded subset P of the state space in
the form of a hypercube in R

n, which is taken into ac-
count while seeking an optimal trajectory, is said to be an
operational workspace.

Definition 3. A subset Z of P prohibited for operational
points is referred to as a forbidden zone. This means that
the sought optimal trajectory cannot enter it.

Definition 4. A transition vector Λ is an ordered set of
two elements {x0, xk}:

Λ = {(x0, xk) : x0, xk ∈ E(u)}, (4)

where x0 is the first element and xk is the last element of
the sought optimal trajectory.

Definition 5. Let A be a set of all trajectories E ∈ A ⊂
P . Any real function of the class A → R is said to be a
cost function J(E(u)) of these trajectories.

Definition 6. Let Ξ ⊂ A be a subset of all possible
trajectories which start at a given point x0 and terminate
at xk. We say that a trajectory E∗ is optimal if it satisfies
the following conditions:

J(E) ≥ J(E∗), ∀E ∈ Ξ, (5)

x ∈ P \ Z, ∀x ∈ E∗. (6)

Definition 7. The segmentation of a given operational
workspace P into a set of Ns segments is defined as

P =
Ns⋃

j=1

Φj , (7)

where each pair of segments also has to satisfy the follow-
ing separability condition:

(Φi − δΦi) ∩ (Φj − δΦj) = ∅ (8)

for all i, j = 1, . . . , Ns; i 	= j, where δ denotes the closure
of a given set.

Definition 8. Any quantity used in optimization and as-
signed to a segment is said to be a representative.

Definition 9. A flow graph portraying the arrangement
of segments of a given operational workspace P is said to
be a state-space graph. According to the respective defini-
tions of flow graphs (Diestel, 2000), we treat this structure
as a set W of nodes, which are assigned a set of represen-
tatives of the corresponding segment. Edges connecting
two nodes representing segments located in their neigh-
bourhood form a set D. To each edge d ∈ D, a flow value
k ∈ K is assigned. Thus such a graph can be expressed as

G = (W,D,K). (9)

Definition 10. The image of the workspace P in the
transformation fx is said to be an autonomous dynamics
map.

Additionally, we can describe some properties of the
system, invoked for instance by (in)admissible faults, by
means of functions that describe limit values for the perti-
nent forced dynamics:

B = sb(x, t) =

⎡

⎣
fuMAX = max

u∈U
fu(x,u, t)

fuMIN = min
u∈U

fu(x,u, t)

⎤

⎦ . (10)

Our objective is to find an optimal control u∗(t) ∈
U along with the corresponding state trajectory E∗ =
E(u∗(t)) ∈ (P \ Z) which transmits the dynamical sys-
tem (1) from its initial state x(t0) = x0 to a specified
target state x(T) = xk and, at the same time, minimizes
the cost functional

J(E(u)) =
∫ T

0

(m∑

i=1

βi|ui(t)|
)

dt, (11)

where βi, i = 1, . . . ,m are nonnegative weights and T
is a transition time interval resulting from the (optimal)
control procedure applied.

Suboptimal fault tolerant control design with the use of discrete optimization 563

Fig. 1. Autonomous dynamics map.

3. Algorithm description

It is necessary to define four principal and two optional
elements: an operational subset P , a transition vector Λ,
a cost function J(E(u)), and a segmentation form. Op-
tionally, we can determine a feasible control set U and
a forbidden zone Z. The latter can be used to express
the constraints portraying inadmissible faults. We start by
segmenting the operational workspace P into a set of Ns

segments. Next, for each segment Φj , j = 1, . . . , Ns, a
set of representatives is determined.

Example 1. Consider a piece of the autonomous dy-
namics map presented in Fig. 1. Assume that the opera-
tional workspace P is represented by a rectangle defined
by the vertex pairs {(−2,−2), (2, 2)}. This workspace
P is divided into a set of 1600 segments of diameters
d = (0.1 × 0.1), which yields 40 segments per one di-
mension: v = 1, . . . , 40 , q = 1, . . . , 40. The result of this
segmentation procedure is depicted in Fig. 2. �

Next, we form a state-space graph. Each segment of
the workspace P is associated with a certain node (a mem-
ber of W). An edge connects only those two nodes which
represent two segments in their neighbourhood. The flow
values are determined according to the cost function and
restrictions described below.

An edge wa → wb is removed from the state-space
graph, or equivalently an ∞ value is assigned to it, if for
a pair of points x1, x2 : x1 ∈ Φa, x2 ∈ Φb there is no
feasible control u(t), which could move the operational
point from x1 to x2 in a finite time.

After such a preparation, we can use any graph
search algorithm, which is capable of finding the cheapest
path between the initial and terminal nodes, which rep-
resents the segments containing the initial and terminal
points of the sought trajectory, respectively.

Fig. 2. Segmentation of the autonomous dynamics map.

Example 2. With reference to Example 1, let us assign a
segment average of the i-th coordinate of the system dy-
namics as the i-th representative element, i = 1, . . . , n,
to the corresponding node of the state-space graph for
j = 1, . . . , Ns, with Ns = 1600 denoting the number
of all segments (or nodes):

FAVR Φji =
1
N

N∑

y=1

FDYNi,y , (12)

where FDYNi,y stands for the y-th sample of the i-th
coordinate of the autonomous dynamics map encoded in
fx, and N denotes the number of samples per segment.
Let us assume that N = 5 × 5 = 25, which yields five
samples placed each Δk = (0.1/5) = 0.02 along the
respective axis of the state space. Our objective is to find,
for the initial state x(0) = x0 = [1.9 − 1.9]T and the
terminal state x(T) = xk = [−1.9 1.9]T , an optimal
control u∗(t) ∈ U , along with its corresponding state
trajectory E∗ = E(u∗(t)) ∈ X minimizing the cost
functional

J(E(u)) =
∫ T

0

(m∑

i=1

|ui(t)|
)

dt, (13)

where T is a transition time related to the duration of
the optimal control, and U and X denote feasible vector
sequences of control and state signals, respectively. In
the examples considered, the integration was performed
in discrete time and the flow values were calculated ac-
cording to (13).

In this excercise, Dijkstra’s algorithm (for a full de-
scription see (Skiena, 1997)), which is suitable for finding
the cheapest path in graphs, was effectively utilized for
optimization.

564 Z. Kowalczuk and K.E. Oliński

Based on the resulting sequence of state-space seg-
ments, an approximate continuous reference trajectory
was formed by piece-wise linear interpolation based on
the centres of the consecutive segments indicated by the
optimal path. The results are depicted in Fig. 3. �

Fig. 3. Segments of an autonomous dynamics map (back-
ground), the reference trajectory (-∗-), the initial point
(o), the final point (+).

As the forbidden zones are used to indicate which
nodes should be excluded from the state-space graph, all
the nodes that represent the segments which are partially
or entirely included in the defined forbidden zone Z are
simply removed from the structure of the state-space
graph.

Example 3. Let us extend the above design ex-
ample by introducing the forbidden zones in the form
of the rectangles defined by the following vertex pairs:
{(0.5,−1.5), (1.5,−0.5)} and {(−1, 1), (−0.2, 1.5)}.
The resulting state-space trajectories are depicted in
Fig. 4. �

4. Example of a three tank water system

Consider the system presented in Fig. 5, where three
liquid tanks of a height of 5 m are connected through
valves A, B and C. Each tank is also supplied with a
sink valve controlled by the signals u1, u2, u3, respec-
tively. The valves (A, B, C) are two-stage ON-OFF ele-
ments (uA, uB , uC ∈ {0, 1}) characterized by the open-
ings (slots) uAdmax, uBdmax, uCdmax ∈ {0, 10−5} [m2],
respectively. Moreover, the valves A, B and C have cer-
tain dead zones, which means that they can be opened
only when the absolute value of the difference between the
liquid levels of the adjacent tanks is greater than a given
threshold value � [m].

Let us assume the occurrence of two faults: Fault 1,
representing a leak in the pipe connecting the valve A with
Tank 2, and Fault 2, concerning a leakage located hdmg

Fig. 4. Segments of an autonomous dynamics map (back-
ground), the reference trajectory (-∗-), the initial point
(o), the final point (+), the forbidden zones (rectangles)
and the control effect (–).

meters above the bottom of Tank 2. The model of this
system has the following form:

• state vector x = [h1, h2, h3, uA, uB , uC], with
h1, h2, h3 ∈ [0, 5], uA, uB , uC ∈ {0, 1} (the rea-
son for treating uA, uB , uC as states is explained in
Section 4.2),

• input vector u = [up, u1, u2, u3], with up ∈
{0, 1};u1, u2, u3 ∈ [0, 1],

• differential equations:

dh1(t)
dt

=
1
S

(up(t)up max − q1(t) − qA(t) + qC(t)),

dh2(t)
dt

=
1
S

(−q2(t) + qA(t) − qB(t)),

dh3(t)
dt

=
1
S

(−q3(t) + qB(t) − qC(t)),

(14)

where

q1 = u1(t)dmax

√
2gh1(t),

q2 = u2(t)dmax

√
2gh2(t),

q3 = u3(t)dmax

√
2gh3(t),

qA(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − η)uA(t)dmax

√
2gh(h1(t) − h2(t))

for h1(t) ≥ h2(t) + �A,

(1 − η)uA(t)dmax

√
2gh(h2(t) − h1(t))

for h2(t) ≥ h1(t) + �A,

0 otherwise,

Suboptimal fault tolerant control design with the use of discrete optimization 565

Fig. 5. Three-tank system with two leakages.

qB(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uB(t)dmax

√
2gh(h2(t) − h3(t))

for h2(t) ≥ h3(t) + �B ,

uB(t)dmax

√
2gh(h3(t) − h2(t))

for h3(t) ≥ h2(t) + �B ,

0 otherwise,

qC(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uC(t)dmax

√
2gh(h3(t) − h1(t))

for h3(t) ≥ h1(t) + �C ,

uC(t)dmax

√
2gh(h1(t) − h3(t))

for h1(t) ≥ h3(t) + �C ,

0 otherwise,

• constants:
dmax = 10−5m2 – the maximal opening of the valve,
up max = 0.2 · 10−4m3/s – the maximal pump output,
S = 0.1 m2 – the area of the tank bottom,
η ∈ [0, 1] – the weight of Fault 1.

As a result of the decomposition (14) into the au-
tonomous and forced dynamics, we have

ẋu =

⎡

⎢⎢⎢⎢⎢⎣

1
S

(up(t)up max − q1(t))

1
S

(−q2(t))

1
S

(−q3(t))

⎤

⎥⎥⎥⎥⎥⎦
, (15)

ẋx =

⎡

⎢⎢⎢⎢⎢⎣

1
S

(−qA(t) + qC(t))

1
S

(qA(t) − qB(t))

1
S

(qB(t) − qC(t))

⎤

⎥⎥⎥⎥⎥⎦
. (16)

The limit values for the forced dynamics are defined
as follows:

B =
[

fuMAX

fuMIN

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎣
up max

0
0

⎤

⎦

⎡

⎣
−dmax

√
2gh1

−dmax

√
2gh2

−dmax

√
2gh3

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

4.1. Problem formulation. Consider the problem of
finding optimal trajectories while minimizing the cost
function

Jk(x0,xk) =
∫ xk

x0

|u(x)|dx, (18)

where x0 and xk are the points defined by the transition
vector Λ. Let us assume that �A = �B = 0.5 m and
�C = 3.5 m.

4.2. Sketch of implementation.
Operational space. The model (14) can be described
by the state vector [h1 h2 h3 uA uB uC]T from a six-
dimensional space. Note that (during this off-line stage)
the controlling valve inputs uA, uB , uC are included in the
state in order to plan the open-loop control of the valves A,

566 Z. Kowalczuk and K.E. Oliński

B and C. By using this information and taking into con-
sideration the height of the liquid tanks, the operational
workspace can be defined as P = {h1, h2, h3, uA, uB ,
uC : h1, h2, h3 ∈ [0, 5], uA, uB , uC ∈ {0, 1}}.

Segmentation. Let us fix the size of the segments as [0.25
m×0.25 m × 0.25 m ×{0, 1} × {0, 1} × {0, 1}]. This
yields 203 · 23 = 64000 segments Φv1,v2,v3,q1,q2,q3 in P ,
indexed by v1, v2, v3 = 1, . . . , 20, and q1, q2, q3 = 1, 2.

In general, any two segments sharing at least one
point in the state space are treated as neighbours. In the
case considered we shall confine the notion of the neigh-
bourhood by saying that two segments which have a com-
mon side-wall, an edge or a vertex in the state space of
the levels (h1 ×h2 ×h3) are neighbours. To comply with
these demands, we use the following elements as the rep-
resentatives; for each segment Φj , j = 1, . . . , Ns, where
Ns = 64000 and i = 1, . . . , 3; y = 1, . . . , 343:

1. The average of the segment dynamics in a particular
direction

FAVR Φji =
1
N

N∑

y=1

FDYNi,y ,

where FDYNi,y stands for the y-th sample of the i-
th coordinate of the autonomous dynamics map en-
coded in fx, and N denotes the number of samples
per segment, N = (7×7×7×1×1×1) = 343 (along
h1, h2, h3, uA, uB , uC), taken at a sample step Δk =
(0.25/7) � 0.0357.

2. A maximal value of the i-th map component

MΦj ,i = max
y

(FDYNi,y). (19)

3. A minimal value of the i-th map component

WΦj ,i = min
y

(FDYNi,y). (20)

4. An upper limit of the i-th forced dynamics

U+
Φj ,i = min

y
(fujMAXy). (21)

5. A lower limit of the i-th forced dynamics

U−
Φj ,i = max

y
(fujMINy). (22)

6. An index vector [v1 v2 v3 q1 q2 q3]T .

The cost of the path between the initial node and the
current one, where x0, . . . ,xk represent the geometrical
centres of the segments in the operational workspace, is
c = J(x0,x1) + J(x1,x2) + · · · + J(xk−1,xk).

For each edge dO,S : wO → wS for O,S =
1, . . . , Ns and O 	= S, which connects the nodes that rep-
resent the segments ΦO and ΦS , we calculate the flow
value kwO→wS

, considering only the workspace of the
levels h1, h2, h3 in the state space (since alternating the
states of the valves A, B and C is always possible and is
not represented in the assumed control cost indicator).

In order to calculate the flow cost kwO→wS
assigned

to the edge dO,S : wO → wS , we consider the three
level dimensions (i = 1, . . . , 3: h1, h2, h3) separately.
Thus a total cost was calculated as the respective sum∑3

i=1[kwO→wS
]ΦO,i +

∑3
i=1[kwO→wS

]ΦS ,i, where
[kwO→wS

]ΦO,i is a partial cost calculated for the seg-
ment ΦO and [kwO→wS

]ΦS ,i is the cost calculated for
ΦS . Let us denote Ie = IS − IO = [ve1 ve2 ve3]

T =
[vS1 vS2 vS3]

T − [vO1 vO2 vO3]
T , where IO, IS are the

indices of ΦO and ΦS , respectively. For ΦO, these
calculations were performed in the following form:

FOR i = 1, 2

• Case Iei = 1:

IF sign(Iei) = sign(FAVRΦO,i) THEN:
[kwO→wS

]ΦO,i = 0
(the i-th component of the autonomous dynamics is suitable for

the transition between the segments represented by the nodes

wO, wS)

ELSE: (it is necessary to check if the feasible values of the

forced dynamics enable moving the operational point beyond the

boundary of the segment ΦO in the desired direction)

IF WΦO,i + U+
ΦO,i > 0 THEN:

[kwO→wS
]ΦO,i = α(|FAVRΦO,i| + ε) (the cost is

proportional to the value of the autonomous dynamics and some

positive constant)
ELSE: [kwO→wS

]ΦO,i = ∞.

• Case Iei = 0:

IF WΦO,i + U+
ΦO,i ≥ 0

∧MΦO,i + U−
ΦO,i ≤ 0 THEN:

[kwO→wS
]ΦO,i = α|FAVRΦO, i|

ELSE: [kwO→wS
]ΦO,i = ∞.

• Case Iei = −1 (see the three remarks above):

IF sign(Iei) = sign(FAVRΦO,i) THEN:
[kwO→wS

]ΦO,i = 0
ELSE:
IF MΦO,i + U−

ΦO,i < 0 THEN:
[kwO→wS

]ΦO,i = α(|FAV RΦO,i| + ε)
ELSE: [kwO→wS

]ΦO,i = ∞.

Suboptimal fault tolerant control design with the use of discrete optimization 567

The analysis for the segment ΦS was performed in a
similar way.

The coefficient α is a normalized distance between
the geometrical centres of the segments ΦO and ΦS . If the
segments ΦO and ΦS have a common side wall in the level
space h1 × h2 × h3, then α = 1. If the segments Φ0 and
ΦS have one common edge in this space, then α =

√
2. If

they have one common node/point, then α =
√

3/2.
In the case of Ie = 0, the compensation of the au-

tonomous dynamics is sufficient, while in the case when
one of the coordinate directions is nonzero (Iei = 1 or
−1), an additional control effort is necessary, which is
portrayed in the control cost by ε.

As before, the first off-line stage of this suboptimal
procedure consisted in seeking an optimal path within the
state-space graph. This task was performed by using Dijk-
stra’s algorithm (Skiena, 1997). We assume that the geo-
metrical centres of these segments form a list of reference
points. Such a reference trajectory can be tracked by an
executive proportional or predictive controller (see, e.g.,
(Kowalczuk and Suchomski, 2005)) in an on-line proce-
dure of suboptimal fulfillment of the control task.

As an illustrative example, we consider the above-
described system working in the presence of two faults.
Our goal is to fill up Tanks 2 and 3 in a way that the
total amount of liquid stored in those two tanks is equal
to 0.197 m3. We treat Fault 1 as an admissible one and
Fault 2 as an inadmissible one. Note that such an ap-
proach is nowadays practiced under the concept of recon-
figurable control, based on fault detection and diagnosis
(Zhang, 2007).

Taking into consideration the first fault, and assum-
ing its weight as η = 0.34, we fix the equations (14).
The leakage from Tank 2, represented by Fault 2, occurs
when the level of the liquid is equal to or greater than
hdmg = 1.125 m. We deal with this problem by defin-
ing an additional constraint of the following form:

h2 < hdmg. (23)

Taking account of this constraint, we simply introduce the
forbidden zone Z in the state space as a set of the states
satisfying Z = {xz = (h1, h2, h3, uA, uB , uC) : h2 ≥
hdmg}. By doing this we are able to exclude all the nodes
from the state-space graph that represent the segments
which partially or entirely belong to the forbidden zone
Z. The initial node was assumed as w1,1,1,1,1,1, and the
terminal node was set to any nonexcluded node represent-
ing a segment, located above by the line h2+h3 = 1.97 m.
The obtained results are illustrated in Fig. 6.

5. Summary

This work presents a useful concept of planning the opti-
mal and safe control strategies based on discrete optimiza-
tion algorithms.

Fig. 6. On-line control effects for the considered three-tank
problem: solid lines – the levels gained by the executive
controller, dotted lines – the reference trajectories.

Certainly, there are shortcomings of this method as-
sociated with the general nature of graph representations.
Namely, in the case of high-order models we can eas-
ily be faced with the problem of complexity resulting
from a high number of nodes characterizing the related
state-space graph. This, eventually, may lead to time-
consuming graph search procedures. Some clues concern-
ing the possibilities of improving the graph search process
can be found, e.g., in (Bertsekas, 2005; Friedman and Tar-
jan, 1987).

Taking into account the fact that the reference trajec-
tories are portrayed in the piece-wise linear form based on
a given rough segmentation scheme, some problems may
occur in cases when the optimal trajectory of the opera-
tional point needs a smooth representation.

Similarly, in spite of the optimality in the sense of the
graph representation, taking into consideration the origi-
nal design problem, we shall be aware of the suboptimal
property of this approach resulting from the fact that the
initial and terminal points of the trajectory may not be
identical with the centres of the initial and terminal seg-
ments, respectively. Thus, in general, as the reference tra-
jectory can only pass through the centres of the segments,
it is clear that the size of segments has great influence on
the quality of the ultimate optimal solution found.

References

Bertsekas D. P. (2005). Dynamic Programming and Optimal
Control, Athena Scientific, Belmont, MA.

Chowdhury F. N. and Chen W. (2006). Fault monitoring in the
presence of fault-tolerant control, Proceedings of the 6th
IFAC Symposium on SAFEPROCESS: Fault Detection, Su-
pervision and Safety of Technical Processes, Vol. 1, IFAC,
Beijing, China, pp. 1321–1326.

568 Z. Kowalczuk and K.E. Oliński

Diestel R. (2000). Graph Theory, Springer-Verlag, New York,
NY.

Friedman M. L. and Tarjan R. E. (1987). Fibbonaci heaps
and their uses in improved network optimization algo-
rithms, Journal of the Association for Computing Machin-
ery 34(3): 596–615.

Kowalczuk Z. and Olinski K. E. (2007). Sub-optimal fault-
tolerant control with the use of discrete optimization, in
J. Korbicz, K. Patan and M. Kowal (Eds.), Fault Diagnosis
and Fault Tolerant Control, Academic Publishing House
EXIT, Warsaw, pp. 165–172.

Kowalczuk Z., Rudzinska-Kormanska K. and Olinski K. E.
(2007). Designing nonlinear control systems by state-
space flow graph optimization, Proceedings of the 11th
IFAC Symposium on Large Scale Systems, Gdańsk, Poland,
pp. 1–4, (on CD-ROM).

Kowalczuk Z. and Suchomski P. (2005). Discrete-time pre-
dictive control design based on overparameterized delay-
plant models and identified cancellation order, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 15(1): 5–34.

Skiena S. S. (1997). The Algorithm Design Manual, Springer-
Verlag, New York, NY.

Zhang Y. (2007). Active fault-tolerant control systems: Integra-
tion of fault diagnosis and reconfigurable control, in J. Ko-
rbicz, K. Patan and M. Kowal (Eds.), Fault Diagnosis and
Fault Tolerant Control, Academic Publishing House EXIT,
Warsaw, pp. 21–41.

Received: 18 December 2007
Revised: 12 March 2008

	Introduction
	Formal description
	Algorithm description
	Example of a three tank water system
	Problem formulation
	Sketch of implementation

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

