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The focus of this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An
auxiliary input signal is applied in AFD. This signal injection in the system will in general allow us to obtain a fast change
detection/isolation by considering the output or an error output from the system. The classical cumulative sum (CUSUM)
test will be modified with respect to the AFD approach applied. The CUSUM method will be altered such that it will be
able to detect a change in the signature from the auxiliary input signal in an (error) output signal. It will be shown how it
is possible to apply both the gain and the phase change of the output signal in CUSUM tests. The method is demonstrated

using an example.
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1. Introduction

The area of active fault diagnosis (AFD) has been con-
sidered in a number of papers (Campbell, Horton and
Nikoukhah, 2002; Campbell, Horton, Nikoukhah and
Delebecque, 2000; Campbell and Nikoukhah, 2004b; Ker-
estecioglu and Zarrop, 1994; Niemann, 2006; Nikoukhah,
1994; Nikoukhah, 1998; Nikoukhah, Campbell and Dele-
becque, 2000) and books (Campbell and Nikoukhah,
2004a; Kerestecioglu, 1993; Zhang, 1989).

AFD is based on the inclusion of an auxiliary (test)
input signal into the system. The auxiliary input can be
injected in either the open-loop system or the closed-loop
system. As the output from the diagnosis system, a stan-
dard residual signal known from the passive FDI approach
is applied (Frank and Ding, 1994). Using the AFD ap-
proach from (Niemann, 2005; Niemann, 2006), the auxil-
iary input is injected into the closed-loop system in such
a way that the residual is decoupled from the auxiliary
input in the nominal case. In the case of a parameter
change, the residual will contain a component related to
the auxiliary input. It turns out that this approach con-
nects AFD with dual YJBK parameterization (after Youla,
Jabr, Bongiorno and Kucera), (Niemann, 2003; Tay, Ma-
reels and Moore, 1997). The transfer function from the

auxiliary input to the residual is equivalent to dual YIBK
transfer function in the dual YJBK parameterization, i.e.,
a parameterization of all systems stabilized by a given
feedback controller. Here, in connection with AFD, this
transfer function will be named the fault signature ma-
trix (Niemann, 2005; Niemann, 2006). Change/fault de-
tection, as well as change/fault isolation, is based directly
on the fault signature matrix.

There are two main approaches to AFD. In one ap-
proach, which was originally derived by Zhang (Zhang,
1989), the auxiliary input is designed with respect to
fast fault diagnosis/multi model selection. This is ob-
tained by means of a dedicated design of the auxiliary
input signal. This method was later investigated ex-
tensively in (Campbell and Nikoukhah, 2004a; Kereste-
cioglu, 1993; Kerestecioglu and Zarrop, 1994),

In the other AFD approach, that in (Niemann, 2005;
Niemann, 2006), a periodic auxiliary input is applied.
This approach was also applied in (Niemann and Poulsen,
2005). In the normal situation there is no trace of the aux-
iliary input in the residual. A change in the system, e.g.,
due to parametric changes/faults, will result in a change in
the signature in such a way that the residual will contain a
component of the periodic input signal.
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Using the AFD approach from (Niemann, 2005; Nie-
mann, 2006), the auxiliary input is decoupled in the out-
put/residual in the nominal case. The detection of pa-
rameter changes can then be done by detecting a sig-
nature from the auxiliary input in the residual signal.
Another approach is to use a filter/observer to estimate
the periodic signature with the known frequency directly.
This approach will not be considered in this paper. In-
stead, the classical CUSUM method (Basseville and Niki-
forov, 1993; Gustafsson, 2000) will be applied for change
detection. The CUSUM method will be modified to detect
changes based on the periodic auxiliary input. This modi-
fication can be done in different ways. It is possible to let
the CUSUM test be based only on the amplitude/gain of
the signature in the residual signal from the auxiliary in-
put, or it can be based on both the gain and the phase shift
in the signature signal. Using both the gain and the phase
shift for change detection, it will also be possible to isolate
changes in different parameters. From a theoretical point
of view, it will be possible to isolate an unlimited number
of parameter changes. In practice, however, there will be
an upper bound on the number of parameters that can be
isolated based on a single periodic auxiliary input. This
number will depend strongly on the signal/noise ratio.

Only the SISO case will be considered in this paper,
but it is possible to extend the results to the MIMO case
without any major difficulties. Further, only periodic sta-
tionary auxiliary inputs will be applied as considered in
(Kerestecioglu and Cetin, 2004) in connection with AFD.
In (Kerestecioglu and Cetin, 2004), it was shown that the
optimal stationary auxiliary inputs are linear combinations
of a limited number of periodic signals. In some cases,
the optimal auxiliary input consists of only a single peri-
odic signal. In this paper we will only consider auxiliary
inputs based on a single periodic signal. However, it is
possible to extend the results derived in this paper to the
case where more than a single periodic input are applied.
Some preliminary results were given in (Poulsen and Nie-
mann, 2007).

The outline of this paper is as follows: In Section 2]
the system set-up is given followed by a short description
of the AFD set-up applied in Section Bl Statistical test
methods applied in connection with AFD are considered
in Section @ In Section [3 an evaluation of the derived
fault detectors is given. The developed methods are ap-
plied using a simple example in Section [6l The paper is
completed with a conclusion in Section [7]

2. System set-up
Let a general system be given by

er = Goa(0)d; + Geu(8)uy,
Zpe .

()
Vr = Gyd<6)dt + Gyu(e)ut,

where d; € R" is a disturbance signal vector, u; € R is the
control input signal, e, € R? is the external output sig-
nal vector to be controlled and y; € R is the measure-
ment signal. The system description in (1) may depend
on a number (k) of parameters. Let 0;, i =1, ..., k de-
note the deviations away from the nominal values, i.e.,
6; =0, i =1,...,k in the nominal case. For notational
convenience, arrange the deviations in a vector:

0=(01,..., 0, ..., 6)T.

Furthermore, let

which represents the situation with a change in precisely
one parameter. In many cases it will be possible to
give an explicit expression of the connection between
the system and the parametric change as described in
(Niemann, 2006; Niemann and Poulsen, 2005). Such an
explicit description is not needed in this paper.

Let the system be controlled by a stabilizing feed-
back controller

2c: { u; = Kyy. 2)

The results derived in this paper are based on the sys-
tem set-up given above for discrete-time systems. How-
ever, the results are easily adapted to continuous-time sys-
tems.

2.1. Coprime factorization. Let G,,(0) be the nomi-
nal system from (1) and let K be a stabilizing controller
from ). Assume that a coprime factorization of Gy, (0)
and K exists and

N,M c RH..,
, U,V eRHA., 3)

where the four transfer functions (N, M, U and V) in ()
must satisfy the Bezout equation

=MV —-NU, (4)

see (Tay et al., 1997).

3. AFD set-up

Now, consider the AFD set-up described in (Niemann,
2006; Niemann and Poulsen, 2005). The set-up is shown
in Fig.[[l The diagram includes the residual €; and an aux-
iliary input 1.

The residual & for Zpg in () is given by

& :My[—NM[. (5)
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Fig. 1. Block diagram for an AFD set-up based on a closed-loop
system. The set-up includes a residual €, and an external
input signal ;.

Notice that it is the same residual generator as that used
in connection with passive fault diagnosis (Frank and
Ding, 1994). A more detailed discussion of the AFD
set-up applied is given in (Niemann, 2006; Niemann and
Poulsen, 2005).

Based on the feedback system in Fig. [Il the trans-
fer functions from the two inputs d;,1m; to the two out-

puts e, €& are given by (Niemann, 2005; Niemann and
Poulsen, 2005)

2 er = Ped(e)d[ + Pen(e)nlv (6)
FD -
& = Pea(8)d; + Pen (O)N:,
where
Geu(e)UGyd(e)
Pe = Ge 9 + T T ——
b Gal®)
NV GO’ o
b Gul®)
ed V— Gyu(e)U 3
, N — Gy, ()M
NV —Gu(e)U

The system Zgp is shown in Fig.[2l The transfer func-
tion from the input signal 1, to the residual & is equal
to the dual YJBK transfer function (Niemann, 2005; Nie-
mann and Poulsen, 2005). An important thing in this con-

dl P — t——— €;
ZFD

nt" 4’£t

Fig. 2. System set-up for active fault diagnosis.

nection is that the dual YJBK transfer function is equal
to zero in the nominal case. This means that the transfer
function from the auxiliary input 7, to the residual &, will
be zero in the nominal case.

In (Niemann, 2005; Niemann and Poulsen, 2005), the
dual YJBK transfer function was called the fault signature
matrix in connection with AFD. Here it is a transfer func-
tion. In the following, it will be denoted by S(6), where
S(0) = Pen(0). An explicit equation for S(8) was derived
in (Niemann, 2003; Niemann, 2006).

The fault signature matrix is a measure of the effect
of parameter variation on the closed-loop stability. Large
S indicates that parameter variations have a major influ-
ence on the system.

4. Change detection

The implementation of the AFD set-up is not unique, be-
cause the coprime factorization is not unique. This will
give an extra freedom in the implementation of the AFD
set-up. For example, it is possible to base the coprime
factorization of Gy, on a Kalman filter. In the nominal
case this will produce a residual signal with well-defined
properties (such as being a white noise sequence). If the
residual signal in the normal situation is not white, then a
filter which extracts the white innovation from the resid-
ual can be applied. The design freedom introduced in con-
nection with the coprime factorization of the system and
controller will not be discussed further in this paper. It
will be assumed that the residual signal is the innovation
signal from a Kalman filter.

In a passive scheme the detection is often based on a
change in the statistics (the mean, variance, correlation or
spectral properties) of the residual sequence. In an active
scheme an auxiliary signal is introduced and the residual
in (@) takes then the following form:

& =S0O)M +&, (®)

where & € N(0,03) and it is white in the nominal case.
It is clear that a detection can be based on the change in
the statistics of &,. Here in this paper we will follow an-
other approach. From (Z) we have that S(0) is zero in the
nominal case, i.e.,

S(0) =0. ©)]

Further, S(0) reflects the importance (of the change) in the
control. It is clear from this observation that S(0) is very
important in connection with active change detection (or

. B
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active fault detection). A direct consequence of () is the
following condition:

S(6) = 0 for 6 =0, (10)
S(0) # 0 for 6 #0.

The detection (isolation) of parameter variations can
then be based on the following null and alternative hy-
potheses:

Hy: S(6)=0,
Hy: S(8)£0. an

Tests of the above null hypothesis and its alternative
can be done by on-line evaluation of the residual signal
with respect to the signature from the auxiliary input in
the residual &,. Consequently, the auxiliary signal is cho-
sen in such way that the signature in the residual is dis-
tinctive. This is in contrast to methods in which the ob-
jective is a change in the statistics (normally, the mean
and variance) of the residual. For this reason (and others,
explained later) the auxiliary input is chosen as being a
periodic signal given by

N: = dg sin(wot ), (12)

where the amplitude g, and the frequency g are the tun-
ing parameters in the auxiliary input. The specific signa-
ture in the residual of this signal is particularly easy. Us-
ing the auxiliary input given by (I2), the residual signal is
given by

&=8&, & €N(Oa0(2)) (13)

in the nominal case. If the parameter has changed (from
nominal values), we have

& = ap|S|sin(wor +¢) +&, & eN(m,67), (14)

where |S| and ¢ are respectively the (non-zero) gain and
phase shift through the fault signature matrix $ at the cho-
sen frequency ®g. For brevity, we have omitted the depen-
dency of 6 and @y in S =S(6,®p), d = 6(0, ), m =m(6)
and 6; = 61(0). In general, m will be zero. Both the am-
plitude and phase of the periodic signal in € depend on 6
and on the chosen frequency, ®p. The periodic signal in €,
is the signature of the periodic auxiliary input 7).

The detection of parameter changes is then based on
the detection of the signature from 1), in €,. Further, the
isolation of parameter changes may be possible from an
investigation of the amplitude and phase of the signature
in &. In some cases it may be necessary to include more
than one single periodic signal in 1, in order to isolate
different parameter changes. Here we will only consider a
single periodic auxiliary input signal.

The most direct way to detect a signature in & is by
a visual inspection of €,. However, in general this will not
be possible due to the noise component & in €. Further,
the amplitude of 1, is selected as small as possible to avoid

to “disturb” the output e, too much. This will give a signa-
ture in € with a small amplitude that is not directly visible
in general. Instead, other methods need to be applied.
The selection of the amplitude and the frequency of
the periodic input signal 1, is not trivial. The selection
of aq and g needs to be done with respect to a number
of conditions. The choice of the amplitude is given by the
tolerated increase in power in ¢; due to the auxiliary signal
in the normal case. It is clear that a higher amplitude will
increase the speed of detection and enable the algorithm
to detect small parameter changes. The selection of my
has to be done with respect to the following conditions:

1. Maximize the signal-to-noise ratio between the sig-
nal and the noise components in the residual g, if a
parameter has changed. The signal component is the
signature from the auxiliary signal 1, and the noise
component is the effect from the disturbance input d;.

2. Minimize the effect from 1), on the external output ¢,
in the normal situation.

3. The selection of the frequency must be done in such
a way that it will be possible to discriminate between
different types of changes in the signature (the trans-
fer function from 1, to &).

By using the closed-loop transfer function from the
AFD set-up, the above conditions can be formulated as
follows:

Condition[T]is equivalent to

|S(6, )n|
ax A el (15)
0" |Peg(8,m)d;|
Condition 2]is equivalent to
H}xi)n‘Pen(evw)ntL (16)

Condition [3] specifies that the signature from 7, in
g given by must be different for different param-
eter changes. This is satisfied if the amplitude and the
phase change of the periodic signature in & are unique for
a change in a single parameter.

Conditions [T] and ] are related to change detection,
whereas Condition[3lis only related to change isolation. A
frequency y that optimizes the first two conditions might
not be optimal with respect to change isolation. It will
therefore be obvious to change the frequency in the aux-
iliary input signal when a parameter change has been de-
tected but not isolated.

4.1. Parameter change detection. Assume that the
auxiliary input signal has been selected, i.e., the amplitude
ae and the frequency g in (I2) have been specified. In
this section we will focus on how the null and alternative
hypotheses in (II) can be implemented. As mentioned in
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the previous section, the approach taken in this paper is
to test whether the signature of the auxiliary input signal
is present in the residual. To this end, the following two
signals are formed:

sy =¢& sin(wot), ¢ =g cos(wot), an
where, according to (I4) and some trigonometric rela-
tions,

s =8| %0 (cos((])) —cos(2mpr + ¢)) +& sin(wot),

(18)
a . .

o =8| 7“) (sm(q)) + sin(2mgr + ¢)> +&; cos(wot).
From this it is clear that in the normal (or the fault-free)
situation

s: =& sin(wot) € N(0,63sin?(wot)),

¢; =&, cos(mot) € N(0,03cos(mr)).

Additionally, the two signals are white when a filter pa-
rameterization is applied. The time average variance is
equal to %(5%.

If a change has occurred then the fault signature ma-
trix, S, is different from zero and the two detection signals,
s¢,¢r, will have a constant, deterministic component:

m(S(6),a0) = { m ] = 552 [ zfj((i’)) ] (19)

This component can be used for detection and isolation.

Besides the mentioned component, the detector sig-
nals will also have a time varying deterministic compo-
nent:

ag | —cos(2mor +0)
] 2 [ sin(2oot +¢) |’ (20)

which, on the (time) average, is zero. The effect of this
component can be eliminated by means of an average or
integration technique such as that in the CUSUM method-
ology.

In the literature the CUSUM technique is normally
connected to the detection of a change in the mean
and/or variance in a signal. In the normal situation it
is assumed that the signal is white and has a specific
mean or variance (see (Basseville and Nikiforov, 1993) or
(Gustafsson, 2000)). The detection is an implementation
of a sequentiel test in which the inspection data are succes-
sively increased. CUSUM methods are normally based on
simple (specified) null hypotheses and simple (specified)
alternatives which have to be given as tuning parameters.
A simple alternative then forms a situation that should be
detected. In a heuristic setting CUSUM methods can be
regarded as being a test of whether the slope of the in-
tegral of the signal in question exceeds a certain critical
value. In this work we have transformed the problem and

are testing whether the mean of the vector

o]

has a zero mean (vector) or has the component given in
(9.

Introduce the tuning parameters 3 and y. The detec-
tion can be implemented as a CUSUM detection given by

) 1
a=max (054 | F-57]). @D
where
St
o Ct 2_1 2
& = s |7 O1=30%:
—c

The hypothesis Hy is accepted if z; is smaller than the
threshold 4, i.e.,

4 < log(B) I,
Y

where the inequality is to be understood elementwise. The
parameter B in this CUSUM detector is related to the aver-
age length between false detections. The other parameter,
v, is chosen as a typical lower limit of changes to be de-
tected. Furthermore, note that the time average variance
of ¢; and s; was used in (2I). The time distance from the
last zero crossing of the elements in z; forms an estimate
of the time of change, 7.

4.2. Parameter change isolation. The phase informa-
tion can be utilized in the process of isolating the type of
parameter changes. As illustrated in Fig. [ (for a two-
parameter problem), for each type of parameter change
(and for fixed wyp) the fault signature matrix S(wy, 0) forms
a curve in the complex plane which passes through the
origin for @ = 0. For brevity, we call these fault signature
curves. The parameter change isolation can then be per-
formed by estimating the fault signature matrix S(wg,0)
and match it with the possible values. However, due to
stochastic disturbances an estimate of S will inherently be
uncertain. Instead the estimate should be matched with
the nearest fault signature curve, e.g., in a least squares
sense. These curves will then divide the complex plane
into double conic areas, each related to each type of pa-
rameter change. The isolation procedure will then be a
classification determining the areas an estimate of S be-
longs to.

In order to isolate changes in different parameters,
they must have different effects on S(0). If this is the
case, in theory there are no limits on the number of param-
eter changes (occurring separately) that can be isolated,
when both amplitude and phase information is applied.
However, in practice only a limited number of parameter

aamcs
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Fault |

Fig. 3. For each type of errors (and for fixed wyp), the fault sig-
nature matrix, S(®p, 0), forms a curve (shown as dashed
lines) in the complex plane. The individual type of pa-
rameter changes forms a double-coned area (shown as
shaded for Type 2 of parameter change).

changes can be isolated. This number will depend on the
signal-to-noise ratio and on to what extent S(6) is non-
linear. If the parameter change cannot be isolated at one
frequency, then extra harmonics at different frequencies
can be included in the auxilary signal.

For small parameter changes this classification can
easily be automated by assigning a (unit) vector, v;, i€
{1,...,k}, to each type of parameter changes. The vectors
are parallel to the tangent of S(®p,V;) at the origin. In a
more formal way, we define

_9S(9%)
VT Tow,

Vi

Vi = ——.
19,-:07 l izl

Note that these vectors are parallel to the mean of the vec-
tor (¢, sy) for the corresponding parameter change. Let
T; denote the estimate of the instant of the change. The

vector
1 ! St
= = Ty, 22
tjh%[ﬁ]s @)

which is the sum of the signals in (I7) from the (estimated)
instant of change f‘d to the current time ¢, can be used
to isolate the parameter change. In the deterministic and
nominal cases v will be a zero vector according to ()
and 20). The classification then reduces to finding the
maximal projection among the types of parameter changes
considered, i.e.,

i= argle?llfa.)i }vTv, (23)

5. Evaluation of fault detectors

It is relevant to evaluate fault detectors based on AFD by
using a number of standard performance measures. Some

of these performance measures are: the mean time be-
tween false alarms (MTFA) (or a similar false alarm rate
(FAR)) and the mean time to detection (MTD). These per-
formance measures can be determined from the average
run length (ARL) function, which in general cannot be
computed exactly. Instead, approximations of the perfor-
mance measures can be derived, see, e.g., (Basseville and
Nikiforov, 1993; Gustafsson, 2000).

Let g and Gé be respectively the mean and the vari-
ance of each of the components in the increment

o — o 1
T (o)] 2
in the CUSUM test. An approximative solution to the

ARL function is given by (Basseville and Nikiforov, 1993;
Gustafsson, 2000)

i‘(ﬂu76a7h)
,uah Uo, Mol po
(G e |1 6b)
exp( —2(t5t + 2ep) | 12t + 2
- 5 ’
oG,

(24)

where h = log(B)/y is the detection threshold and B =
1.166. This approximation is based on ¢, being white,
which is satisfied in a normal situation (and when a fil-
ter parameterization is applied). When a parameter has
changed, this is only satisfied approximately.

Let OLtj , j=1, ,4 denote the components of the
CUSUM increments. In the nominal situation we have

o € N(—3.1)

and the mean time between false alarms, TyTRa, can the
be estimated through

AMTEA = i(—%, 1,h).

When a parameter has changed, we have

SO)laol! 10}

0‘: eN e, 5% (5(2)
Here
cos(9(0))
| sinfo((®))
—cos(9(0)) |’

(
—sin(¢((6))

where 1/ is the j’-th component of /. The mean time for
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detection, TyTp, can be estimated from

) iy o2
Y mjnL<|S(e)|awl - % h) .25

|2

j 201 o}

[=) )

An important thing with the AFD set-up used in this pa-
per is that it is possible to change Tyrp and Tvrra by
the design of the auxiliary input signal n,. The mean val-
ues of s; and ¢; are directly proportional to the amplitude
of 1, when a parameter has changed in the system. In
case Tytp and TyvTEA are not satisfactory, it is possible to
change them by changing the amplitude of 1,. The cost is
an increase in the effect from 1, on the external output e;.
This will not be possible in a passive FDI approach.

6. Example

The stochastic change detection method determined above
will be illustrated using a simple example in the following.
Consider a sampled version of a simple second-order sys-
tem given by

k 1
24 20ys+y? 24025+ 1

G(s)

influenced by stochastic disturbances. Variations in the
three parameters &, { and y will be considered.

In discrete time (7; = 0.01 sec) and in state space the
system is given by

Xt+1 = YAx; + Bu; + Bd,
Yt = Cxt +Wt7

where the noise processes are zero mean white noise se-
quences and

wel [ =% o |

In this example the process noise is an input disturbance,
but the methods are by no means restricted to this type.
The control is based on a state estimate obtained by means
of a stationary Kalman filter and the control is an ordi-
nary LQ controller whose aim is to minimize the objective
function

J= E{thTQx, +u,TRu;}, 0=1h,
=0

This design results in a controller given by

_ 22-1.93124+0.9332

-~ 22-1.957z+0.9581°
—0.2664z+0.2661

T 22-1.9572+0.9581°

and a model parameterized through

_5.05z+5.046
T 2-1.9577+0.9581
22 —1.998240.998
T 2-1.9577+0.9581"

1073,

A simple analysis of this closed-loop system results in
residual variance equal to (5% = 1073 in the normal situ-
ation.

As mentioned in the previous section, the auxiliary
signal was chosen to be a harmonic function, which has
a distinct signature in the residual signal if a parameter
change is present. The frequency was chosen by investi-
gating the variation in S(®,0) (see Figs. @HE) in relation
to Py and Py, over a range of frequencies and type of
parameter changes. It was chosen to use the same har-
monic function for both detection and isolation. It is there-
fore also relevant to consider the variation in S(®,0) in
the complex plane for different frequencies and parameter
changes. Based on this analysis, the frequency was cho-
sen to be wy = 2.5 rad/sec. The amplitude was chosen to
be 0.64, which is equivalent to having a power increase to
a ten-fold level of the stochastic variance. The signals are
plotted in Fig. [l for the nominal case. It is clear that the
residual (g,) does not contain any signature of the auxilary
signal.

-30
-40
-50

-60 -

IP_ _lindB
ent

-70 -

-80 -

-90 -

-100

log()

Fig. 4. Variation in |S| as function of ® and Ak/k.

The parameters in the CUSUM detector were chosen
to be

y=0.01, B=50.

The choice of 61 was based on the knowledge of G%. The
performance of the detector can be seen in Fig. [8l where
the four detector signals (see (1)) are well below the de-
tection threshold. This is related to the fact that for these
choices TyTpa = 9181.

@amcs
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AYL

Fig. 5. Variation in |S| as a function of ® and A{/C.

log(w)
AW

Fig. 7. Signals in the nominal situation.

NT 200 A

100 120 140 160 180 200
time (sec)

Fig. 8. CUSUM signals in a nominal situation.

Consider now an initial (at + = 0) change in each of
the parameters k, { and . The detector signals are plot-
ted in Figs. OHIT for 10%, 50% and 10 % changes in the
respective parameters. Additionally, equivalent determin-
istic simulation results are given as well. The results of the
three simulations are summarized in Table[Il Each row in
this table is related to one type of parameter change (in k, {
and ). The first column gives the channel number which
signals a parameter change. The second column contains
the time instant of detection, ¢4, and the third column con-
tains the estimate of Tyrp in (23).

1800

1600 -

1400

1200

1000 -

800 -

600 -

400 =

o G A N L, 2 s it M
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Fig. 9. CUSUM signals for a change in k.

In Fig.[12] S(®, ) is shown in the complex plane for
different parameter changes for wp = 2.5 rad/sec. As de-
scribed in Section the complex plane is divided into
three double-coned areas with top at the origin. Each type
of parameter change is assigned a designated unit vector
(see Table[2)).
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Fig. 10. CUSUM signals for a change in C.
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Fig. 11. CUSUM signals for a change in y.
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Fig. 12. Real and imaginary parts of S for oy = 2.5 rad/sec and
three types of parameter changes (in k, { and ). The
parameters vary from —0.1 to 0.1 on a relative scale.
The 10% increase in the parameters is indicated with a
star.

Table 1. Detection results.

’ ‘ Chanel ‘ ta ‘ ‘AEMTD ‘
Fig.[9) 1 58.60 sec | 49.34 sec
Fig. 2 115.60 sec | 115.01 sec
Fig. [ 1 120.12 sec | 124.50 sec

Imaginary part
o
7

Real part 2 x10°
Fig. 13. Isolation signals for (individual) changes in k,  and

v, respectively. The estimate is indicated with a box
whereas the true signature is indicated with a star.

Table 2. Designated vectors v;, i =k,{,W.

| |k [ & | v |
Re | 00830 | 0.1539 | 0.9934
Imag | -0.1834 | 0.9881 | 0.1144

When a parameter change has been detected and the
parameter change instant, 7, estimated, data from Td toty
are used according to (2Z2)) to estimate the fault signature
matrix, S(®,0). The estimate of the time difference be-
tween the occurrence of the change, Td, and the detection
hereof, ¢4, is listed as the second column in Table[3 This is
illustrated in Fig.[I3] The isolation is carried out as given
by @23)), which is a mechanization of finding the nearest
fault curve. The results are summarized in Table[3 where
each row corresponds to one type of parameter change
(and one simulation). The columnwise data (the last 3
columns) are the projection of v on each v;, i € [1, 2, 3] in
percent (with a sign). As could be predicted from Fig.
it is clear that it is harder to isolate changes in k and y
than those in .

7. Conclusion

A new method for stochastic change detection and isola-
tion in an AFD setting was described. The key issue is
to use an auxiliary signal which has a distinct signature in

aamcs
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Table 3. Isolation results, i.e., vTvi in percent.

| | T | & | § [ v |
changeink | 58.47sec | 48.777 | 3.24 | 47.99
changein { | 115.55sec | -8.69 | 76.99 | 14.31
changeiny | 11559 sec | 44.44 | 9.81 | 45.75

the residual sequence, rather than a change in the variance
or mean. The transfer function from an auxiliary input to a
residual sequence equals the fault signature matrix which
vanishes in the nominal case. The diagnosis is based on
using both amplitude and phase information with respect
to the signature in the residual output. Changes are de-
tected and isolated by using a modified CUSUM test.
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