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Finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations
with multiple point delays in control are considered. Using the notation, theorems and methods used for deterministic
controllability problems for linear dynamic systems with delays in control as well as necessary and sufficient conditions
for various kinds of stochastic relative controllability in a given time interval are formulated and proved. It will be proved
that, under suitable assumptions, relative controllability of an associated deterministic linear dynamic system is equivalent
to stochastic relative exact controllability and stochastic relative approximate controllability of the original linear stochastic
dynamic system. As a special case, relative stochastic controllability of dynamic systems with a single point delay is also
considered. Some remarks and comments on the existing results for stochastic controllability of linear dynamic systems
are also presented.
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1. Introduction

Controllability is one of the fundamental concepts in
mathematical control theory and plays an important
role in both deterministic and stochastic control theories
(Klamka, 1991; 1993; Mahmudov, 2003a; Mahmudov
and Denker, 2000). Controllability is a qualitative prop-
erty of dynamic control systems and is of particular im-
portance in control theory. A systematic study of control-
lability started at the beginning of the 1960s, when the the-
ory of controllability based on the description in the form
of a state space for both time-invariant and time-varying
linear control systems was worked out. Roughly speak-
ing, controllability generally means that it is possible to
steer a dynamic control system from an arbitrary initial
state to an arbitrary final state using a set of admissible
controls. In the literature there are many different defi-
nitions of controllability, for both linear (Klamka, 1991;
1993; Mahmudov, 2001a; Mahmudov and Denker, 2000)
and nonlinear dynamic systems (Klamka, 2000; Mahmu-
dov, 2002; 2003b; Mahmudov and Zorlu, 2003), which
strongly depend on the class of dynamic control systems
and the set of admissible controls (Klamka, 1991; 1996).
Therefore, for deterministic linear and nonlinear dynamic
systems there exist many different necessary and sufficient

conditions for global and local controllability (Klamka,
1991; 1993; 1996; 2000).

In recent years various controllability problems for
different types of linear dynamical systems have been con-
sidered in many publications. Extensive lists of these can
be found, e.g., in the monograph (Klamka, 1991) or in the
survey papers (Klamka, 1993; 1996; 2000). However, it
should be stressed that most literature in this field has been
mainly concerned with deterministic controllability prob-
lems for finite-dimensional linear dynamic systems with
unconstrained controls and without delays.

For stochastic linear and nonlinear control systems
the situation is less satisfactory. In recent years exten-
sions of deterministic controllability concepts to stochas-
tic control systems have been discussed only in rather few
publications. In the papers (Bashirov and Kerimov, 1997;
Bashirov and Mahmudov, 1991; Erhard and Kliemenn,
1982; Mahmudov, 2001a; Mahmudov and Denker, 2000;
Zabczyk, 1991), different kinds of stochastic controlla-
bility were discussed for linear finite dimensional sta-
tionary and nonstationary control systems. The papers
(Fernandez-Cora et al., 1999; Kim, 2004; Mahmudov,
2001b; 2003a) are devoted to a systematic study of ap-
proximate and exact stochastic controllability for linear
infinite dimensional control systems defined in Hilbert

 jerzy.klamka@polsl.pl


40 J. Klamka

spaces. Stochastic controllability for finite dimensional
nonlinear stochastic systems was discussed in (Arapos-
tathis et al., 2001; Mohamed and Zorlu, 2003; Suna-
hara et al., 1974; 1975). Using the theory of bounded
nonlinear operators and linear semigroups, different types
of stochastic controllability for nonlinear infinite dimen-
sional control systems defined in Hilbert spaces were con-
sidered in (Mahmudov, 2002; 2003b). In the papers
(Klamka and Socha, 1974; 1980), Lyapunov techniques
were used to formulate and prove sufficient conditions for
stochastic controllability of nonlinear finite dimensional
stochastic systems with point delays in the state variable.
Moreover, it should be pointed out that the functional
analysis approach to stochastic controllability problems
was also extensively discussed for both linear and nonlin-
ear stochastic control systems in (Fernandez-Cora et al.,
1999; Kim, 2004; Mahmudov, 2001b; 2002; 2003a; Sub-
ramaniam and Balachandran, 2002).

In the present paper we shall study stochastic con-
trollability problems for linear dynamic systems, which
are natural generalizations of controllability concepts well
known in infinite dimensional control systems theory
(Klamka, 1991; 1993). More precisely, we shall consider
stochastic relative exact and approximate controllability
problems for finite-dimensional linear stationary dynami-
cal systems with multiple constant point delays in control
described by stochastic ordinary differential state equa-
tions. More precisely, using techniques similar to those
presented in the papers (Mahmudov, 2001a; 2001b; Mah-
mudov and Denker, 2000), we shall formulate and prove
necessary and sufficient conditions for stochastic relative
exact controllability in a prescribed time interval for lin-
ear stationary stochastic dynamic systems with multiple
constant point delays in control.

Roughly speaking, it will be proved that, under suit-
able assumptions, relative controllability of an associ-
ated deterministic linear dynamic system is equivalent
to stochastic relative exact controllability and stochastic
relative approximate controllability of the original linear
stochastic dynamic system. This is a generalization to the
control delayed case of some previous results concerning
stochastic controllability of linear dynamic systems with-
out delays in control (Mahmudov, 2001a; 2001b; Mahmu-
dov and Denker, 2000).

The paper is organized as follows: Section 2 contains
a mathematical model of a linear, stationary stochastic dy-
namical system with multiple constant point delays in the
control. Moreover, in this section some basic notation and
definitions of stochastic relative exact and stochastic ap-
proximate controllability are presented. Also, some pre-
liminary results are included. In Section 3, using results
and methods taken directly from deterministic controlla-
bility problems, necessary and sufficient conditions for
exact and approximate stochastic relative controllability
are formulated and proved. In Section 4, as a special case,

relative stochastic controllability in a given time interval
of dynamic systems with single point delays is also con-
sidered. Finally, Section 5 contains concluding remarks
and states some open controllability problems for more
general stochastic dynamic systems.

2. System description

Throughout this paper, unless otherwise specified, we
use the following standard notation: Let (Ω, F, P ) be a
complete probability space with probability measure P
on Ω and a filtration {Ft |t ∈ [0, T ]} generated by an n-
dimensional Wiener process {w(s) : 0 ≤ s ≤ t} defined
on the probability space (Ω, F, P ), (Zabczyk, 1991).

Let L2(Ω, FT , Rn) denote the Hilbert space of all
FT -measurable square integrable random variables with
values in R

n. Moreover, let LF
2 ([0, T ], Rn) denote the

Hilbert space of all square integrable and Ft-measurable
processes with values in R

n.
In the theory of linear, finite-dimensional, time-

invariant stochastic dynamical control systems we use the
mathematical model given by the following stochastic or-
dinary differential state equation with multiple point de-
lays in control:

dx(t) = (Ax(t) +
i=M∑

i=0

Biu(t − hi))dt + σdw(t) (1)

for t ∈ [0, T ], with the initial conditions

x(0) = x0 ∈ L2(Ω, FT , Rn) and u(t) = 0 (2)

for t ∈ [−hM , 0), where the state x(t) ∈ R
n = X and

the control u(t) ∈ R
m = U, A is an n × n dimensional

constant matrix, Bi, i = 0, 1, 2, . . . , M, are n × m di-
mensional constant matrices, σ is an n × n dimensional
constant matrix, and 0 = h0 < h1 < · · · < hi < · · · <
hM−1 < hM are constant delays.

In the sequel, for simplicity of discussion, we gener-
ally assume that the set of admissible controls has the form
Uad = LF

2 ([0, T ], Rm). Moreover, it is well known (Mah-
mudov, 2001a; 2001b; Mahmudov and Denker, 2000;
Mahmudov and Zorlu, 2003), that for the given initial
conditions (2) and any admissible control u ∈ Uad, for
t ∈ [0, T ] there exists a unique solution x(t; x0, u) ∈
L2(Ω, Ft, R

n) of the linear stochastic differential state
equation (1), which can be represented in the following
integral form:

x(t; x0, u) = exp(At)x0

+
∫ t

0

exp(A(t − s))(
i=M∑

i=0

Biu(s − hi)) ds

+
∫ t

0

exp(A(t − s))σ dw(s).
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Thus, without loss of generality, taking into account
the zero initial control for t ∈ [−hM , 0] and changing the
order of integration, the solution x(t; x0, u) for hk < t ≤
hk+1, k = 0, 1, 2, . . . , M − 1, t ∈ [0, h] has the following
form, which is more convenient for further deliberations
(Klamka, 1991):

x(t; x0, u) = exp(At)x0

+
i=k∑

i=0

∫ t−hi

0

exp(A(t − s − hi))Biu(s) ds

+
∫ t

0

exp(A(t − s))σ dw(s).

Moreover, for t > hM we have

x(t; x0, u) = exp(At)x0

+
i=M∑

i=0

∫ t−hi

0

exp(A(t − s − hi))Biu(s) ds

+
∫ t

0

exp(A(t − s))σ dw(s)

or, equivalently, for hk < t < hk+1 and for k =
0, 1, . . . , M − 1,

x(t; x0, u)
= exp(At)x0

+
i=k−1∑

i=0

∫ t−hi

t−hi+1

⎛

⎝
j=i∑

j=0

exp(A(t − s − hj))Bj

⎞

⎠

· u(s) ds

+
∫ t−hk

0

⎛

⎝
j=k∑

j=0

exp(A(t − s − hj))Bj

⎞

⎠u(s) ds

+
∫ t

0

exp(A(t − s))σ dw(s).

Similarly, for t > hM ,

x(t; x0, u)
= exp(At)x0

+
i=k−1∑

i=0

∫ t−hi

t−hi+1

⎛

⎝
j=i∑

j=0

exp(A(t − s − hj))Bj

⎞

⎠

· u(s) ds

+
∫ t−hM

0

⎛

⎝
j=M∑

j=0

exp(A(t − s − hj))Bj

⎞

⎠ u(s) ds

+
∫ t

0

exp(A(t − s))σ dw(s).

Now, for a given final time T , using the form of the
integral solution x(t; x0, u), let us introduce operators and

sets which will be used in next parts of the paper (Klamka,
1991).

First of all, for hk < T < hk+1 and for k =
0, 1, . . . , M − 1, we define the following linear and
bounded control operator LT ∈ LF

2 ([0, T ], Rm) →
L2(Ω, FT , Rn):

LT u

=
i=k−1∑

i=0

∫ T−hi

T−hi+1

⎛

⎝
j=i∑

j=0

exp(A(T − s − hj))Bj

⎞

⎠

· u(s) ds

+
∫ T−hk

0

⎛

⎝
j=k∑

j=0

exp A(T − s − hj))Bj

⎞

⎠ u(s) ds.

Moreover, for T > hM we have

LT u

=
i=M−1∑

i=0

∫ T−hi

T−hi+1

⎛

⎝
j=i∑

j=0

exp(A(T − s − hj))Bj

⎞

⎠

· u(s) ds

+
∫ T−hM

0

⎛

⎝
j=M∑

j=0

exp(A(T − s − hj))Bj

⎞

⎠u(s) ds

and its adjoint linear and bounded operator is L∗
T ∈

L2(Ω, FT , Rn) → LF
2 ([0, T ], Rm),

L∗
T z =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∗
0 exp(A∗(T − t))E{z |Ft }

for t ∈ [0, T − hM ],⎛

⎝
j=i∑

j=1

B∗
j exp(A∗(T − t − hj))

⎞

⎠ E{z |Ft }

for t ∈ (T − hi+1, T − hi],
i = 0, 1, . . . , M − 1,

where the asterisk denotes the adjoint operator or the ma-
trix transpose.

From the above notation it follows that the set of
all states reachable from the initial state x(0) = x0 ∈
L2(Ω, FT , Rn) in time T > 0 using admissible controls
has the form

RT (Uad)
= {x(T ; x0, u) ∈ L2(Ω, FT , Rn) : u ∈ Uad}

= exp(At)x0 + ImLT +
∫ T

0

exp(A(T − s))σ dw(s).

Moreover, we introduce the concept of the lin-
ear controllability operator (Klamka, 1991; 1993; Mah-
mudov, 2001a; Mahmudov and Denker, 2000) CT ∈
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L(L2(Ω, FT , Rn), L2(Ω, FT , Rn)), which is strongly as-
sociated with the control operator LT and is defined by
the following equality:

CT = LT L∗
T

=
i=k−1∑

i=0

∫ T−hi

T−hi+1

⎛

⎝
j=i∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=i∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ E{· |Ft} dt

+
∫ T−hk

0

⎛

⎝
j=k∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=k∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ E{· |Ft} dt

for hi+1 < T < hi, i = 0, 1, . . . , M − 1, and for T >
hM by

CT = LT L∗
T

=
i=M−1∑

i=0

∫ T−hi

T−hi+1

⎛

⎝
j=i∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=i∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ E{· |Ft} dt

+
∫ T−hM

0

⎛

⎝
j=M∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=M∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ E{· |Ft} dt .

Finally, let us recall the n × n–dimensional deter-
ministic controllability matrix (Klamka, 1991) for hi+1 <
T < hi, i = 0, 1, . . . , M − 1,

GT = LT L∗
T

=
i=k−1∑

i=0

∫ T−hi

T−hi+1

⎛

⎝
j=i∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=i∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ dt

+
∫ T−hk

0

⎛

⎝
j=k∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=k∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ dt,

and for T > hM

GT = LT L∗
T

=
i=M−1∑

i=0

∫ T−hi

T−hi+1

⎛

⎝
j=i∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=i∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ dt

+
∫ T−hM

0

⎛

⎝
j=M∑

j=0

exp(A(T − t − hj))Bj

⎞

⎠

⎛

⎝
j=M∑

j=0

B∗
j exp(A∗(T − t − hj))

⎞

⎠ dt.

It is well known that in the theory of dynamic sys-
tems with delays in control or in state variables, it is nec-
essary to distinguish between two fundamental concepts
of controllability, namely, relative controllability and ab-
solute controllability (Klamka, 1991; 1993; 2000). In
this paper we shall concentrate on the weaker concept
of relative controllability on a given time interval [0, T ].
On the other hand, since for the stochastic dynamic sys-
tem (1) the state space L2(Ω, Ft, R

n) is in fact an infinite-
dimensional space, we distinguish exact, or strong, con-
trollability and approximate, or weak, controllability. Us-
ing the notation given above for the stochastic dynamic
system (1), we define the following concepts of stochastic
relative exact and stochastic relative approximate control-
lability (Klamka, 1991; Mahmudov, 2001a; Mahmudov
and Denker, 2000).

Definition 1. The stochastic dynamical system (1) is
said to be stochastically relatively exactly controllable on
[0, T ] if RT (Uad) = L2(Ω, FT , Rn).

Definition 2. The stochastic dynamical system (1) is said
to be stochastically relatively approximately controllable
on [0, T ] if RT (Uad) = L2(Ω, FT , Rn).

Remark 1. Since the state space L2(Ω, FT , Rn) is infi-
nite dimensional, it is necessary to distiguish between ex-
act and approximate controllability. Moreover, from Def-
initions 1 and 2 it directly follows that stochastic relative
exact controllability is generally a stronger concept than
stochastic relative approximate controllability. However,
there are many cases when these two concepts coincide.

Remark 2. Since the stochastic dynamical system (1)
is linear and there are no constraints on control values,
without loss of generality in the above two definitions it
is enough to take the zero initial condition x0 = 0 ∈
L2(Ω, FT , Rn).
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Remark 3. It should be pointed out that in the case of
delayed controls the above controllability concepts essen-
tially depend on the length of the time interval [0, T ].

Remark 4. Let us observe that for a final time T ≤ h1 the
stochastic dynamical system (1) is in fact a system without
delays.

Remark 5. Since the dynamical system (3) is station-
ary, the controllability matrix GT(s) has the same rank
at least for all s ∈ [0, T − hk], if hk+1 < T < hk,
k = 0, 1, . . . , M − 1, or for s ∈ [0, T − hM ], if T > hM ,
(Klamka, 1991).

Remark 6. From the form of the controllability oper-
ator CT it immediately follows that this operator is self-
adjoint.

Remark 7. In this paper only the relative stochastic con-
trollability of the dynamic system (1) is considered, and
therefore the definitions for absolute approximate or exact
stochastic controllability are omitted.

In the sequel we study the relationship between the
controllability concepts for the stochastic dynamic sys-
tem (1) and the controllability of the associated determin-
istic dynamic system with multiple delays in control of the
form

y′(t) = Ay(t) +
i=M∑

i=0

Biv(t − hi), t ∈ [0, T ], (3)

where the admissible controls v ∈ L2([0, T ], Rm).
For the deterministic system (3) let us denote by RT

the set of all states reachable from the initial state y(0) =
0 in time T > 0 using admissible controls.

Definition 3. (Klamka, 1991) The deterministic dynamic
system (3) is said to be relatively controllable on [0, T ] if
RT = R

n.

Remark 8. Since the dynamic system (3) is finite di-
mensional, relative approximate controllability and rela-
tive exact controllability coincide, and we have only one
definition of relative controllability.

Now, for completeness of discussion, let us recall a
lemma concerning relative controllability of the determin-
istic system (3).

Lemma 1. (Klamka, 1991) The following conditions are
equivalent:

(i) The deterministic system (3) is relatively controllable
on [0, T ].

(ii) The controllability matrix GT is nonsingular.

(iii) There holds

rank[B0, B1, . . . , Bk, . . . , BM ,

AB0, AB1, . . . , ABk, . . . , ABM , . . . ,

An−1B0, A
n−1B1, . . . , A

n−1Bk, . . . ,

An−1BM ] = n.

Now, let us formulate an auxiliary lemma excerpted
directly from the theory of stochastic processes which will
be used in the sequel in the proofs of the main results.

Lemma 2. (Mahmudov, 2001a; Mahmudov and
Denker, 2000; Mahmudov and Zorlu, 2003) For ev-
ery z ∈ L2(Ω, FT , Rn), there exists a process q ∈
LF

2 ([0, T ], Rn×n) such that

CT z = GT Ez +
∫ T

0

GT (s)q(s) dw(s).

Taking into account the above notation, definitions
and lemmas, in the next section we shall formulate and
prove conditions for stochastic relative exact and stochas-
tic relative approximate controllability for the stochastic
dynamic system (1).

3. Stochastic relative controllability

In this section, using the lemmas given in Section 2, we
shall formulate and prove the main result of the paper,
which says that stochastic relative exact and, in conse-
quence, also approximate controllability of the stochastic
system (1) are in fact equivalent to relative controllability
of the associated linear deterministic system (3).

Theorem 1. The following conditions are equivalent:

(i) The deterministic system (3) is relatively controllable
on [0, T ].

(ii) The stochastic system (1) is stochastically relatively
exactly controllable on [0, T ].

(iii) The stochastic system (1) is stochastically relatively
approximately controllable on [0, T ].

Proof. (i) ⇒ (ii) Let us assume that the determinis-
tic system (3) is relatively controllable on [0, T ]. Then, it
is well known (Klamka, 1991; 1993; Klamka and Socha,
1977) that the symmetric relative deterministic controlla-
bility matrix GT (s) is invertible and strictly positive def-
inite at least for all s ∈ [0, T − hk], if hk < T < hk+1,
k = 0, 1, 2, . . . , M − 1 or at least for all s ∈ [0, T − hM ]
if T > hM , (Klamka, 1991). Hence, for some γ > 0, we
have

〈GT (s)x, x〉 ≥ γ ‖x‖2

for all s ∈ [0, T − hM ] and for all x ∈ Rn. In order to
prove stochastic relative exact controllability on [0, T ] for
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the stochastic system (1), we use the relationship between
the controllability operator CT and the controllability ma-
trix GT given in Lemma 2, to express E 〈CT z, z〉 in terms
of 〈GT Ez, Ez〉. First of all, we obtain

E 〈CT z, z〉

= E
〈
GT Ez +

∫ T

0

GT (s)q(s) dw(s), Ez

+
∫ T

0

q(s) dw(s)
〉

= 〈GT Ez, Ez〉+ E

∫ T

0

〈GT (s)q(s), q(s)〉 ds

≥ γ
(
‖Ez‖2 + E

∫ T

0

‖q(s)‖2 ds
)

= γE ‖z‖2
.

Hence, in the operator sense, we have CT ≥ γI ,
which means that the operator CT is strictly positive def-
inite, and thus that the inverse linear operator C−1

T is
bounded. Therefore, the stochastic relative exact control-
lability on [0, T ] of the stochastic dynamic system (1) di-
rectly follows from the results given in (Klamka, 1991).

(ii) ⇒ (iii) This implication is obvious (Klamka, 1991;
Mahmudov, 2001b; 2002; 2003a).

(iii) ⇒ (i) Assume that the stochastic dynamic sys-
tem (1) is stochastically relatively approximately control-
lable on [0, T ], and hence its linear self-adjoint controlla-
bility operator is positive definite, i.e., CT > 0 (Klamka,
1991). Then, using the resolvent operator R(λ, CT ) and
following directly the functional analysis method given in
(Mahmudov, 2001a; Mahmudov and Denker, 2000; Mah-
mudov and Zorlu, 2003) for stochastic dynamical systems
without delays, we obtain that the deterministic system (3)
is approximately relatively controllable on [0, T ]. How-
ever, taking into account that the state space for the deter-
ministic dynamical system (3) is finite dimensional, i.e.,
exact and approximate controllability coincide (Klamka,
1991), we conclude that the deterministic dynamic sys-
tem (3) is relatively controllable on [0, T ]. �

Remark 9. Let us observe that for a special case when
the final time T ≤ h1, stochastic relative exact or approx-
imate controllability problems in [0, T ] for the stochastic
dynamical system with a delay in control (1) are reduced
to the standard stochastic exact or stochastic approximate
controllability problems for a stochastic dynamic system
without delays in control (Klamka, 1991). From Theo-
rem 1, two corollaries directly follow as special cases.

Corollary 1. (Mahmudov, 2001a; Mahmudov and
Denker, 2000) Suppose that T ≤ h1. Then the stochas-
tic dynamic control system (1) is stochastically relatively
exactly controllable in [0, T ] if and only if

rank[B0, AB0, A
2B0, . . . , A

n−1B0] = n.

Corollary 2. (Mahmudov and Denker, 2000) The stochas-
tic dynamic system without delays„ i.e., Bj = 0, j =
1, 2, . . . , M , is stochastically exactly controllable in any
time interval if and only if the associated deterministic dy-
namical system without delay is controllable.

Remark 10. Finally, it should be pointed out that us-
ing a general method given in the monograph (Klamka,
1991) for stochastically relatively approximately control-
lable dynamic systems it is possible to constuct admissi-
ble controls u(t) defined for t ∈ [0, T ] and transferring a
given initial state x0 to the desired final state xT at time
T .

4. Systems with single delays

In this section we shall consider a special case of the gen-
eral semilinear stochastic systems described in Section 2,
namely, systems with single point delays in control, de-
scribed by the following differential state equation:

dx(t) = (Ax(t)+B0u(t)+B1u(t−h))dt+σdw(t)
(4)

for t ∈ [0, T ], with the initial conditions

x(0) = x0 ∈ L2(Ω, FT , Rn) and u(t) = 0 (5)

for t ∈ [−h, 0). Similarly as before, it is well known that
for the given initial conditions (5) and any admissible con-
trol u ∈ Uad, for t ∈ [0, T ] there exists a unique solution
x(t; x0, u) ∈ L2(Ω, Ft, R

n) of the linear stochastic differ-
ential state equation (4), which can be represented in the
following integral form:

x(t; x0, u)
= exp(At)x0

+
∫ t

0

exp(A(t − s))(B0u(s) + B1u(s − h)) ds

+
∫ t

0

exp(A(t − s))σ dw(s).

Thus, taking into account the zero initial control for t ∈
[−h, 0], the solution for t ∈ [0, h] has the following form
(Klamka, 1991):

x(t; x0, u) = exp(At)x0

+
∫ t

0

exp(A(t − s))B0u(s) ds

+
∫ t

0

exp(A(t − s))σ dw(s).
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Moreover, for t > h we have

x(t; x0, u) = exp(At)x0

+
∫ t

0

exp(A(t − s))B0u(s) ds

+
∫ t−h

0

exp(A(t − s − h))B1u(s)) ds

+
∫ t

0

exp(A(t − s))σ dw(s)

or, equivalently,

x(t; x0, u) = exp(At)x0 +
∫ t−h

0

(exp(A(t − s))B0

+ exp(A(t − s − h))B1)u(s) ds

+
∫ t

t−h

exp(A(t − s))B0u(s) ds

+
∫ t

0

exp(A(t − s))σ dw(s).

Now, for a given T > h, taking into account the form
of the integral solution x(t; x0, u), let us introduce the fol-
lowing operators and sets (Klamka, 1991).

Introduce the linear bounded control operator LT ∈
L(LF

2 ([0, T ], Rm), L2(Ω, FT , Rn)) as

LT =
∫ T−h

0

(exp(A(T − s))B0

+ exp(A(T − s − h))B1)u(s) ds

+
∫ T

T−h

exp(A(T − s))B0u(s) ds.

Then its adjoint linear bounded operator is L∗
T ∈

L2(Ω, FT , Rn) → LF
2 ([0, T ], Rm),

L∗
T z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(B∗
0 exp(A∗(T − t))
+B∗

1 exp(A∗(T − t − h)))E{z |Ft}
for t ∈ [0, T − h],

B∗
0 exp(A∗(T − t))E{z |Ft}

for t ∈ (T − h, T ],

and the set of all states reachable from initial state x(0) =
x0 ∈ L2(Ω, FT , Rn) in time T > 0 using admissible con-
trols,

RT (Uad) = {x(T ; x0, u) ∈ L2(Ω, FT , Rn) : u ∈ Uad}
= exp(At)x0 + ImLT

+
∫ T

0

exp(A(T − s))σ dw(s).

Moreover, we introduce the concept of the lin-
ear controllability operator (Klamka, 1991; 1993; Mah-
mudov 2001a; Mahmudov and Denker, 2000) CT ∈

L(L2(Ω, FT , Rn), L2(Ω, FT , Rn)), which is strongly as-
sociated with the control operator LT and is defined by
the following equality:

CT = LT L∗
T

=
∫ T−h

0

(exp(A(T − t))B0B
∗
0 exp(A∗(T − t))

+ exp(A(T − t − h))B1B
∗
1

exp(A∗(T − t − h)))E{ ·|Ft} dt

+
∫ T

T−h

exp(A(T − t))B0B
∗
0

exp(A∗(T − t))E{ ·|Ft} dt.

Finally, let us recall the n×n-dimensional determin-
istic controllability matrix (Klamka, 1991),

GT

=
∫ T−h

0

(exp(A(T − t))B0B
∗
0 exp(A∗(T − t))

+ exp(A(T − t − h))B1B
∗
1 exp(A∗(T − t − h))) dt

+
∫ T

T−h

exp(A(T − t))B0B
∗
0 exp(A∗(T − t)) dt.

In the sequel, we study the relationship between the
controllability concepts for the stochastic dynamical sys-
tem (4) and the controllability of the associated determin-
istic dynamic system of the following form:

y′(t) = Ay(t) + B0v(t)
+ B1v(t − h), t ∈ [0, T ], (6)

where the admissible controls v ∈ L2([0, T ], Rm).
For completeness, let us recall the following result

concerning the relative controllability of the deterministic
system (6).

Lemma 3. (Klamka, 1991) The following conditions are
equivalent:

(i) The deterministic system (6) is relatively controllable
on [0, T ].

(ii) The controllability matrix GT is nonsingular.

(iii) There holds

rank[B0, B1, AB0, AB1, A2B0, A2B1, . . . ,

An−1B0, An−1B1] = n.

Finally, using the general results given in Theorem 1
and the conditions presented in Lemma 2, we can formu-
late the following corollary, which is a necessary and suf-
ficient condition for both exact and approximate relative
controllability of the stochastic system (4).



46 J. Klamka

Corollary 3. The following conditions are equivalent:

(iv) The deterministic system (6) is relatively controllable
on [0, T ].

(v) The stochastic system (4) is stochastically relatively
exactly controllable on [0, T ].

(vi) The stochastic system (4) is stochastically relatively
approximately controllable on [0, T ].

5. Concluding remarks

In the paper sufficient conditions for stochastic relative ex-
act controllability for linear stationary finite-dimensional
stochastic control systems with multiple constant point
delays in control have been formulated and proved. These
conditions extend to the case of one constant point de-
lay in control which corresponds to known stochastic ex-
act controllability conditions for dynamic control systems
without delays recently published in the papers (Mahmu-
dov, 2001; 2002; Mahmudov and Denker, 2000). Finally,
it should be pointed out that using standard techniques
presented in the monograph (Klamka, 1991) it is possi-
ble to extend the results given in this paper to more gen-
eral nonstationary linear stochastic control systems with
many time variable point delays in control. Moreover,
extensions to stochastic absolute exact controllability and
stochastic absolute approximate controllability in a given
time interval are also possible.
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