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This paper deals with nonlinear filtering problems with delays, i.e., we consider a system (X ,Y ), which can be represented
by means of a system (X , Ŷ ), in the sense that Yt = Ŷa(t), where a(t) is a delayed time transformation. We start with X
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1. Introduction

Let (X,Y ) = (Xt, Yt)t≥0 be a partially observed
stochastic system. That is, assume that the state process
X = (Xt)t≥0 of the system cannot be directly observed,
while the other component Y = (Yt)t≥0 is completely
observable and therefore is referred to as the observation
process. The aim of stochastic nonlinear filtering is to
compute the conditional law πt of the state process at time
t, given the observation process up to time t, i.e., the com-
putation of

πt(ϕ) = E
[
ϕ(Xt)/FY

t

]
, (1)

for all functions ϕ belonging to a determining class, i.e.,
the best estimate of ϕ(Xt) given the σ-algebra of the ob-
servations up to time t, FY

t = σ{Ys, s ≤ t}.

A classical model of the partially observed system
arises when the system is a k × d-dimensional Markov

diffusion process, with state ξ = (ξt)t≥0,

ξt =ξ0 +
∫ t

0

b(ξs, ηs) ds+
∫ t

0

σ(ξs, ηs) dβs

+
∫ t

0

σ̃(ξs, ηs) dωs, t ≥ 0, (2)

and observation η = (ηt)t≥0,

ηt =
∫ t

0

h(ξs) ds+ ωt, t ≥ 0, (3)

where β = (βt)t≥0 and ω = (ωt)t≥0 are independent
Wiener processes and ξ0 is a random variable independent
of β and ω.

Under suitable hypotheses on the coefficients, one
can prove that the filter πξ

t (ϕ) = E
[
ϕ(ξt)/Fη

t

]
solves

a stochastic partial differential equation known as the
Kushner-Stratonovich equation and that the unnormalized
filter solves a linear stochastic partial differential equation,
the Zakai equation, see, e.g., (Pardoux, 1991) and the ref-
erences therein.
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We stress that in this model the state process is not
necessarily Markovian, while the overall system is Marko-
vian. The same holds for the model studied in (Kliemann
et al., 1990), where the state is a jump-diffusion process
and the observation is a counting process. Recently, non-
linear filtering has been applied in financial problems in
the framework of Bayesian analysis. In particular, we
quote the papers (Cvitanić et al., 2006; Zeng, 2003), in
which the observation is a marked point process.

In this paper we consider the filtering problem for a
partially observable system

(
X,Y

)
with delayed obser-

vations, i.e., such that there exists a process Ŷ such that
the observation process Y satisfies

Yt = Ŷa(t), t ≥ 0, (4)

where the function a(·) : [0,∞) → [0,∞) is a delayed
time transformation, i.e., it is nondecreasing, with 0 ≤
a(t) ≤ t for all t ≥ 0. In the following, we will use the
short notation Y = Ŷ ◦ A for (4).

An inspiring example is the simple delayed diffusion
model considered in (Calzolari et al., 2003): the state is
a Markov diffusion process X = (Xt; t ≥ 0), with val-
ues in R

k, while the d-dimensional observation process
Y = (Yt; t ≥ 0) is available with a fixed delay τ , namely,
no observation is available for 0 ≤ t ≤ τ , while after time
τ we are able to observe a perturbation of the delayed in-
tegral

∫ t−τ

0 h(Xs) ds. Formally,

Xt = X0 +
∫ t

0

b(Xs) ds+
∫ t

0

σ(Xs) dBs, t ≥ 0,

⎧
⎨

⎩

Yt = 0, 0 ≤ t ≤ τ,

Yt =
∫ t

τ

h(Xs−τ ) ds+Wt −Wτ , t ≥ τ,

where B = (Bt)t≥0 and W = (Wt)t≥0 are independent
Wiener processes and X0 is a random variable indepen-
dent of B and W . The above observation process corre-
sponds to the choice of a(t) = (t− τ)+, and

Ŷt =
∫ t

0

h(Xs) ds+ Ŵt, t ≥ 0,

where Ŵs = Wτ+s −Wτ .
Our model covers the case when the time lag is not

necessarily constant. This inspiring example can also be
viewed as a particular case of the delay systems consid-
ered in (Calzolari et al., 2007).

Partially observed systems with delays in the obser-
vations appear in many applied fields. For instance, in
(Schweizer, 1994), an example of information with a de-
lay for a financial model is given. Furthermore, if the
market is incomplete, then the risk minimization criterion
leads to a filtering problem with delayed observations. Fil-
tering appears in this context since the risk minimization

criterion corresponds to a quadratic loss function. More
generally, filtering appears naturally in financial problems
when studying models with unknown parameters as, e.g.,
in (Kirch and Runggaldier, 2004/05; Frey et al., 2007).
Considering also a delay in the information would then
lead to an example fitting our framework.

The main results of this paper (Theorems 2 and 3)
are given under the condition that the system

(
X, Ŷ

)
is

a Markov process for which there exists a feasible filter,
i.e., an explicit representation of the filter as a functional
depending on the observed trajectory up to time t, see (9).
We stress that we are not necessarily assuming that the
signal X itself is Markovian, and that we distinguish be-
tween continuous and piecewise constant time transfor-
mations. Since for delayed time transformations

FY
t ⊆ F Ŷ

a(t) ⊆ F Ŷ
t ,

the filtering problem with delayed observations we are
dealing with in this paper is connected with the extrap-
olation (or prediction) problem for the system

(
X, Ŷ

)
.

This problem has been largely studied, see, e.g., (Liptser
and Shiryaev, 1977; Pardoux, 1991), in the case when the
observation process Ŷ is a diffusion and the signal is a
semimartingale. Though our hypotheses imply that the
signal X itself is a semimartingale, and in this respect
our assumptions are more restrictive, we are not assuming
that the observation process Ŷ is a diffusion, and in this
respect our assumptions are less restrictive than the usual
ones. Moreover, the main concern of extrapolation results
is the characterization of the optimal nonlinear extrapola-
tion by means of Kushner-Stratonovitch and/or Zakai-type
equations. On the contrary, we focus on the explicit ex-
pression of the filter for the system

(
X,Y

)
with delayed

observations, in terms of the feasible version of the filter
of the partially observed Markov system

(
X, Ŷ

)
and of

its associated semigroup. To obtain an explicit representa-
tion of the filter is interesting on its own and, moreover, it
plays a key role in the connected filtering approximation
problem, see (Calzolari et al., 2006).

The results concerning continuous time transforma-
tions are given in Section 2. The continuity assumption
on the function a(·) is crucial in the proofs of Theorems 1
and 2 since it implies that

FY
t = F Ŷ

a(t), (5)

whenever (4) holds. These results allow us to manage var-
ious situations illustrated by examples considering both
diffusive and jump systems. These examples highlight the
differences between the two results. Furthermore, as an
example of a system with correlated noise we study a cu-
bic sensor model, see (15) and (16), for which we give
explicitly the robust Zakai equation for the unnormalized
filter, see (17) and (18).
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We conclude Section 2 with a brief discussion of a
case which is intermediate between continuous and piece-
wise constant time transformations, i.e., when the infor-
mation “arrives by packets”, in the sense that the informa-
tion up to time t is

Gt = FY
ti

for t ∈ [ti, ti+1),

with {ti; i ≥ 0} being a fixed increasing sequence of
times, see Remark 1. This situation arises when we can
observe the trajectory of Y |s≤t only at the times t = ti.
The delayed time transformation being continuous, this
corresponds to observing the trajectory of Ŷ |s≤r only

at the times r = a(ti), i.e., Gt = FY
ti

= F Ŷ
a(ti)

, for
t ∈ [ti, ti+1). This kind of filtration is considered in
(Schweizer, 1994) as an example of delayed information
for a financial model.

Section 3 treats the filtering problem with delayed
observations when the time transformation a(·) is a step
function, i.e., a(t) = a(ti) for t ∈ [ti, ti+1), for an in-
creasing sequence of times ti < ti+1. In this case the
situation is completely different: whenever (4) holds, the
observation process is a (random) step function, the in-
formation available during the interval of time [ti, ti+1) is
FY

[ti,ti+1)
= σ(Yti ), and therefore

FY
t = σ(Yti = Ŷa(ti), i : ti ≤ t),

which is clearly strictly contained in F Ŷ
a(t). Under suitable

regularity assumptions on the semigroup associated with(
X, Ŷ

)
, the problem can be reduced to a combination of

a discrete time filter with the evolution of the associated
semigroup (Theorem 3).

In Appendix we first recall the method initiated in
(Clark, 1978; Davis, 1982) to obtain the robust Zakai
equation for partially observed diffusion systems with un-
correlated noise. Then we derive the robust Zakai equa-
tion for the cubic sensor problem with correlated noise
by applying the results established in (Florchinger, 1993).
To our knowledge, the latter is the only paper in the lit-
erature dealing with the robust Zakai equation for par-
tially observed diffusion systems with correlated noises.
Note that, in the latter case, robust filters (i.e., feasible
filters continuous with respect to the trajectory of the ob-
servation process) have also been studied in (Elliott and
Kohlmann, 1981).

2. Continuous delayed time transformation

In this section we consider continuous time transforma-
tions. The first result of this section (Lemma 1) plays a
key role in our analysis since it implies (5). After giving
the definition of the feasible filter we state our main results
in Theorems 1 and 2.

Lemma 1. Assume that the function a(·) is a continu-
ous delayed time transformation, and let Y and Ŷ be two
processes such that Yt = Ŷa(t), for all t ≥ 0. Then

Ya−1(s) = Ŷs, s ≥ 0, (6)

where
a−1(s) = inf{u : a(u) ≥ s} (7)

is the generalized inverse of a(·).

Note that in the above result we do not assume that Ŷ
is the observation process of a partially observed system.
For brevity, in the following, (6) will be written as (Y ◦
A−1)s := Ya−1(s), s ≥ 0, or

Ŷ = Y ◦ A−1. (8)

Proof. The proof of (6) is immediate by observing that
Ya−1(s) = Ŷa(a−1(s)) = Ŷs, since a(a−1(s)) = s, a(·) is
a nondecreasing continuous function.

The continuity property is crucial, since, together
with the fact that a is nondecreasing, with 0 ≤ a(t) ≤ t,
it implies that a(0) = 0 and Im(a|[0,T ]) = [a(0), a(T )] =
[0, a(T )]. Moreover, by the definition (7) of a−1(s), there
exists a sequence un such that a(un) ≥ s and un con-
verge monotonically from above to a−1(s). By right con-
tinuity, also a(un) converge monotonically from above to
a(a−1(s)) (moreover, a is nondecreasing) and, therefore,
a(a−1(s)) ≥ s. Seeking a contradiction, suppose that
a(a−1(s)) > s. Then for every s0 ∈ (s, a(a−1(s))) there
may not exist a t0 such that a(t0) = s0 > s since, oth-
erwise, for n sufficiently large, un ≤ t0 and therefore
a(un) ≤ a(t0) = s0. Then Im(a|[0,T ]) does not contain
(s, a(a−1(s))), which contradicts the continuity condition
on the function a(·). �

An important feature in nonlinear filtering is to ob-
tain a feasible filter: for the system (X, Ŷ ) we mean
that there exists a functional Ûs for which Ûs(ψ|y) =
Ûs(ψ|y(· ∧ s)) a.s. with respect to the law of Ŷ , and such
that the conditional law π̂s of Xs given F Ŷ

s may be ex-
pressed as

π̂s(ψ) = E
[
ψ(Xs)/F Ŷ

s

]
= Ûs(ψ|Ŷ·∧s). (9)

In the following, we refer to the above situation by
saying that the system (X, Ŷ ) admits a feasible filter.
Furthermore, we identify the functional Ûs with its un-
derlying measure. For the diffusion case this problem,
initiated in (Clark, 1978; Davis, 1982) when considering
feasible filters continuous with respect to the trajectory of
the observation process (i.e., robust filters), has been stud-
ied by many authors in various frameworks. When deal-
ing with counting observations this problem was studied
in (Brémaud, 1981) for the doubly stochastic case, and in
(Kliemann et al., 1990) for more general systems.
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Theorem 1. Suppose that the state process X is a
Markov process with generator A, and that the observa-
tion process Y satisfies Yt = Ŷa(t), where Ŷ is adapted to
the filtration FX

t ∨H, with H a σ-algebra independent of
FX

∞, and where the function a(·) is a continuous delayed
time transformation. Then

πt(ϕ) = E
[
exp{A(t− a(t))}ϕ(Xa(t))/F Ŷ

a(t)

]
. (10)

Furthermore, if the system (X, Ŷ ) admits a feasible filter,
then

πt(ϕ) = Ûa(t)

(
exp{A(t− a(t))}ϕ | (Y ◦ A−1)·∧a(t)

)
.

(11)

Proof. The continuity of the function a(·) implies (5) and
therefore

πt(ϕ) = E
[
ϕ(Xt)/F Ŷ

a(t)

]

= E
[
E
[
ϕ(Xt)/FX

a(t) ∨H]/F Ŷ
a(t)

]
,

which coincides with E
[
E
[
ϕ(Xt)/FX

a(t)

]
/F Ŷ

a(t)

]
by the

independence property of H, and then the assertion (10)
follows. Since, according to (9), the filter is feasible, the
assertion (11) follows immediately by Lemma 1. �

Note that in Theorem 1, (11) is more interesting than
(10) since it expresses the filter in terms of the observed
trajectory Y , instead of the underlying process Ŷ .

Before giving some examples of applications of the
previous result, we consider the case when (X, Ŷ ) is a
Markov system.

Theorem 2. Assume that (X, Ŷ ) is a Markov process
with generator L, and that the observation process Y sat-
isfies Yt = Ŷa(t), where the function a(·) is a continuous
delayed time transformation. Then

πt(ϕ) = E
[(

exp{L(t− a(t))}φ)(Xa(t), Ŷa(t))/F Ŷ
a(t)

]
,

where φ(x, y) = ϕ(x). Moreover, if (X, Ŷ ) admits a
feasible filter, then

πt(ϕ)

= Ûa(t)

(
(exp{L(t− a(t))}φ)(·, Yt) | (Y ◦ A−1)·∧a(t)

)
.

(12)

Proof. The proof is similar to that of Theorem 1. Indeed,
since a(·) is continuous,

πt(ϕ) = E
[
ϕ(Xt)/F Ŷ

a(t)

]

and, furthermore, for any r ≤ t,

E
[
ϕ(Xt)/F Ŷ

r

]
= E

[
E
[
ϕ(Xt)/FX,Ŷ

r

]
/F Ŷ

r

]

= E
[(

exp{L(t− r)}φ)(Xr, Ŷr)/F Ŷ
r

]
,

(13)

which, for r = a(t), gives the desired result. �

As a first example, consider X being a Markov dif-
fusion, i.e., X = ξ, where ξ is given by (2) with the co-
efficients depending only on the first variable, σ̃ = 0, and
Y = Ŷ ◦ A, with

Ŷt =
∫ t

0

h(Xs) ds+ Ŵt, (14)

where Ŵ = (Ŵt)t≥0 is a Wiener process, independent of
X . In this case the infinitesimal generator is given by

Aϕ(x) = b(x) · ∇ϕ(x) +
1
2
tr{∇2ϕ(x)σ(x)σ∗(x)}.

This example, already considered in (Calzolari et al.,
2003), satisfies the first conditions of Theorem 1 with
H = FŴ∞ . By using the techniques initiated by Clark
and Davis, one can easily prove that the filter is robust,
see also (25) in Appendix.

When the state is a one-dimensional geometric
Brownian motion, i.e., when b(x) = bx and σ(x) = σx,
and, furthermore, the function h is linear, the filter of
ϕ(Xt) can be computed explicitly. Indeed, Ûs(·|Ŷ·∧s) is
the Kalman filter of the system (X, Ŷ ), i.e., a Gaussian
measure with mean m(s, y) depending linearly on y =
Ŷ (s), and a deterministic variance, computable via a Ric-
cati equation, see, e.g., (Liptser and Shiryaev, 1977). This
Kalman filter, evaluated at s = a(t) and y = Ŷ (a(t)) =
Y (t), and applied to the function

x �→
∫

R

ϕ(x′)p(t− a(t);x, x′) dx′,

where

p(s;x, x′)

=
1

x′
√

2πsσ2
exp

{

−
(
log(x′) − log(x) − bs

)2

2sσ2

}

,

leads to the filter of the system (X,Y ).
If, instead of (14), one considers

Ŷt =
∫ t

0

H
(
Xs,

∫ s

0

α(Xu) du+ Vs

)
ds+ Ŵt,

where V and Ŵ are two independent Wiener processes,
both independent of X , then the first conditions of The-
orem 1 are satisfied with H = FV,Ŵ∞ . It is interesting
to note that Theorem 2 cannot be applied directly in this
framework since (X, Ŷ ) is not a Markov process. Nev-
ertheless, it can be applied if we introduce the auxiliary
process

Zt =
∫ t

0

α(Xu) du+ Vt

and consider the filter of the Markov diffusion process
(X,Z) given Ŷ . Using the techniques initiated by Clark
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and Davis, this filter can be characterized by a functional,
from which the functional Ûs in (9) can be easily obtained
by projection, and therefore all the results of Theorem 1
hold.

The next example concerns the cubic sensor with cor-
related noises and delayed observation, i.e., the case when
(X, Ŷ ) = (ξ,η), where

ξt = ξ0 + σ βt + σ̃ ωt, (15)

ηt =
∫ t

0

ξ3s ds+ ωt, (16)

with σ > 0 and σ̃ ≥ 0. For σ̃ = 0, the above filtering
problem was studied in (Sussmann, 1981). When σ̃ �= 0,
this system does not satisfies the hypotheses of Theorem
1, since, though the state process is Markovian, the noises
are correlated. Nevertheless all the hypotheses of The-
orem 2 are satisfied, since the system is Markovian and
admits a robust filter: Let pξ

0 be the density of ξ0. Then
the functional Ût is given by

Ût(dx|y) ∝ eH(yt,x−σ̃yt) q̂t(x− σ̃yt|y, pξ
0) dx, (17)

where H(t, x) =
(
(x + σ̃ t)4 − x4

)
/4 σ̃, and q̂t(x|y, pξ

0)
solves the following robust Zakai equation established in
Appendix:

qt(x)

= pξ
0(x) +

∫ t

0

e−H(ys,x)

2

[

σ2 d2

dx2
+ 2 σ̃(x+ σ̃ys)3

d
dx

+
(
3 σ̃(x+ σ̃ys)2 − (x + σ̃ys)6

)
]
(
eH(ys,x)qs(x)

)
ds.

(18)

Finally, we point out that Theorem 2 can also be ap-
plied to the jump-diffusion model with counting observa-
tions considered in (Kliemann et al., 1990). In the latter
paper, the authors demonstrated that, under suitable con-
ditions, these systems admit a feasible filter which can be
represented by means of a recursive algorithm. In general,
the feasible filter cannot be computed explicitly and an ap-
proximation may be necessary. This approximation prob-
lem was studied in (Calzolari et al., 2006) for the jump
case, i.e., when (X, Ŷ ) is a Markov process with genera-
tor L of the form

Lφ(x, y)

= λ0(x, y)
∫ (

φ(x′, y) − φ(x, y)
)
μ0(x, y; dx′)

+ λ1(x, y)
∫ (

φ(x′, y + 1) − φ(x, y)
)
μ1(x, y; dx′),

(19)

where λi are measurable functions and μi are probability
kernels for i = 0, 1.

Remark 1. When the information “arrives by packets”,
in the sense explained in Introduction, that is, when the
information up to time t is Gt = F Ŷ

a(ti)
for t ∈ [ti, ti+1),

assuming we are in the setting of Theorem 2 we obtain
that the filter is given by

E[ϕ(Xt)/Gt]

= Ûa(ti)

(
exp{L(t− a(ti))}φ|(Y ◦ A−1)·∧a(ti)

)
(20)

for t ∈ [ti, ti+1), with φ(x, y) = ϕ(x). Note that in (20),
for t ∈ [ti, ti+1), one uses the trajectory of Y up to
time ti.

As recalled in Introduction, Schweizer considered an
example of delayed information for a financial model by
taking a similar filtration. More precisely, in (Schweizer,
1994), the state X is a Markov diffusion with generator
A, the information available at time t is Gt = F Ŷ

ã(t) where
ã(·) is a delayed time transformation. In this case it corre-
sponds to ã(t) = a(ti) for t ∈ [ti, ti+1).

3. Piecewise constant delayed time
transformations

As explained in Section 2 (see Lemma 1), the continuity
assumption on the function a(·) is crucial, since FY

t =
F Ŷ

a(t). The situation is completely different when the time
transformation a(·) is a step function, i.e., a(t) = a(ti) for
t ∈ [ti, ti+1), for a strictly increasing sequence of times
ti, with t0 = 0. When dealing with this problem in the
setting of Theorem 2, except for the continuity assumption
on a(·), which is substituted by a step-wise assumption,
for any measurable bounded function ϕ we get that, when
tk ≤ t < tk+1, the filter πt(ϕ) coincides with

E
[
exp{L(t− a(tk))}

φ(Xa(tk), Ŷa(tk))/σ(Ŷa(ti), i ≤ k)
]
,

where φ(x, y) = ϕ(x). Indeed, FY
t = σ(Ŷa(ti), i ≤ k),

and, since FY
t ⊂ F Ŷ

a(t), by (13) and the chain rule for
conditional expectations, we have

πt(ϕ) = E
[
exp{L(t− a(t))}φ(Xa(t), Ŷa(t))/FY

t

]
.

As a consequence, when tk ≤ t < tk+1, we can
rewrite the filter πt(ϕ) as

π̌a(tk)(exp{L(t− a(tk))}φ(·, Ŷa(tk)))

= π̌sk

(
exp{L(t− sk)}φ(·, Ŷsk

)
)
, (21)

where sk = a(tk) and π̌sk
denotes the discrete time filter

for the system {(Xsk
, Ŷsk

); k ≥ 0}.
To compute the above quantities, one could use the

results established in (Joannides and Le Gland, 1995),
with a slight modification. However, our case is much
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simpler than the one considered by Joannides and Le
Gland, and a representation of the filter can be obtained
directly.

Theorem 3. Assume that (X, Ŷ ) is a Markov process
with generator L and that the observation process Y sat-
isfies

Yt = Ŷa(t),

where the delayed time transformation a(t) is a step func-
tion. Assume further that the semigroup exp{Lt} of the
Markov process (X, Ŷ ) has the property that whenever
the initial distribution of (X0, Ŷ0) is

μ(dx, dy) = p(x) dx δŷ(dy),

the distribution of (Xu, Ŷu) at time u has a joint density
p̂u given by

p̂u(x, y|p, ŷ) dxdy =
(
exp{L∗u}μ)(dx, dy),

where L∗ is the adjoint of L.
Assume finally that the distribution of X0 is

pX
0 (x)dx, Ŷ0 = y0, and denote

p0(x) = pX
0 (x),

pk+1(x) =
p̂a(tk+1)−a(tk)(x, Ytk+1 |pk, Ytk

)
∫
p̂a(tk+1)−a(tk)(ξ, Ytk+1 |pk, Ytk

)dξ
, k ≥ 0.

Then, for any t, the filter πt is given by π0(dx) =
pX
0 (x)dx, and, for tk ≤ t < tk+1, k ≥ 0,

πt(dx) = p̂X
t−a(tk)(x|pk, Ytk

)dx,

where

p̂X
u (x|p, ŷ) :=

∫
p̂u(x, y|p, ŷ) dy.

Proof. Taking (21) into account, we get

πt(·) =
∫ (

exp{L∗
(t − sk)}μk

)
(·, dy), (22)

with
μk(dx, dy) = π̌sk

(dx)δŶsk
(dy),

and, as a consequence, we only need to compute the dis-
crete time filter

π̌sk
(dx) = P

[
Xsk

∈ dx/σ(Ŷsi , i ≤ k)
]
.

To this end, we evaluate the quantities

P
[
(Xu, Ŷu) ∈ (dx, dy)/σ(Ŷsi , i : si ≤ u)

]

by the following procedure:

For 0 < u < s1, since X0 has a density p0,

P
[
(Xu, Ŷu) ∈ (dx, dy)/σ(Ŷsi , i : si ≤ u)

]

= P
[
(Xu, Ŷu) ∈ (dx, dy)

]

= p̂u(x, y|p0, y0)dxdy,

and for u = s1,

P
[
Xs1 ∈ dx/σ(Ŷs1 )

]

= P
[
Xs1 ∈ dx

/
Ŷs1 ]

=
p̂s1(x, Ŷs1 |p0, y0)∫
p̂s1(ξ, Ŷs1 |p0, y0)dξ

dx =: p1(x)dx.

Then, for s1 < u < s2,

P
[
(Xu, Ŷu) ∈ (dx, dy)/σ(Ŷsi , i : si ≤ u)

]

= P
[
(Xu, Ŷu) ∈ (dx, dy)/σ(Ŷs1 )

]

= p̂u−s1(x, y|p1, Ŷs1)dxdy,

and for u = s2,

P
[
Xs2 ∈ dx/σ(Ŷsi , i ≤ 2)

]

= P
[
Xs2 ∈ dx

/
Ŷs2 , Ŷs1 ]

=
p̂s2−s1(x, Ŷs2 |p1, Ŷs1)∫
p̂s2−s1(ξ, Ŷs2 |p1, Ŷs1)dξ

dx =: p2(x)dx.

Therefore, all the quantities we need can be easily
computed by iterating these steps.

Recalling (22) and the fact that

p̂u(x, y|p, ŷ)dx dy =
(
exp{L∗u}μ)(dx, dy)

for μ(dx, dy) = p(x)dx δŷ(dy), we get the desired result.
�

Note that, for t ∈ [tk, tk+1), the filter πt, as given in
the theorem, depends explicitly on Ytk

, but also indirectly
on Yt1 , · · · , Ytk

, through the density pk.
It is also interesting to note that if X is a Markov

process with generator A, with the property that when-
ever the initial distribution of X0 has a density, then the
distribution of Xu at time u has a density, we have

p̂X
u (x|p, ŷ) =

∫
p̂u(x, y|p, ŷ)dy

=
(
exp{A∗u}μX

)
(dx),

with μX(dx) = p(x)dx, and therefore the computation
of the filter becomes much easier, and, furthermore, for
t ∈ [tk, tk+1), the explicit dependence on Ytk

of the filter
πt disappears.
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Appendix

The purpose of this section is to determine the robust filter
for the cubic sensor model with correlated noise. With this
aim, we first recall how to compute the robust filter when
dealing with the classical model of a partially observed
diffusive system (ξ,η) given by (2) and (3). In this case,
the generator L is

Lf(x, y) = (b(x, y), h(x)) · ∇f(x, y)

+
1
2
tr{∇2f(x, y)Σ(x, y)Σ∗(x, y)},
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where

Σ(x, y) =

(
σ(x, y) σ̃(x, y)

0 Id

)

.

Assuming that all the coefficients are bounded, one
can prove, see, e.g., (Pardoux, 1991), that the filter πξ

t (ϕ)
= E

[
ϕ(ξt)/Fη

t

]
can be obtained via the Kallianpur-

Striebel formula

πξ
t (ϕ) =

ρξ
t (ϕ)

ρξ
t (1)

,

where 1(x) = 1, and ρξ
t is the so-called unnormal-

ized filter. The latter solves the linear stochastic partial
differential equation known as the Zakai equation, see
(Zakai, 1969),

ρξ
t (ϕ) = μξ

0(ϕ) +
∫ t

0

ρξ
s(Aηsϕ) ds+

∫ t

0

ρξ
s(Ληsϕ) dηs,

where μξ
0 is the distribution of ξ0, Ayϕ(x) = Lφ(x, y),

φ(x, y) = ϕ(x), i.e., Ay is the second order differential
operator defined by

Ayϕ(x) = b(x, y) · ∇ϕ(x)

+
1
2
tr{∇2ϕ(x)σ(x, y)σ∗(x, y)}

+
1
2
tr{∇2ϕ(x)σ̃(x, y)σ̃∗(x, y)} (23)

and Λy is the first order differential operator defined by

Λyϕ(x) = h(x)ϕ(x) + σ̃(x, y)∇ϕ(x). (24)

Remark 2. When ξ is a Markov diffusion, the above Za-
kai equation can also be obtained, under some additional
hypotheses, when h is unbounded by means of the same
arguments when σ̃ = 0, see (Baras, Blankenship, and
Hopkins, 1983; Hopkins, 1982), and by different tech-
niques when σ̃ does not depend on y and η is a one-
dimensional process, see (Florchinger, 1993).

Furthermore, note that, under suitable hypotheses, a
Zakai equation can be obtained when the state process ξ is
a general Markov process (not necessarily given by (2)),
and the observation process η is a diffusion process given
by (3), with ω independent of ξ, see, e.g., (Bhatt, Kallian-
pur and Karandikar, 1995).

If the density pξ
t of the unnormalized filter ρξ

t exists
and is regular enough, one can easily deduce from the
above Zakai equation that it solves the following linear
stochastic partial differential equation:

pξ
t = pξ

0 +
∫ t

0

A∗
ηs
pξ

s ds+
∫ t

0

Λ∗
ηs
pξ

s dηs,

pξ
0 being the density of ξ0.

Starting from the above equation, one can get the ro-
bust Zakai equation. First, assume that σ̃ = 0 and set

qξ
t (x) = pξ

t (x)e
−h(x)ηt .

Then, qξ
t solves the robust Zakai equation, see (Clark,

1978; Davis, 1982), i.e., the deterministic equation with
random coefficients

qξ
t (x) = pξ

0(x) +
∫ t

0

[
e−h(x)ηs A∗

ηs

(
qξ
s(·) eh(·)ηs

)
(x)

−1
2
h2(x)qξ

s(x)
]

ds. (25)

Now, assume that no coefficients depend on y and
that η is a one-dimensional process. In this corre-
lated case, the robust Zakai equation was obtained in
(Florchinger, 1993) as follows.

Let Φt be the flow associated with the function σ̃,
i.e., the unique solution of Φt(x) = x +

∫ t

0
σ̃(Φs(x)) ds,

and H be the function defined on R × R
k by

H(t, x) =
∫ t

0

h(Φs(x)) ds.

Then, by setting

qξ
t (x) = pξ

t (Φηt(x)) |JΦηt(x)| e−H(ηt,x),

where Jψ denotes the Jacobian of a regular function ψ,
one gets, by applying the generalization of the Itô formula
proved by Kunita, see Theorem 8.1 in (Kunita, 1984), the
following robust Zakai equation:

qξ
t (x) = pξ

0(x) +
∫ t

0

e−H(ηs,x) |JΦηs(x)|

· Ch
(
|JΦηs(·)|−1

eH(ηs,·) qξ
s(·)
)

(x) ds,

where Ch is a second order differential operator, which,
when also the signal process is one-dimensional, is given
by

Chψ(x) = A∗ψ(x) +
1
2

[
h̃′(x) σ̃(x) − h̃2(x)

]
ψ(x)

+
[
h̃(x)σ̃(x) − 1

2
σ̃′(x)σ̃(x)

]
ψ′(x)

− 1
2
σ̃2(x)ψ′′(x),

with h̃(x) = h(x) − σ̃′(x).
We now explain how to get the functional Ût for

the model considered. For any continuous (determinis-
tic) function y and for any probability density p̂0 denote
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by q̂t(x|y; p̂0) the solution of

qt(x) = p̂0(x) +
∫ t

0

e−H(ys,x) |JΦys(x)|

· Ch
(
|JΦys(·)|−1

eH(ys,·)qs(·)
)

(x) ds,
(26)

ρ̂t(dx|y; p̂0)

:= q̂t(Φ−1
yt

(x)|y; p̂0) |JΦyt(·)|−1
eH(yt,·) dx,

(27)

and

Ût(ϕ|y) :=
ρ̂t(ϕ|y; p̂0)
ρ̂t(1|y; p̂0)

. (28)

Note that q̂t, ρ̂t, and Ût depend on the trajectory y
restricted to the interval [0, t]. Then, with the above nota-
tions,

ρξ
t (dx) = pξ

t (x)dx = ρ̂t(dx|η; pξ
0)

= q̂t(Φ−1
ηt

(x)|η; pξ
0) |JΦηt(·)|−1

eH(ηt,·) dx,

and, consequently,

πξ
t (ϕ) = Ût(ϕ|η) =

ρ̂t(ϕ|η; pξ
0)

ρ̂t(1|η; pξ
0)
.

We end by observing that when σ̃ = 0, we have
Φt(x) = x so that ρ̂t(dx|y; p̂0) = q̂t(x|y; p̂0) eh(x)ytdx,
and the equation for q̂t(x|y; p̂0) reduces to the Zakai equa-
tion (25) in this setting.

Remark 3. When the observation coefficient h is un-
bounded and the noises are correlated, the filter can be
characterized as the solution of the above robust Zakai
equation by using the results in (Cannarsa and Vespri,
1985; Florchinger, 1993).

The cubic sensor model with correlated noises con-
sidered in (15) and (16) falls in the models discussed in
the above remarks (the growth restriction on h stated in
(Florchinger, 1993) is satisfied in the polynomial case).
For this system, one gets

Φt(x) = x+ σ̃ t

and

H(t, x) =
1

4 σ̃
(
(x+ σ̃ t)4 − x4

)
,

and therefore

qξ
t (x) = pξ

t (x+ σ̃ ηt) e−H(ηt,x)

satisfy the following robust Zakai equation:

qξ
t (x) = pξ

0(x)

+
∫ t

0

e−H(ηs,x)

2

[
σ2 d2

dx2
+ 2 σ̃Φ3

ηs
(x)

d
dx

+
(
3 σ̃Φ2

ηs
(x) − Φ6

ηs
(x)
)](

eH(ηs,x)qξ
s(x)

)
ds.

In this example, (26) reduces to (18), and then by (28) one
gets the functional Ût in (17).

Antonella Calzolari is an associate profes-
sor of probability and mathematical statistics
at the Department of Mathematics, University
of Rome “Tor Vergata” (since 2004). Her sci-
entific interests include probability, stochastic
differential equations, stochastic modelling and
simulation. The recent research areas cover
stochastic nonlinear filtering and its application
in mathematical finance (identification of the
filter, convergence of approximation schemes

and explicit error bounds).

Patrick Florchinger was born in Metz,
France. He received his Ph.D. degree from Uni-
versité de Metz in 1989 and his Habilitation
à diriger les recherches in 1993. He is cur-
rently a professor at the Department of Math-
ematics, Université Paul Verlaine-Metz. His re-
search interests include nonlinear filtering the-
ory, stochastic control and stochastic analysis.
In particular, he has studied nonlinear filtering
with unbounded observation coefficients, and

stochastic stability and stabilization.

Giovanna Nappo is an associate professor
of probability and mathematical statistics at
the Department of Mathematics, University of
Rome “La Sapienza” (since 1992). Her scien-
tific interests include approximation problems
in different fields: nonlinear filtering, stochas-
tic control, non-parametric Bayesian statistics,
point processes, interacting particle systems,
Markov processes. Other interests concern
point processes, stochastic delay differential

equations, risk modelling. Lately the research has focused on some
mathematical aspects of financial applications.

Received: 1 March 2008
Revised: 13 June 2008




	Introduction
	Continuous delayed time transformation
	Piecewise constant delayed time transformations


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


