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This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in
the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and
actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems
makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The pro-
posed control scheme is based on the Almost Strictly Positive Realness (ASPR) property of the plant. We show that this
condition implies also robust stability in the case of fractional order controllers. An application to Model Reference Adap-
tive Control (MRAC) with a fractional order adaptation rule is provided with an implementable algorithm. A simulation
example of a SISO robust adaptive control system illustrates the advantages of the proposed method in the presence of
disturbances and noise.
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1. Introduction

Adaptive control has proven to be a good control solu-
tion for partially unknown systems or systems with slowly
varying parameters. In this domain, Model Reference
Adaptive Control (MRAC) has become very popular since
it presents a very simple algorithm with easy implementa-
tion and does not require identifiers or observers in the
control loop (Åström and Wittenmark, 1995; Landau,
1979). However, such an algorithm shows its limits in
noisy or disturbed environments, which may make it in-
efficient or uncompetitive. Unfortunately, very few indus-
trial control processes are not subject to these practical
problems, which can damage the quality of product and
good process operation.

The use of simple parallel feedforward in the adap-
tation loop has appeared as a robust solution since

the 1980s. Many works have used this approach to-
wards robust control systems (Bar-Kana, 1987; Naceri
and Abida, 2003)

In the last decade great attention has been paid to
fractional order systems, which have shown good robust-
ness performances. Several robust control methods based
on these systems were developed, e.g., CRONE control
(Oustaloup et al., 1998; Sabatier et al., 2002) and frac-
tional adaptive control (Vinagre et al., 2002; Ladaci and
Charef, 2006; Ladaci et al., 2008).

In this paper we present a fractional robust adaptive
control solution for disturbed applications, based on the
idea of Bar-Kana (Bar-Kana, 1987), which uses the ba-
sic stabilizability property of the plant and simple parallel
feedforward in order to satisfy the desired “almost posi-
tive realness” condition that can guarantee robust stability
of the nonlinear adaptive controller.
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The main contribution of this work is the improve-
ment of feedforward approach robust performances by us-
ing fractional order filters. In the proposed adaptive con-
trol scheme, the process transfer function is augmented
by an additional, appropriately designed, fractional order
transfer function connected in parallel. The control of
the augmented process is achieved in the fractional order
MRAC structure (Ladaci and Charef, 2006). This result is
illustrated by a simulation example of a test in bad realistic
conditions such as the finite bandwidth of actuators, input
and output disturbances and no assumed natural damping.

This paper is structured as follows: In Section 2, def-
initions of fractional order systems are presented. Sec-
tion 3 introduces the principles of robust adaptive control
based on the concept of a ‘positive realness’ condition,
and then the main result in the fractional order case is pre-
sented in Section 4. The implementation in a model refer-
ence adaptive control scheme is introduced in Section 5,
and a simulation example is given in Section 6. The paper
is concluded in Section 7.

2. Fractional order systems

The Bode plot analysis of many natural processes, e.g.,
transmission lines, dielectric polarisation impedance, in-
terfaces, cardiac rhythm, spectral density of physical
wave, some types of noise (Brin, 1962; Podlubny, 1999a;
Miller and Ross, 1993), often reveals a fractional slope.
This type of process is known as a fractional order sys-
tem. During the last decade, close attention has been
paid by researchers to the study of these systems (Sun
and Charef, 1990) and their application in control systems
(Oustaloup et al., 1998; Charef, 2006; Ladaci and Charef,
2006; Ladaci et al., 2008; Ladaci and Moulay, 2008). A
SISO fractional order system can be represented by the
following transfer function:

X(s) =
bmsβm + bm−1s

βm−1 + · · · + b0s
β0

ansαn + an−1sαn−1 + · · · + a0sα0
, (1)

where αi and βj are real numbers such that{
0 ≤ α0 < α1 < · · · < αn,

0 ≤ β0 < β1 < · · · < βm,

and s is the Laplace operator.
For the purpose of this work, let us introduce the fol-

lowing definitions:

Definition 1. The fractional order transfer function X(s)
given in (1) is called proper if βm ≤ αn. It is called stricly
proper if βm < αn.

Definition 2. (Desoer and Vidyasagar, 1975) The frac-
tional order transfer function Matrix MX(s) whose ele-
ments are of the form (1) is proper (respectively strictly

proper) if and only if all elements of MX(s) are bounded
at ∞ (resp. tend to zero at ∞).

In the sequel we use the description of a single pole
fractional order process in frequency domain given by the
following equation:

Y (s) =
1

(s + pT )α
, (2)

where α is the fractional exponent (0 ≤ α ≤ 1) and pT is
the fractional pole which is the cut frequency.

Many previous works indicated that fractional sys-
tems present the best qualities regarding response time
and transition dynamic stability (Sun and Charef, 1990).
The whole control theory developed by Oustaloup, espe-
cially on CRONE control, was based on the robustness of
fractional order systems in the presence of uncertainties
and perturbations (Oustaloup, 1991).

3. Concept of the positive realness condition

Robustness is defined relative to a certain property and a
set of models. A property (generally, stability or the per-
formance level) is said to be robust if all the models be-
longing to the set satisfy it. Robust adaptive stabilization
means that all values involved in the adaptation process,
namely, states, gains and errors, are bounded in the pres-
ence of any bounded input commands and input or output
disturbances (Bar-Kana and Kaufman, 1985; Kwan et al.,
2001).

In this paper we are interested in a particular config-
uration of feedforward controllers combined with MRAC
control and fractional order systems yielding a fractional
robust adaptive control method. The use of simple feed-
forward in the adaptation loop (see Fig. 4) improves the
robust stability of the control system. This approach is
based on the concept of the “positive realness” condition,
which plays an important role in the stability analysis of
a large class of nonlinear systems, including also adaptive
systems.

The definition of PR and SPR transfer functions is
derived from network theory. That is, a PR (resp. SPR) ra-
tional transfer function can be realized as the driving point
impedance of a passive (resp. dissipative) network. Con-
versely, a passive (resp. dissipative) network has a driving
point impedance that is rational and PR (resp. SPR). A
passive network is the one that does not generate energy,
i.e., a network consisting only of resistors, capacitors and
inductors. A dissipative network dissipates energy, which
implies that it is made up of resistors as well as capacitors
and inductors that are connected in parallel with resistors
(Ioannou and Sun, 1996).

Definition 3. A system S with a transfer function matrix
Gs(s) is passive and stable if and only if G(s) is positive-
real (PR) (Anderson and Vongpanitlerd, 1973).
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Definition 4. An m × m transfer function matrix Gs(s)
is called strictly positive real (SPR) if (Landau, 1979):

1. All elements of Gs(s) are analytic in �(s) ≥ 0.

2. Gs(s) is real for real s.

3. Gs(s) + GT∗
s (s) > 0 for �(s) ≥ 0 and finite s.

An equivalent definition is as follows:

Definition 5. A transfer function matrix Gs(s) is strictly
positive real (SPR) if and only if (Anderson and Vongpan-
itlerd, 1973):

1. Gs(s) is a strictly stable transfer function matrix.

2. � [Gs(s)] > 0 along the jω axis.

We also show that for a fractional order transfer func-
tion matrix Gs(s),

Gs(s) is SPR ⇔ G−1
s (s) is SPR. (3)

This is a generalization of the result obtained in (Shaked,
1977) for an integer order transfer function matrix.

Indeed, by using the SPR property, if we write (Bar-
Kana, 1989) (using A, B instead of A(s), B(s) for sim-
plificity),

Gs(s) = A + jB ⇒ GT∗
s (s) = AT − jBT .

Since, by Definition 4,

Gs(s) + GT∗
s (s) = A + AT + j(B − BT ) > 0,

we get B = BT and A > 0 (not necessarily symmetric).
Then, whenever

� [Gs(s)] = A > 0,

we get

G−1
s (s) = (A + BA−1BT )−1

− jA−1B(A + BA−1BT )−1

and

� [
G−1

s (s)
]

= (A + BA−1BT )−1 > 0. (4)

Now, recall the following proposition (Shaked, 1977):

Proposition 1. The finite zeros of any passive system S
lie in the closed left half of the complex plane.

From this and Definition 3, since Gs(s) is SPR, we deduce
that G−1

s is strictly stable. This fact combined with (4) and
Definition 5 proves (3).

Definition 6. (Bar-Kana, 1987) Let Ga(s) be an m × m
transfer matrix. Assume that there exists a positive def-
inite constant gain matrix, K̃e, such that the closed-loop
transfer function

Gc(s) =
[
I + Ga(s)K̃e

]−1

Ga(s) (5)

is SPR. Ga(s) is called almost strictly positive real
(ASPR).

All the above algebraic manipulations, as was done
to obtain (3) and Definitions 4 and 6, apply to fractional
systems as well. Below we generalize the result of (Bar-
Kana, 1989) to the fractional order case.

Lemma 1. Let a fractional order transfer function matrix
Ga(s) be ASPR and let K̃e be any gain that satisfies (5).
Then Gc(s) is SPR for any gain Ke that satisfies Ke >
K̃e.

It is obvious that ASPR fractional order systems,
which are minimum phase proper systems, maintain sta-
bility with high gains. The high gain stability is impor-
tant when nonstationary or nonlinear (adaptive) control
is used, because the robustness of the control system is
maintained if, due to specific operational conditions, the
time-varying gains become too large.

Now, if we consider a fractional order proper or
strictly proper SPR transfer matrix Gs(s), then the fol-
lowing statements are equivalent:

Gs(s) = [I + Ga(s)Ke]
−1

Ga(s) is SPR, (6)

Gs(s) = [I + Ga(s)Ke]
−1 is SPR, (7)

G−1
s (s) = G−1

a (s) + Ke is SPR, (8)

� [
G−1

a (s) + Ke]�(s)≥0 > 0 (9)

G−1
s (s) is asymptotically stable and

Ke is sufficiently large.
(10)

Since there exists M such that � [
G−1

a (s)
]
�(s)≥0

> M >

−∞, any Ke > −M will yield (Bar-Kana, 1989)

Ga(s) is strictly minimum phase and

Ke is sufficiently large.
(11)

Remarks.

1. Any ASPR plant must also be proper.
2. The open loop is not necessarily stable (the plant

will actually be stabilized by the fictitious gain Ke).
However, all zeros must be placed in the left half
plane. The plant must be minimum phase to obtain
positivity.

3. We can easily show (Bar-Kana, 1987) that if a system
is ASPR, then it can be stabilized by any constant or
time variable output gain Ke, if it is large enough,
i.e., Ke > K̃e.
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But in this method, instead of using high gain regu-
lation, we will use a simple parallel feedforward configu-
ration which can by analogy satisfy the positive realness
conditions.

The idea of using feedforward in parallel with the
controlled plant is based on the following result:

Lemma 2. (Bar-Kana, 1989) Let the plant be described
by an m × m transfer function Gp(s) of order n. Let
C(s) be any dynamic stabilizing output feedback con-
troller. Then

Ga(s) = Gp(s) + C−1(s) (12)

is ASPR if C−1(s) is proper or strictly proper.

We can adapt the proof of (Bar-Kana, 1989; Bar-
Kana, 1986) to the fractional case.

4. Main result

At this stage we propose a fractional order feedforward
configuration of the form

F (s) =
Fp

(1 + s/s0)
α , (13)

with a real fractional power 0 < α < 1, to improve the
robustness of the adaptive algorithm in the presence of
perturbations, as such systems do not amplify much these
random signals. This configuration could be considered
as the inverse of an improper fractional PDμ controller,
which was used in control systems with good proven per-
formances (Podlubny, 1999b).

We can formulate the main result of this paper as the
following theorem.

G(s)K(1 + qsα)

u(s)

y(s)

GCL(s)

uc(s)

−+

Fig. 1. Closed-loop system.

Theorem 1. Let G(s) be any m × m strictly proper
transfer matrix of an arbitrary MacMillan degree. G(s) is
not necessarily stable or minimum phase. Let

Hf (s) = K(1 + qsα) (14)

be some stabilizing controller for G(s), represented in
Fig. 1. Then the augmented controlled plant

Gf
a(s) = G(s) + H−1

f (s) = G(s) +
K−1

1 + qsα
(15)

is ASPR.

G(s)

K−1

1+qsα
ys(s)

ya(s)

yp(s)

Ga(s)
Gs(s)

Ke

uc(s)
+

−

Fig. 2. Fictitious SPR configuration.

Proof. By Definition 6, if Ga(s) is ASPR, then the
closed-loop transfer function

Gc(s) =
[
I + Ga(s)K̃e

]−1

Ga(s)

is SPR for some positive definite constant gain matrix K̃e.
Since H−1

f (s) from (14) is strictly proper (the rela-
tive degree α > 0), Lemma 2 implies that the augmented
system Gf

a(s) as defined in (15) is ASPR, which proves
the theorem. �

The stabilizing controller Hf (s) can also be mod-
elled as follows:

Hf (s) = K(1 + qs)α. (16)

From Definition 6 and the fact that the transfer function
Gf

a(s) is ASPR, we know that it can be stabilized by a gain
K̃e. Figure 2 illustrates the feedforward configuration. In
addition, the stabilization is robust and holds for any gain
Ke > K̃e.

Many previous works (Podlubny, 1999b) proposed
PDμ improper controllers of the form (14):

C(s) = Kp + Kds
α, (17)

which can stabilize many realistic plants for sufficiently
high values of K .

The feedforward of the equivalent effect is chosen as
in (13):

F (s) = C−1(s) =
Fp

(1 + s/s0)
α

with s0 � ωn, where ωn is the nominal frequency of
the controlled process and Fp = K−1, such that the aug-
mented plant becomes

Ga(s) = Gp(s) + F (s). (18)

K should be very large, so that Fp represents small coef-
ficients, guaranteeing that Ga(s) is ASPR. During control
design we can take Ga(s) ≈ Gp(s) as a practical approx-
imation.
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5. Implementation in the MRAC scheme

Model Reference Adaptive Control (MRAC) is one of the
most popular approaches to adaptive control, in which the
desired performance is specified by the choice of a refer-
ence model. The adjustment of parameters is achieved by
means of the error between the output of the plant and the
model reference output. Let us introduce the basic ideas
of this approach, presented in Fig. 3.

ym

u y
uc

Adjustment

Mechanism

ProcessController

Reference

Model

Parameters of the Controller

Fig. 3. Direct model reference adaptive control.

We consider a closed loop system where the con-
troller has an adjustable parameter vector θ. A model
whose output is ym specifies the desired closed loop re-
sponse. Let e be the error between the closed loop system
output y and the model one ym. One possibility is to ad-
just the parameters such that the cost function

J(θ) =
1
2
e2 (19)

is minimised. In order to make J small, it is reasonable to
change parameters in the direction of the negative gradi-
ent J , i.e.,

dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
(20)

or
dθ

dt
= γϕe, (21)

where ϕ = −∂e/∂θ is the regression (or measure) vector
and γ is the adaptation gain. This aproach is called the
M.I.T. rule.

The introduction of simple feedforward in the MRAC
adaptation loop as represented in Fig. 4 improves the ro-
bust stability performance against the controller gain fluc-
tuations in the presence of perturbation and noise (Naceri
and Abida, 2003). Previous works (Sobel and Kaufman,
1986) showed that the ASPR property of a process allows
the implementation of very simple adaptive controllers
that guarantee robust stability of the closed loop in the
presence of bounded input or output disturbances.

The feedforward transfer function is chosen in much
the same way as in (13), where the gain Fp is a small
coefficient.

Furthermore, to improve the robustness of this im-
proved adaptive control scheme, we will use the fractional
order parameter adaptation law proposed in (Ladaci and
Charef, 2006) instead of (21), which is given by

dβθ

dtβ
= γϕe, (22)

where β is a real number such that 0 < β < 2.

ym

y
Controller Actuator Process

Adjustment

Mechanism

Reference

Model

uc

F

u +

+

Fig. 4. Simple feedforward in the MRAC scheme.

6. Simulation example

Without any loss of generality we will apply this robust
adaptive control method, both in the case of integer and
fractional order feedforward, to an SISO model of a DC
motor controlled for velocity, as given by (Zelmat, 2001),

Gp(s) =
2068.014706

s2 + 83.37811s + 2429.136291
, (23)

and an actuator model of the form

A(s) =
1.05

(1 + s/0.42)2
. (24)

The plant is subject to random input and output distur-
bances of amplitudes 2 and 0.05, respectively.

6.1. Integer order feedforward case. The classical
MRAC structure is used here (Åström and Wittenmark,
1995). The reference model Gm is given by

Gm(s) =
ω2

n

s2 + 2ξωns + ω2
n

, (25)

where ωn = 11 and ξ = 0.625.
The feedforward transfer fuction F is given by

F (s) =
0.001

s + 500
. (26)

With the standard adaptation rule (21) and a regulation pa-
rameter γ = 0.001, we obtain the results shown in Fig. 5.



74 S. Ladaci et al.

6.2. Fractional order feedforward case. In this case
we use the fractional order MRAC structure (Ladaci and
Charef, 2006) and the modified fractional order adaptive
law (22) given by

dβθ

dtβ
= γϕe,

where β = 0.55.
The fractional order reference model Gf is given by

Gf (s) =
(ω2

n)μ

(s2 + 2ξωns + ω2
n)μ , (27)

where ωn = 11, ξ = 0.625 and μ = 0.45.
In our approach we have to use an integer order

model approximation of the fractional order feedforward
model in order to implement the adaptation algorithm. To
this end, we have used the so-called singularity function
method (Charef, Sun, Tsao and Onaral, 1992).

The fractional transfer function (29) is approximated
with a tolerated approximation error of 2 dB, to a rational
transfer function Gfa(s) given by (28).

The fractional order feedforward transfer function
F is chosen with the same gain and time constant of (26).
The fractional order pole power is chosen arbitrarily here
for illustration (α = 0.6), giving a new design parameter.
We get

F (s) =
0.001

(s + 500)0.6
=

0.001
(500)0.6

1
(1 + s/500)0.6

. (29)

It is approximated using the singularity function method
with a tolerated approximation error of 2 dB, to a linear
second order transfer function Fa(s) given by

F (s) ≈ Fa(s) =
0.001

(500)0.6

1 + s/z0

(1 + s/p0)(1 + s/p1)
(30)

with

z0 = 2320.79,

p0 = 733.90,

p1 = 5000.

With a regulation parameter γ = 10−8, we obtain the
results of Fig. 6.

6.3. Remarks.

• The command signal u is smoother in the fractional
case, which is a very useful property in the regulation
problem.

• The proposed fractional order configuration of feed-
forward maintains stability and improves the level of
performances, which confirms the advantage of the
integrating fractional strategy in robust adaptive con-
trol.
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Fig. 5. Process output with integer feedforward: (a) process out-
put y(t), (b) control signal u(t), (c) error signal e(t).

• The regulation parameter is smaller in the case of
the fractional order adaptive control scheme (γ =
10−8) than in the integer order one (γ = 0.001),
which improves the stability situation of the adap-
tive control system (Ladaci and Charef, 2006; Vina-
gre et al., 2002).

• The introduction of the fractional order feedforward
transfer function gives new free design parameters (α
in (13), β in (22) and μ in (27)) to improve the control
system behaviour.



Robust fractional adaptive control based on the strictly positive realness condition 75

Gf (s) ≈ Gfa(s) =
0.0008264s2 + 0.1s + 1

1.472 10−9s4 + 4.534 10−5s3 + 0.009071s2 + 0.1526s + 1
. (28)
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Fig. 6. Process output with fractional feedforward: (a) process
output y(t), (b) control signal u(t), (c) error signal e(t).

7. Conclusion

In this paper we have presented a new robust adaptive
control strategy, by introducing a simple fractional feed-
forward configuration in the MRAC algorithm. The con-
cept of the positive realness condition which is the basis
of this robust control strategy is extended to fractional or-
der control systems. The idea was to get benefit from the

high performance quality of fractional order systems con-
firmed in many precedent research works. The stability
proof of this adaptive control scheme developed for inte-
ger order filters in the control literature still holds for such
systems. Simulation results revealed a better filtering abil-
ity of command and output signals, and more robustness
against additive disturbances and noise than in the integer
order feedforward configuration case.
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