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REACHABILITY OF CONE FRACTIONAL CONTINUOUS-TIME
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A new class of cone fractional continuous-time linear systems is introduced. Necessary and sufficient conditions for a
fractional linear system to be a cone fractional one are established. Sufficient conditions for the reachability of cone
fractional systems are given. The discussion is illustrated with an example of linear cone fractional systems.
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1. Introduction

In positive systems inputs, state variables and outputs
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollution
models. A variety of models having positive linear sys-
tems behaviour can be found in engineering, manage-
ment science, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive systems
is more complicated and less advanced. An overview of
state of the art in positive systems is given in the mono-
graphs (Farina and Rinaldi, 2000; Kaczorek, 2002). An
extension of positive systems are cone systems. The no-
tion of cone systems was introduced in (Kaczorek, 2006).
Roughly speaking, a cone system is a system obtained
from a positive one by the substitution of the positive or-
thants of states, inputs and outputs by suitable arbitrary
cones. The realization problem for cone systems was ad-
dressed in (Kaczorek, 2006; Kaczorek, 2007¢).

The first definition of the fractional derivative was in-
troduced by Liouville and Rieman at the end of the 19th
century (Miller and Ross, 1993; Nishimoto, 1984; Pod-
lubny, 1999). This idea was used by engineers for mod-
elling various processes in the late 1960s (Vinagre et al.,
1960; Vinagre and Feliu, 2002; Zaborowsky and Mey-
laov, 2001). Mathematical fundamentals of fractional cal-
culus are given in the monographs (Miller and Ross, 1993;

Nishimoto, 1984; Oldham and Spanier, 1974; Oustaloup,
1995; Podlubny, 1999). Fractional order controllers were
developed in (Oustaloup, 1993; Podlubny et al., 1997).
A generalization of the Kalman filter for fractional or-
der systems was proposed in (Sierociuk and Dzielifiski,
2007). Some other applications of fractional order sys-
tems can be found in (Engheta, 1997; Ferreira and
Machado, 2003; Ostalczyk, 2000; Ostalczyk, 2004; Os-
talczyk, 2004; Reyes-Melo et al., 2004; Riu et al., 2001;
Samko et al., 1993; Sjoberg and Kari, 2002; Vinagre and
Feliu, 2002).

In (Ortigueira, 1997), a method was set forth for
the computation of the impulse responses from the
frequency responses for fractional standard (non-positive)
discrete-time linear systems. Fractional polynomials and
nD systems were investigated in (Gatkowski, 2005). Nec-
essary and sufficient conditions for the reachability and
controllability to zero of cone fractional discrete-time lin-
ear systems were established in (Kaczorek, 2007a; Kac-

zorek, 2007b; Kaczorek, 2007d).
In this paper, the notion of cone fractional linear

continuous-time systems will be introduced. Sufficient
conditions for the reachability of cone fractional linear
systems will be established. To the best of the author’s
knowledge, cone fractional continuous-time linear sys-
tems have not been considered yet.

2. Positive fractional linear systems

Let R™*™ be the set of n x m real matrices and R" :=
R™*1. The set of m x n real matrices with nonnegative
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entries will be denoted by R’"*" and R” := R’}*". The
set of nonnegative integers will be denoted by Z and the
n X n identity matrix by I,,.

The following Caputo definition of the fractional
derivative will be used (Miller and Ross, 1993; Pod-
lubny, 1999):

sty = S f(t)

1 bfW(r) )
TTk—a) /0 (t — r)oti=F dr,

k—1l<a<keN={1,2,...},

where a € R is the order of the fractional derivative and
f®(r) = d¥f(r)/dr*. Consider the continuous-time
fractional linear system described by the state equation

%x(t) = Az(t) + Bu(t), 0<a<l1l, (2a)
y(t) = Ca(t) + Du(t), (2b)

where z(t) € R™, u(t) € R™, y(t) € RP are respectively
the state, input and output vectors, and A € R"*™ B €
Rr*m C e RP*™ D € RP*™,

Theorem 1. The solution of Eqn. (2a) is given by

2(t) = Do ()70 +/0 B(t — 1) Bu(t)dr,  2(0) = xo,

(3)
where
oy et Aktka
Qo(t) = Eo(At )—kzzom, 4)
0 pky(kt1)a—1
o(t) = Z T+ Da]’ (5)

k=0

and E.(At®) is the Mittag-Leffler matrix function. What
is more,

I(x) = / et at
0
is the Gamma function.

Definition 1.  The system (2) is called the internally
positive fractional system if and only if x(t) € R’} and
y(t) € RY, t > 0 for any initial conditions zo € R’} and
all inputs u(t) € R, ¢ > 0.

A square rational matrix A = [a;;] is called a Met-
zler matrix if its off-diagonal entries are nonnegative, i.e.,
a;; > 0 for i # j (Farina and Rinaldi, 2000; Kaczorek,
2002). The set of n x n all Metzler matrices will be de-
noted by M,,.

Theorem 2. The continuous-time fractional system (2) is
internally positive if and only if

AeM,, BeRY™, CeRE™, DeRE™. (6)

3. Cone fractional systems

Based on (Kaczorek, 2008), the following definitions are
recalled.

Definition 2. Let

P1
P=| ! | eR™"

Pn

be nonsingular and py, be its k-throw (kK = 1,...,n). The

set
P::{xER”:ﬂpkx>0} 7

k=1
is called a linear cone generated by the matrix P. In a
similar way, for the inputs u, we may define the linear

cone
Q::{ueRm:ﬂquEO} (8)

k=1

generated by the nonsingular matrix

q1
Q — : E R’me
dm

and for the outputs y, the linear cone

P
V::{yGR”:ﬂvky>0} 9)

k=1

generated by the nonsingular matrix

U1
V= : € RP*P,

Up

Definition 3. The fractional system (2) is called a
(P,Q,V) cone fractional system if z(t) € Pandy(t) € V,
t > 0forevery zg € P,u(t) € Q,t > 0.

The (P,Q,V) cone fractional system (2) will be
briefly called the cone fractional system. If P = R”,
Q = R7,V = R, then the (R}, _ R, R") cone sys-
tem is equivalent to the classical positive system (Farina
and Rinaldi, 2000; Kaczorek, 2002).

Theorem 3. The fractional system (2) is a (P,Q,V) cone
fractional one if and only if

A=PAP'eM,, B=PBQ 'eR}™,
C=VvCeP ' eRY", D=VDQ 'eR™. (10)
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Proof. Let

—Quty,

From Definition 3 it follows that if x(¢) € P, then Z(t) €
R, if u(t) € Q, then u(t) € R, and if y(t) € V), then
7(t) € RY.. From (2) and (11) we have

d°z(t)  d*Px(t)

o - @ = PAzxz(t) + PBu(t)
— PAP™'2(t) + PBQ 'u(t) (122)

= Az(t) + Bu(t), t>0
and

y(t) = Vy(t) = VCux(t) + VDult)

=VCP 'z(t) + VDQ 'u(t)
= Cz(t) + Du(t), t>0. (12b)

It is well known (Kaczorek, 2002; Kaczorek, 2007b) that
the system (12) is positive if and only if the conditions
(10) are satisfied. [ |

4. Reachability

4.1. Positive fractional systems.

Definition 4. The state zy € R"} of the positive fractional
system (2) is called reachable in time ¢y if there exists
an input u(t) € R, t € [0,tf] which steers the state
of the system (2) from the zero initial state o = 0 to
the state xy. If each state zy € R’} is reachable in time
iy, then the system is called reachable in time ;. If for
each state 7y € R} there exists a time ¢y such that the
state is reachable in time ¢, then the system (2) is called
reachable.

A real square matrix is called monomial if and only
if each of its rows and columns contains only one positive
entry and the remaining entries are zero.

Theorem 4. (Kaczorek, 2008) The positive fractional sys-
tem (2) is reachable in time ty if the matrix

R(ty) = /Otf ®(7)BBT® (1) dr (13)

is monomial. The input which steers the state of (2) from
xo = 0to xy is given by

u(t) = BToT (t; — )R (ty)xy, (14)

where ‘T’ denotes the transpose.

4.2. Cone fractional systems.

Definition 5. A state xy € P of the cone fractional
system (2) is called reachable in time ¢ if there exists an
input sequence u(t) € Q, ¢ € [0, ty] which steers the state
of the system from the zero initial state x9 = 0 to the
desired state zy, i.e., z(ty) = xs. If each state z; € P
is reachable in time ¢, then the cone fractional system is
called reachable in time ¢ . If for every state y € P there
exists a time ¢y such that the state is reachable in time ¢,
then the cone fractional system is called reachable.

Theorem 5. The cone fractional system (2) is reachable
in time ty if the matrix

tf P/

here (Q~T =

B 'Q TBTaT (r)drPT (15)
(Q™YHT) is a monomial matrix.

Proof. From the relations (11) it follows that if z:(t) € P,
then Z(t) = Px(t) € R, ¢t > 0, and if u(t) € Q, then
u(t) = Qu(t) € R, t > 0. Hence, by Definitions 4
and 5, the cone fractional system (2) is reachable in time
ty if the positive fractional system (12) is reachable in

time .
From (10) and (5) we have
B 0 Fkp(k+1)a—1
B(t) = At
Z r[<k+1>o4
(16)
PAP (kJrl)afl
= = PO(t)P!
Z k +1)q] ®)
since A* = (PAP~')* = PA*P~'fork =1,2,... and

®(t)B = PO(t)P"'PBQ ' = PO(t)BQ™*. (17)

Using (13) and (17), we obtain
_ tr_
R(ty) :/ ®(7)BBT T (1) dr
0

- / 7 (Pa(r)BQ ) (Pa(r)BQ)T
_p /

Therefore, by Theorem 4, the positive fractional sys-
tem (12) and the cone fractional system (2) are reachable
in time ¢ if the matrix (15) is monomial. [ |

By Theorem 5 we have the following result.

Corollary 1. If Q = I, then R(t;) = PR(t;)PT, and
the cone fractional system (2) is reachable in time t ; if the
positive fractional system is reachable and P is a mono-
mial matrix.

B 'QTBT®T (r)drPT.
(18)
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Fig. 1. P-cone generated by the matrix P.

Example 1. Consider the cone fractional system (2) with

1 1 10
P = -
—11]’62 [0 1]’
1
A= 0 B= 01 ) (19)
00 10

The P-cone generated by the matrix P is shown in Fig. 1.

In (Kaczorek, 2007d), it was shown that

|0 @t
O(t)B = [ ) 0 1 (20)
and
t
R(ty) = [ @(r)BE 07 (1)
0
(Y] @) 0
=L #3(r) ] an @b
where
et t k+1 tafl
kzzo I[(k+ 1) () = T(a) (22)

for 0 < a < 1. The matrix (21) is monomial and by
Theorem 4 the positive fractional system is reachable in

time £.
In case Q = I, the matrix
R (ty)
= PR(t;)P"
/tf 11 o3 (1) 0 L1y
= T
0 -1 1 0 ®2(7) 1 1
- [ EO e a0 ] g,
0 O2(1) — P2 (1) P3(7) + P2(7

is not monomial since ®%(t) # ®3(t). Therefore, the suf-
ficient condition of Theorem 5 for the reachability in time
ts is not satisfied. ¢

From this example and the comparison of (13)
and (15), it follows that the sufficient conditions for the
reachability of cone fractional systems is much stronger
than for positive fractional systems.

5. Concluding remarks

The concept of cone fractional linear systems has been
introduced. Necessary and sufficient conditions for frac-
tional systems to be cone fractional ones were established.
Sufficient conditions for the reachability of cone fractional
linear systems were also given. The conditions were illus-
trated with an example of a linear cone fractional system.
Following (Kaczorek, 2007d), the results can be extended
to the controllability to zero for cone fractional linear sys-
tems.
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