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POSITIVE 2D DISCRETE–TIME LINEAR LYAPUNOV SYSTEMS
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Two models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and
sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is
illustrated with numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollution
models. A variety of models having positive linear be-
havior can be found in engineering, management science,
economics, social sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive sys-
tems is more complicated and less advanced. The most
popular models of two-dimensional (2D) linear systems
are the models introduced by Roesser (1975), Fornasini-
Marchesini (1976; 1978) and Kurek (1985). The models
were extended for positive systems in (Kaczorek, 1996;
2001; 2005; Valcher, 1997). An overview of 2D linear
systems theory is given in (Bose, 1982; Bose et al., 2003;
Gałkowski, 2001; Kaczorek, 1985), and some recent re-
sults in positive systems were given in the monographs
(Farina and Rinaldi, 2000; Kaczorek, 2001).

Reachability and minimum energy control of posi-
tive 2D systems with one delay in states were considered
in (Kaczorek, 2005). Controllability of positive dynamical
systems was investigated by Klamka (1991; 2002; 2005).
Controllability and minimum energy control of linear
2D systems were considered in (Klamka, 1996a; 1996b;
1997a; 1997b; 1997d; 1999b) and of nonlinear 2D sys-
tems in (Klamka 1997c; 1999a; 1999c). Controllability
with constrained controls of linear and nonlinear 2D sys-
tems was investigated in (Klamka, 1998a; 1998b; 1998c).

The notion of an internally positive 2D system
(model) with delays in states and in inputs (systems of
order higher than one) was introduced, and necessary
and sufficient conditions for internal positivity, reachabil-
ity, controllability, observability and the minimum energy
control problem were established in (Kaczorek, 2006b).

The realization problem for 1D positive discrete-time
systems with delays was analyzed in (Kaczorek, 2003;
2006a) and for 2D positive systems in (Kaczorek, 2004).
Stability of positive linear discrete-time systems with de-
lays was considered in (Busłowicz, 2006).

Internal stability and asymptotic behavior of 2D pos-
itive systems were investigated by Valcher (1997), and
asymptotic stability of positive 2D linear systems was in-
vestigated in (Kaczorek, 2008a; 2008b). An LMI ap-
proach to checking stability of positive 2D systems was
proposed by Twardy (2007), with generalizations to posi-
tive 2D systems by delays in (Kaczorek, 2008c).

Controllability and observability of Lyapunov sys-
tems were investigated by Murty Apparao (2005). Posi-
tive discrete-time and continuous-time Lyapunov systems
were considered in (Kaczorek, 2007; Kaczorek and Przy-
borowski, 2007a; 2007e; 2008). Positive linear time-
varying Lyapunov systems were investigated in (Kaczorek
and Przyborowski, 2007b). Discrete-time and continuous-
time Lyapunov cone systems were considered in (Kac-
zorek and Przyborowski, 2007c; Przyborowski and Kac-
zorek, 2008). Positive discrete-time Lyapunov systems
with delays were investigated in (Kaczorek and Przy-
borowski, 2007d).
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were investigated in (Przyborowski, 2008a; Przyborowski
and Kaczorek, 2008) and fractional discrete-time cone-
systems in (Przyborowski, 2008b; Przyborowski and Kac-
zorek, 2008).

In this paper, the notion of positive 2D discrete-time
linear Lyapunov systems described by two different mod-
els will be introduced. For both the models necessary
and sufficient conditions for positivity, asymptotic stabil-
ity, reachability and observability will be established. The
discussion will be illustrated with numerical examples. To
the best of the authors’ knowledge, those problems have
not been considered yet.

2. Preliminaries

Let R
n×m be the set of real n×m matrices, R

n = R
n×1,

and let R
n×m
+ be the set of real n× m matrices with non-

negative entries. The set of nonnegative integers will be
denoted by Z+.

Definition 1. The Kronecker product A ⊗ B of matrices
A = [aij ] ∈ R

m×n and B ∈ R
p×q is the block matrix

(Kaczorek, 1998)

A ⊗ B = [aijB] i=1,...,m
j=1,...,n

∈ R
mp×nq. (1)

Lemma 1. (Kaczorek, 1998) Consider the equation

AXB = C, (2)

where A ∈ R
m×n , B ∈ R

q×p, C ∈ R
m×p, X ∈ R

n×q .
It is equivalent to the following one:

(A ⊗ BT )x = c, (3)

where

x := [x1, x2, . . . , xn]T , c := [c1, c2, . . . , cm]T ,

and xi and ci are the i-th rows of the matrices X and C,
respectively.

Lemma 2. (Kaczorek, 1998) If λ1, λ2, . . . λn are the
eigenvalues of the matrix A ∈ R

n×n and μ1, μ2, . . . μn

are the eigenvalues of the matrix B ∈ R
n×n, then λi +μj

for i, j = 1, 2, . . . , n are the eigenvalues of the matrix

Ā = A ⊗ In + In ⊗ BT .

3. 2D Lyapunov system

Definition 2. The system described by the equations[
Xh

i+1,j

Xv
i,j+1

]
=

[
A0

11 A0
12

A0
21 A0

22

][
Xh

i,j

Xv
i,j

]

+

[
Xh

i,j

Xv
i,j

][
A1

11 A1
12

A1
21 A1

22

]

+

[
B1

B2

]
Uij , (4a)

Yij =
[

C1 C2

] [ Xh
i,j

Xv
i,j

]
+ DUij ,

i, j ∈ Z+ (4b)

is called a 2D discrete-time linear Lyapunov system,
where Xh

i,j ∈ R
n1×n and Xv

i,j ∈ R
n2×n are respec-

tively the horizontal and vertical state-space matrices at
the point (i, j), Uij ∈ R

m×n and Yij ∈ R
p×n are respec-

tively the input and the output matrices, Ar
kl ∈ R

nk×nl

for k, l = 1, 2 and r = 0, 1, B1 ∈ R
n1×m, B2 ∈ R

n2×m,
C1 ∈ R

p×n1 , C2 ∈ R
p×n2 , D ∈ R

p×m, n = n1 + n2.
The boundary conditions for (4a) have the form

Xh
0j , j ∈ Z+ and Xv

i0, i ∈ Z+. (5)

Lemma 3. The Lyapunov system (4) can be transformed
to the equivalent standard 2D discrete-time, nm-input and
pn-output, linear system described by the Roesser model
in the form (Kaczorek, 2001)[

x̄h
i+1,j

x̄v
i,j+1

]
=

[
Ā11 Ā12

Ā21 Ā22

][
x̄h

i,j

x̄v
i,j

]

+

[
B̄1

B̄2

]
ūij , (6a)

ȳij =
[

C̄1 C̄2

] [ x̄h
i,j

x̄v
i,j

]
+ D̄ūij ,

i, j ∈ Z+, (6b)

where x̄h
i,j ∈ R

(n1·n) and x̄v
i,j ∈ R

(n2·n) are respectively
the horizontal and vertical state-space vectors at the point
(i, j), ūij ∈ R

(m·n) and ȳij ∈ R
(p·n) are respectively the

input and output vectors, Ākl ∈ R
(nk·n)×(nl·n), for k, l =

1, 2, B̄1 ∈ R
(n·n1)×(n·m), B̄2 ∈ R

(n·n2)×(n·m), C̄1 ∈
R

(p·n)×(n·n1), C̄2 ∈ R
(p·n)×(n·n2), D̄ ∈ R

(p·n)×(m·n).

Proof. The transformation is based on Lemma 1. The
matrices

Xi,j =

[
Xh

i,j

Xv
i,j

]
, Ui,j, Yi,j
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are transformed into the vectors

x̄i,j =
[
X1

i,j X2
i,j . . . Xn

i,j

]T
,

ūi,j =
[
U1

i,j U2
i,j . . . Um

i,j

]T
,

ȳi,j =
[
Y 1

i,j Y 2
i,j . . . Y p

i,j

]T
,

where Xk
i,j , U

k
i,j , Y

k
i,j denote the k-th rows of the matrices

Xi,j , Ui,j , Yi,j , respectively.
The matrices of (6) are

Ā11 = A0
11 ⊗ In + In1 ⊗

[
A1

11 A1
12

A1
21 A1

22

]T

,

Ā12 = A0
12 ⊗ In,

Ā22 = A0
22 ⊗ In + In2 ⊗

[
A1

11 A1
12

A1
21 A1

22

]T

,

Ā21 = A0
21 ⊗ In,

B̄1 = B1 ⊗ In, B̄2 = B2 ⊗ In,

C̄1 = C1 ⊗ In, C̄2 = C2 ⊗ In,

D̄ = D ⊗ In. (7)

�

Definition 3. The transition matrix T̄i,j is defined by
(Kaczorek, 2001)

T̄i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

In for i, j = 0,

T̄1,0T̄i−1,j + T̄0,1T̄i,j−1 for i, j ∈ Z+,

0 (zero matrix) for i < 0
and/or j < 0,

(8)
where

T̄1,0

=

⎡
⎢⎢⎣ A0

11 ⊗ In + In1 ⊗
[

A1
11 A1

12

A1
21 A1

22

]T

A0
12 ⊗ In

0 0

⎤
⎥⎥⎦ ,

T̄0,1

=

⎡
⎢⎢⎣

0 0

A0
21 ⊗ In A0

22 ⊗ In + In2 ⊗
[

A1
11 A1

12

A1
21 A1

22

]T

⎤
⎥⎥⎦ .

4. Positive 2D Lyapunov systems and their
asymptotic stability

4.1. Positive 2D Lyapunov systems

Definition 4. The system (4) is called (internally) pos-
itive if Xh

i,j ∈ R
n1×n
+ , Xv

i,j ∈ R
n2×n
+ and Yij ∈ R

p×n
+

for any nonnegative boundary conditions Xh
0j , Xv

i0 and all
input sequences Uij ∈ R

m×n
+ , i, j ∈ Z+.

Definition 5. A matrix

M = [mij ] i=1,...,n
j=1,...,n

is called a Metzler matrix if mij ∈ R for i = j and mij ≥
0 for i �= j.

Theorem 1. The system (4) is positive if and only if

A0
11 =

[
a011

ij

]
i=1,...,n1
j=1,...,n1

, A0
22 =

[
a022

ij

]
i=1,...,n2
j=1,...,n2

,

A1
11 =

[
a111

ij

]
i=1,...,n1
j=1,...,n1

, A1
22 =

[
a122

ij

]
i=1,...,n2
j=1,...,n2

(9a)

are Metzler matrices satisfying

a011
kk + a111

ll ≥ 0 for k, l = 1, . . . , n1,

a022
kk + a111

ll ≥ 0 for k = 1, . . . , n2 ; l = 1, . . . , n1,

a011
kk + a122

ll ≥ 0 for k = 1, . . . , n1 ; l = 1, . . . , n2,

a022
kk + a122

ll ≥ 0 for k, l = 1, . . . , n2, (9b)

and

Ar
kl ∈ R

nk×nl
+ for k, l = 1, 2, k �= l; r = 0, 1,

B1 ∈ R
n1×m
+ , B2 ∈ R

n2×m
+ ,

C1 ∈ R
p×n1
+ , C2 ∈ R

p×n2
+ ,

D ∈ R
p×m
+ . (9c)

Proof. The 2D Lyapunov system (4) is positive if, and
only if, the equivalent 2D standard system (6) is posi-
tive. By the theorem of the positivity of the 2D stan-
dard discrete-time system described by the Roesser model
(Kaczorek, 2001),[

Ā11 Ā12

Ā21 Ā22

]
,

[
B̄1

B̄2

]
,
[

C̄1 C̄2

]
, D̄

have to be matrices with nonnegative entries. From (7) the
hypothesis of Theorem 1 follows. �

4.2. Asymptotic stability of 2D positive Lyapunov sys-
tems. Consider the positive 2D autonomous Lyapunov
system described by[

Xh
i+1,j

Xv
i,j+1

]
=

[
A0

11 A0
12

A0
21 A0

22

][
Xh

i,j

Xv
i,j

]

+

[
Xh

i,j

Xv
i,j

][
A1

11 A1
12

A1
21 A1

22

]
,

i, j ∈ Z+, (10)

where Xh
i,j ∈ R

n1×n
+ ,Xv

i,j ∈ R
n2×n
+ and the matrices

Ar
kl ∈ R

nk×nl for k, l = 1, 2 and r = 0, 1, satisfying
the conditions (9).
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Definition 6. The positive 2D Lyapunov system (10) is
called asymptotically stable if for any bounded boundary
conditions Xi,0 ∈ R

n×n
+ , i ∈ Z+, X0,j ∈ R

n×n
+ , j ∈

Z+ we have
lim

i,j→∞
Xi,j = 0. (11)

Theorem 2. Assume that λ1, λ2, . . . , λn are the eigen-
values of the matrix [

A0
11 A0

12

A0
21 A0

22

]

and μ1, μ2, . . . , μn are the eigenvalues of the matrix[
A1

11 A1
12

A1
21 A1

22

]
.

The system (10) is stable if and only if

|λi + βj | < 1 for i, j = 1, 2, . . . , n. (12)

Proof. Any 2D Lyapunov system is asymptotically sta-
ble if, and only if, the equivalent 2D standard system is
asymptotically stable. From (Kaczorek, 2008a), we have
that the eigenvalues of the matrix[

Ā11 Ā12

Ā21 Ā22

]

must have moduli less than one. Therefore, from
Lemma 3 and (7) the hypothesis of Theorem 2 follows.

�

5. Reachability and observability of 2D
positive systems

5.1. Reachability

Definition 7. The positive 2D Lyapunov system (4) is
called reachable at a point (h, k) ∈ Z+ × Z+ if for every
Xf ∈ R

n×n
+ there exists an input sequence Uij ∈ R

m×n
+

for

(i, j) ∈ Hhk := {(i, j) ∈ Z+ × Z+ :
0 ≤ i ≤ h, 0 ≤ j ≤ k, i + j �= h + k}

that steers the state of the system from the zero boundary
conditions (5) to the final state Xf , i.e., Xhk ∈ Xf .

Theorem 3. The positive 2D Lyapunov system (4) is
reachable at a point (h, k) if and only if
(a) For

A1 =

[
A1

11 A1
12

A1
21 A1

22

]

satisfying the condition XA1 = A1X , i.e., A1
11 =

aIn1 ,A
1
22 = aIn2 ,a ∈ R, A1

12 = 0 and A1
21 = 0, the

matrix

Rhk = [Mh,k Mh−1,k Mh,k−1 · · · M1,0 M0,1] (13)

contains n linearly independent monomial columns (the
matrix built from these columns has only one positive el-
ement in each row and in each column and the remaining
elements are zero), where

Mi,j = Ti−1,j

[
B1

0

]
+ Ti,j−1

[
0

B2

]
(14)

and Ti,j is the transition matrix defined in (8) with

T1,0 =

[
A0

11 + A1
11 A0

12

0 0

]
,

T0,1 =

[
0 0

A0
21 A0

22 + A1
22

]
.

(15)

(b) For A1 �= aIn and a ∈ R, if and only if the matrix[
B1 0
0 B2

]

contains n linearly independent monomial columns.

Proof. From Lemma 3 and (Kaczorek, 2001) it follows
that the positive 2D Lyapunov system (4) is reachable at
the point (h, k) if and only if the matrix

R̄hk =
[
M̄h,k M̄h−1,k M̄h,k−1 · · · M̄1,0 M̄0,1

]
(16)

contains n2 linearly independent monomial columns,
where

M̄i,j = T̄i−1,j

[
B1 ⊗ In

0

]
+ T̄i,j−1

[
0

B2 ⊗ In

]
(17)

and T̄i,j is the transition matrix defined in (8).
In Case (a), taking into account the assumptions,

from (16), (17), (8) we obtain

T̄i,j = Ti,j ⊗ In,

M̄i,j = Mi,j ⊗ In,

R̄h,k = Rh,k ⊗ In.

Therefore, in this case, (16) contains n2 linearly indepen-
dent monomial columns if and only if (13) contains n lin-
early independent monomial columns.

In Case (b), from (17) we have

M̄1,0 =

[
B1 ⊗ In

0

]
, M̄0,1 =

[
0

B2 ⊗ In

]
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so if the matrix
[

B1 0
0 B2

]
contains n linearly independent

monomial columns, then R̄h,k contains n2 linearly inde-
pendent monomial columns and the system is reachable.
If the matrix

[
B1 0
0 B2

]
contains r < n linearly indepen-

dent monomial columns, then from (17) it follows that
each of the matrices M̄1,1, · · · , M̄h,k contains no more
than rn linearly independent monomial columns which
are linearly dependent with monomial columns of the ma-
trix

[
M̄1,0 M̄0,1

]
, because the matrices T̄i,j and B ⊗ In

have nonnegative entries. Therefore, the system is not
reachable. �

5.2. Observability

Definition 8. The positive 2D Lyapunov system (4)
is called observable at a point (h, k) ∈ Z+ × Z+ if
X00 ∈ R

n×n
+ can be uniquely determined from the knowl-

edge of the output Yi,j , caused by the nonzero boundary
conditions in the form X00 �= 0 and Xh

0j = 0, 1 ≤ j ≤ k,
Xv

i0 = 0, 1 < i ≤ h and Ui,j = 0, (i, j) ∈ Hhk.

Theorem 4. The positive 2D Lyapunov system (4) is
observable at the point (h, k) if and only if
(a) For

A1 =

[
A1

11 A1
12

A1
21 A1

22

]

satisfying the condition XA1 = A1X , i.e., A1
11 =

aIn1 ,A
1
22 = aIn2 ,a ∈ R and A1

12 = 0, A1
21 = 0, the

matrix

Ohk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CT10

CT01

...

CTi,j

...

CTh,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

contains n linearly independent monomial rows, where
C = [C1 C2] and Ti,j is the transition matrix defined
in (8) with

T1,0 =

[
A0

11 + A1
11 A0

12

0 0

]
,

T0,1 =

[
0 0

A0
21 A0

22 + A1
22

]
.

(19)

(b) For A1 �= aIn and a ∈ R, if and only if the matrix C
contains n linearly independent monomial rows.

Proof. From Lemma 3 and (Kaczorek, 2001) it follows
that the positive 2D Lyapunov system (4) is observable at
a point (h, k) if and only if the matrix

Ōhk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̄

C̄T̄10

C̄T̄01

...

C̄T̄i,j

...

C̄T̄h,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

contains n2 linearly independent monomial columns,
where T̄i,j is the transition matrix defined in (8).

In Case (a), taking into account the assumptions,
from (20), (8) and the fact that C̄ = C ⊗ In, we obtain

T̄i,j = Ti,j ⊗ In, Ōh,k = Oh,k ⊗ In.

Therefore, in this case, (20) contains n2 linearly indepen-
dent monomial columns if and only if (18) contains n lin-
early independent monomial columns.

In Case (b), if the matrix C contains n linearly in-
dependent monomial columns, then Ōh,k contains n2 lin-
early independent monomial columns and the system is
observable. If the matrix C contains r < n linearly in-
dependent monomial columns, then it follows that each
of the matrices C̄T̄10, . . . , C̄T̄h,k contains no more than
rn linearly independent monomial columns which are lin-
early dependent with monomial columns of the matrix C
because the matrices T̄i,j and C̄ are the matrices with non-
negative entries. Therefore the system is not observable.

�

6. 2D general Lyapunov system

Definition 9. The system described by the equations

Xi+1,j+1 = A0
0Xi,j + Xi,jA

1
0 + A0

1Xi+1,j

+Xi+1,jA
1
1 + A0

2Xi,j+1 + Xi,j+1A
1
2

+B0Ui,j + B1Ui+1,j + B2Ui,j+1, (21a)

Yij = CXi,j + DUij , i, j ∈ Z+ (21b)

is called a general 2D discrete-time linear Lyapunov sys-
tem, where Xi,j ∈ R

n×n is the state-space matrix at the
point (i, j), Uij ∈ R

m×n and Yij ∈ R
p×n are respec-

tively the input and the output matrices, Al
k ∈ R

n×n

for k = 0, 1, 2, l = 0, 1, Br ∈ R
n×m for r = 0, 1, 2,

C ∈ R
p×n, D ∈ R

p×m.
The boundary conditions for (21a) have the form

X0j , j ∈ Z+ and Xi0, i ∈ Z+. (22)



100 P. Przyborowski and T. Kaczorek

Lemma 4. The Lyapunov system (21) can be transformed
to the equivalent standard 2D discrete-time, nm-input and
pn-output, linear system described by the general model
in the form (Kaczorek, 2001)

x̄i+1,j+1 = Ā0x̄i,j + Ā1x̄i+1,j + Ā2x̄i,j+1

+B̄0ūi,j + B̄1ūi+1,j (23a)

+B̄2ūi,j+1, (23b)

ȳij = C̄x̄i,j + D̄ūij i, j ∈ Z+, (23c)

where x̄i,j ∈ R
n2×n2

is the state-space vector at the point

(i, j), ūij ∈ R
(m·n) and ȳij ∈ R

(p·n) are respectively
the input and the output vectors, Ak ∈ R

n2×n2
for k =

0, 1, 2, Br ∈ R
n2×(m·n) for r = 0, 1, 2, C ∈ R

(p·n)×n2
,

D ∈ R
(p·n)×(m·n).

The proof is similar to that of Lemma 3. The matrices
of (23) are

Ā0 = A0
0 ⊗ In + In ⊗ A1T

0 ,

Ā1 = A0
1 ⊗ In + In ⊗ A1T

1

Ā2 = A0
2 ⊗ In + In ⊗ A1T

2 ,

B̄0 = B0 ⊗ In, B̄1 = B1 ⊗ In,

B̄2 = B2 ⊗ In, C̄ = C ⊗ In, D̄ = D ⊗ In.

(24)

Definition 10. The transition matrix T̄i,j for (23) is de-
fined by (Kaczorek, 2001)

T̄i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

In for i, j = 0,

Ā0T̄i−1,j−1

+Ā1T̄i,j−1 + Ā2T̄i−1,j for i, j ∈ Z+

0 (zero matrix) for i < 0
and/or j < 0.

(25)

7. Positive general 2D Lyapunov systems
and their asymptotic stability

7.1. Positive general 2D Lyapunov systems

Definition 11. The system (21) is called (internally) pos-
itive if Xi,j ∈ R

n×n
+ and Yij ∈ R

p×n
+ for any nonnegative

boundary conditions X0j ∈ R
n×n
+ , Xi0 ∈ R

n×n
+ and all

input sequences Uij ∈ R
m×n
+ , i, j ∈ Z+.

Theorem 5. The system (21) is positive if and only if

Al
k =

[
akl

ij

]
i=1,...,n
j=1,...,n

, k = 0, 1, 2, l = 0, 1 (26a)

are Metzler matrices satisfying the conditions

xak0
pp + ak1

rr ≥ 0 for p, r = 1, . . . , n and k = 0, 1, 2,
(26b)

where

B0 ∈ R
n×m
+ , B1 ∈ R

n×m
+ , B2 ∈ R

n×m
+ ,

C ∈ R
p×n
+ , D ∈ R

p×m
+ . (26c)

Proof. The 2D Lyapunov system (21) is positive if, and
only if, the equivalent 2D standard system (23) is pos-
itive. By the theorem of the positivity of the 2D stan-
dard discrete-time system described by the general model
(Kaczorek, 2001), Ā0, Ā1, Ā2, B̄0, B̄1, B̄2 C̄ and D̄ have
to be matrices with nonnegative entries. The hypothesis
of Theorem 5 follows from (24). �

7.2. Asymptotic stability of general 2D positive Lya-
punov systems. Consider the positive 2D autonomous
Lyapunov system described by

Xi+1,j+1 = A0
0Xi,j + Xi,jA

1
0

+ A0
1Xi+1,j + Xi+1,jA

1
1

+ A0
2Xi,j+1 + Xi,j+1A

1
2, i, j ∈ Z+,

(27)

where Xi,j ∈ R
n×n
+ , with the matrices Al

k ∈ R
n×n for

k = 0, 1, 2 and l = 0, 1 satisfying the conditions (26).

Definition 12. The positive 2D Lyapunov system (27) is
called asymptotically stable if for any bounded boundary
conditions Xi,0 ∈ R

n×n
+ , i ∈ Z+, X0,j ∈ R

n×n
+ , j ∈ Z+,

lim
i,j→∞

Xi,j = 0. (28)

Theorem 6. Assume that λ1, λ2, . . . , λn2 are the eigen-
values of the matrix[

A0
1 + A0

2 A0
0

In 0

]

and μ1, μ2, . . . , μn2 are the eigenvalues of the matrix[
A1

1 + A1
2 A1

0

In 0

]
.

The system (27) is stable if and only if

|λi + βj | < 1 for i, j = 1, 2, . . . , n2. (29)

Proof. The 2D Lyapunov system is asymptotically sta-
ble if, and only if, the equivalent 2D standard system is
asymptotically stable. From (Kaczorek, 2008a) we have
that the eigenvalues of the matrix[

Ā1 + Ā2 Ā0

In2 0

]

must have moduli less than one. Therefore, from
Lemma 4 and (24), the hypothesis of Theorem 6 follows.

�
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8. Reachability and observability of 2D
positive systems

8.1. Reachability

Definition 13. The positive 2D Lyapunov system (21) is
called reachable at a point (h, k) ∈ Z+ × Z+ if for every
Xf ∈ R

n×n
+ there exists an input sequence Uij ∈ R

m×n
+ ,

(i, j) ∈ Hhk that steers the state of the system from the
zero boundary conditions (22) to the final state Xf , i.e.,
Xhk ∈ Xf .

Theorem 7. The positive 2D Lyapunov system (21) is
reachable at a point (h, k), h, k > 2 if, and only if,

(a) For A1
l satisfying the condition XA1

l = A1
l X , i.e.

A1
l = alIn, al ∈ R, l = 0, 1, 2, if and only if the ma-

trix

Rhk =
[
M0, M1

1 , . . . , M1
h , M2

1 , . . . , M2
k ,

M11, . . . , M1k, M21, . . . , Mhk] (30)

contains n linearly independent monomial columns,
where

M0 = Th−1,k−1B0,

M1
i = Th−i,k−1B1 + Th−i−1,k−1B0, i = 1, . . . , h

M2
j = Th−1,k−jB2 + Th−i,k−j−1B0, j = 1, . . . , k

Mi,j = Th−i−1,k−1−1B0 + Th−i,k−j−1B1

+ Th−i−1,k−jB2, i = 1, . . . , h, j = 1, . . . , k

(31)

and Ti,j is the transition matrix defined by

Ti,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

In for i, j = 0,
�

A0 Ti−1,j−1

+
�

A1 Ti,j−1+
�

A2 Ti−1,j for i, j ∈ Z+,

0 (zero matrix) for i < 0
and/or j < 0,

(32)
�

Av = A0
v + A1

v, v = 0, 1, 2.

(b) For Al �= alIn and al ∈ R ; l = 0, 1, 2, if and only
if the matrix [ B1 B2 ] for B1 �= 0, B2 �= 0 (B0 for
B1 = B2 = 0) contains n linearly independent monomial
columns.

Proof. From Lemma 4 and (Kaczorek, 2001) it follows
that the positive 2D Lyapunov system (21) is reachable at
the point (h, k) if and only if the matrix

R̄hk =
[
M̄0, M̄1

1 , . . . , M̄1
h, M̄2

1 , . . . , M̄2
k ,

M̄11, . . . , M̄1k, M̄21, . . . , M̄hk

]
(33)

contains n2 linearly independent monomial columns,
where

M̄0 = T̄h−1,k−1B̄0,

M̄1
i = T̄h−i,k−1B̄1 + T̄h−i−1,k−1B̄0, i = 1, . . . , h

M̄2
j = T̄h−1,k−jB̄2 + T̄h−i,k−j−1B̄0, j = 1, . . . , k

M̄i,j = T̄h−i−1,k−1−1B̄0 + T̄h−i,k−j−1B̄1

+ T̄h−i−1,k−jB̄2, i = 1, . . . , h, j = 1, . . . , k

(34)

and T̄i,j is the transition matrix defined in (25).
In Case (a), taking into account the assumptions,

from (33), (34) and (25) we obtain

T̄i,j = Ti,j ⊗ In, M̄i,j = Mi,j ⊗ In,

M̄z
v = Mz

v ⊗ In, R̄h,k = Rh,k ⊗ In.

Therefore, in this case, (33) contains n2 linearly indepen-
dent monomial columns if and only if (30) contains n lin-
early independent monomial columns.

In Case (b), from (34) we have

M̄1
h = B1 ⊗ In, M̄2

k = B2 ⊗ In,

M̄h−1,k−1 = B0 ⊗ In + Ā2(B1 ⊗ In) + Ā1(B2 ⊗ In)

so if the matrix [B1 B2] for B1 �= 0, B2 �= 0 (B0 for
B1 = B2 = 0) contains n linearly independent mono-
mial columns, then R̄h,k contains n2 linearly independent
monomial columns and the system is reachable. If the
matrix [B1 B2] for B1 �= 0, B2 �= 0 (B0 for B1 =
B2 = 0) contains r < n linearly independent monomial
columns, then from (34) it follows that each of the matri-
ces M̄0, . . . , M̄hk for h, k > 2 contains no more than rn
linearly independent monomial columns, which are lin-
early dependent with monomial columns of the matrix
[B1 B2] for B1 �= 0, B2 �= 0 (B0 for B1 = B2 = 0),
and therefore the system is not reachable. �

Remark 1. The positive 2D Lyapunov system (21) is
reachable at a point (h, k), h, k = 2 if and only if B0

contains n linearly independent monomial columns.

8.2. Observability

Definition 14. The positive 2D Lyapunov system (21) is
called observable at a point (h, k) ∈ Z+ × Z+ if X00 ∈
R

n×n
+ can be uniquely determined from the knowledge of

the output Yi,j caused by the nonzero boundary conditions
in the form X00 �= 0 and X0j = 0, 1 ≤ j ≤ k, Xi0 = 0,
1 < i < h and Ui,j = 0, (i, j) ∈ Hhk.

Theorem 8. The positive 2D Lyapunov system (21) is
observable at a point (h, k) if, and only if,
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(a) For A1
l satisfying the condition XA1

l = A1
l X , i.e.,

A1
l = alIn and al ∈ R, l = 0, 1, 2, the matrix

Ohk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
�

A0

CT01

�

A0

...

CT0,k−1

�

A0

CT10

�

A0

...

CTh−1,k−1

�

A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�

A0= A0
0 + A1

0

contains n linearly independent monomial rows, where
Ti,j is the transition matrix defined in (32).

(b) For Al �= alIn and al ∈ R, l = 0, 1, 2, if and only if
the matrix C̄Ā0 contains n2 linearly independent mono-
mial rows.

Proof. From Lemma 4 and (Kaczorek, 2001) it follows
that the positive 2D Lyapunov system (21) is observable
at a point (h, k) if and only if the matrix

Ōhk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̄Ā0

C̄T̄01Ā0

...

C̄T̄0,k−1Ā0

C̄T̄10Ā0

...

C̄T̄h−1,k−1Ā0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

contains n2 linearly independent monomial columns,
where T̄i,j is the transition matrix defined in (25).

In Case (a), taking into account the assumptions,
from (36), (8) and the fact that C̄ = C ⊗ In we obtain

T̄i,j = Ti,j ⊗ In, Ōh,k = Oh,k ⊗ In.

Therefore, in this case, (36) contains n2 linearly in-
dependent monomial columns if and only if (35) contains
n linearly independent monomial columns.

In Case (b), if the matrix C̄Ā0 contains n2 linearly
independent monomial columns, then Ōh,k contains n2

linearly independent monomial columns and the system
is observable. If the matrix C̄Ā0 contains r < n2 lin-
early independent monomial columns, then it follows that
each of the matrices C̄T̄01Ā0, . . . , C̄T̄h−1,k−1Ā0 contains
no more than r linearly independent monomial columns
which are linearly dependent with monomial columns of
the matrix C̄Ā0. Therefore the system is not observable.

�

9. Examples

Example 1. Consider the 2D system described by the
model (4) with the matrices[

A0
11 A0

12

A0
21 A0

22

]
=

[
0.4 0 0.1
0 0.5 0
0 0.1 0.1

]
,

[
A1

11 A1
12

A1
21 A1

22

]
=

[
0.1 0 0
0 0.2 0.1

0.5 0 0.2

]
,

[
B1

B2

]
=

[
2 0 0
0 1 0
0 0 1

]
,

[
C1 C2

]
=

[
1 0 0
0 1 0
0 0 2

]
,

D =

⎡
⎢⎣ 0 0 0

0 0 0
0 0 0

⎤
⎥⎦ , (36)

n1 = 2, n2 = 1, n = n1 + n2 = 3.

The system (37) is positive because A0
11, A0

22, A1
11, A1

22

are Metzler matrices satisfying the conditions

a011
11 + a111

11 = 0.5 ≥ 0, a011
11 + a111

22 = 0.6 ≥ 0,

a011
22 + a111

11 = 0.6 ≥ 0, a011
22 + a111

22 = 0.7 ≥ 0,

a022
11 + a111

11 = 0.2 ≥ 0, a022
11 + a111

22 = 0.3 ≥ 0,

a011
11 + a122

11 = 0.6 ≥ 0, a011
22 + a122

22 = 0.7 ≥ 0,

a022
11 + a122

11 = 0.3 ≥ 0,

and A0
12, A0

21, A1
12, A1

21, B1, B2, C1, C2, D have non-
negative entries.

Taking into account that the matrix[
A0

11 A0
12

A0
21 A0

22

]([
A1

11 A1
12

A1
21 A1

22

])

has eigenvalues λ1 = 0.4, λ2 = 0.1, λ3 = 0.5
(μ1 = 0.2, μ2 = 0.2, μ3 = 0.1 ), we obtain

(λ1 + β1) = 0.6, (λ1 + β2) = 0.6, (λ1 + β3) = 0.5,

(λ2 + β1) = 0.3, (λ2 + β2) = 0.3, (λ2 + β3) = 0.2,

(λ3 + β1) = 0.7, (λ3 + β2) = 0.7, (λ3 + β3) = 0.6.

Therefore, the system (37) is asymptotically stable, since
all the sums have moduli less than one.

The system (37) is reachable at the point (h, k),
h, k > 0 since the matrix

[
B1 0
0 B2

]
=

[
2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

]

contains n = 3 linearly independent monomial columns.
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The system (37) is observable at the point (h, k),
h, k > 0 since the matrix

C =
[
C1 C2

]
=

[
1 0 0
0 1 0
0 0 2

]

contains n = 3 linearly independent monomial rows.
�

Example 2. Consider the 2D system described by the
model (21) with the matrices

A0
0 =

[
0.1 0
0 0.2

]
, A1

0 =

[
0.1 0
0 0

]
,

A0
1 =

[
0.15 0
0 0.1

]
, A1

1 =

[
0.1 1
0 0.1

]
,

A0
2 =

[
0.2 0.1
0 0

]
, A1

2 =

[
0 0
0 0.1

]
,

B0 =

[
1 0
0 1

]
, B1 =

[
0 0
0 1

]
,

B2 =

[
1 0
0 0

]
, C =

[
1 0
0 1

]
,

D =

[
0 0
0 0

]
, n = 2. (37)

The system (38) is positive because A0
0, A1

0, A0
1, A1

1, A0
2,

A1
2 are Metzler matrices satisfying the conditions

a00
11 + a01

11 = 0.20 ≥ 0, a00
11 + a01

22 = 0.10 ≥ 0,

a00
22 + a01

11 = 0.30 ≥ 0, a00
22 + a01

22 = 0.20 ≥ 0,

a10
11 + a11

11 = 0.25 ≥ 0, a10
11 + a11

22 = 0.25 ≥ 0,

a10
22 + a11

11 = 0.20 ≥ 0, a10
22 + a11

22 = 0.20 ≥ 0,

a20
11 + a21

11 = 0.20 ≥ 0, a20
11 + a21

22 = 0.30 ≥ 0,

a20
22 + a21

11 = 0.0 ≥ 0, a20
22 + a21

22 = 0.10 ≥ 0,

and B0, B1, B2, C, D have nonnegative entries.

Taking into account that the matrix

[
A0

1 + A0
2 A0

0

I2 02

]([
A1

1 + A1
2 A1

0

I2 02

])

has eigenvalues λ1 = 0.5364, λ2 = −0.1864, λ3 = 0.5,
λ4 = −0.4 (μ1 = 0.3702, μ2 = −0.2702, μ3 = 0,

μ4 = 0.2), we obtain

(λ1 + β1) = 0.9066, (λ1 + β2) = 0.2662,

(λ1 + β3) = 0.5364, (λ1 + β4) = 0.7364,

(λ2 + β1) = 0.1838, (λ2 + β2) = −0.4566,

(λ2 + β3) = −0.1864, (λ2 + β4) = 0.0136,

(λ3 + β1) = 0.65, (λ3 + β2) = 0.65,

(λ3 + β3) = 0.5, (λ3 + β4) = 0.3
(λ4 + β1) = 0.8702, (λ4 + β2) = 0.2298,

(λ4 + β3) = −0.4, (λ4 + β4) = −0.2.

Therefore, the system (38) is asymptotically stable, since
all the sums have moduli less than one.

The system (38) is reachable at the point (h, k),
h, k > 2 since the matrix

[
B1 B2

]
=
[

0 0 1 0
0 1 0 0

]
contains n = 2 linearly independent monomial columns.

The system is observable at the point (h, k), h, k > 0
since the matrix

C̄Ā0 =

⎡
⎢⎢⎢⎣

0.2 0 0 0
0 0.1 0 0
0 0 0.3 0
0 0 0 0.2

⎤
⎥⎥⎥⎦

contains n2 = 4 linearly independent monomial rows.
�

10. Concluding remarks

The notion of a positive 2D discrete-time linear Lyapunov
system described by two different models have been intro-
duced. For both the models necessary and sufficient con-
ditions for positivity (Theorems 1 and 5), asymptotic sta-
bility (Theorems 2 and 6), reachability (Theorems 3 and 7)
and observability (Theorems 4 and 8) were established.
The discussion was illustrated with numerical examples.
Minimum energy control and constrained controllability
of 2D Lyapunov systems are open problems. So is the de-
termination of relationships between the presented mod-
els.
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