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STATISTICAL ESTIMATION OF THE DYNAMICS OF WATERSHED DAMS
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In the present study the notion of watershed contour dynamics, defined within the framework of mathematical morphology,
is examined. It is shown that the dynamics are a direct measure of the “sharpness” of transition between neighboring
watershed basins. The expressions for the expected value and the statistical error of the estimation of contour dynamics are
derived in the presence of noise, based on extreme value theory. The sensitivity of contour dynamics to noise is studied. A
statistical approach to the notion of contour dynamics is developed and a definition of statistical dynamics is proposed.
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1. Introduction

Segmentation and contour extraction are essential proce-
dures for many image analysis tasks. The general segmen-
tation problem involves assigning labels to the pixels of an
analyzed image in such a way that two pixels of an image
have the same label if and only if they belong to the same
homogeneous regions of the scene. Obviously, the most
ambiguous step of segmentation is deciding whether two
pixels are or are not within a “homogeneous” region.

Many techniques have been proposed to deal with
the image segmentation problem. According to the edge-
based approach, object edges are detected first and then
grouped into object boundaries. Edge-based local ap-
proaches, which use gradient information to obtain the
edges, frequently suffer from either false acceptance of
non-edge pixels as edge ones or classifying edge pixels
as non-edge ones. These errors, which arise due to noise,
generally do not allow generating closed curve represen-
tations of object boundaries.

The watershed transform (Beucher and Lan-
tuéjoul, 1979) is a powerful edge-based method of
segmentation, developed within the framework of math-
ematical morphology. It overcomes the problem of
non-closed object boundaries. Watershed basins and wa-
tershed dams are obtained as the result of the watershed
transform. However, watershed segmentation typically
leads to strong oversegmentation of an analyzed image.
Due to noise, there are significantly more watershed
basins than objects in the scene and, consequently, some

watershed dams do not correspond to real edges. Usually,
however, it can be assumed that some watershed dams
are already aligned with true edges and the remaining
problem is to reject the false dams. Many methods have
been proposed for that purpose, among other things,
watersheds from markers (Vincent and Soile, 1991;
Beucher and Meyer, 1993). In that case, the watershed
transform starts from a pre-selected set of markers rather
than from all regional minima. The selected markers
are used to modify the original landscape by means of
geodesic reconstruction so that the regional minima of
the reconstructed image are located only at the imposed
markers.

Other methods of dealing with oversegmenta-
tion include different hierarchical or hybrid approaches
(Beucher, 1994; Najman and Schmitt, 1996; Haris et
al. 1998). Generally, the aim of hierarchical segmenta-
tion based on the watershed transform is to group neigh-
boring watershed basins through the use of some crite-
ria, involving the properties of both these basins and the
dam separating them. To assign importance to watershed
dams, the notion of contour dynamics has been developed
within the framework of mathematical morphology (Naj-
man and Schmitt, 1996). However, as suggested by Haris
et al. (2001), the morphological value of contour dynam-
ics can be a poor estimate of real contour importance, es-
pecially in the case of noisy images, since it depends only
on the difference of gray-level intensities in some two pix-
els. Except for this suggestion, there is, however, no sys-
tematic study of the sensitivity of contour dynamics with
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respect to noise.
This work presents an interpretation of the concept

of contour dynamics as well as a statistical approach to
the problem of estimating contour dynamics. Errors in
the estimation of contour dynamics and their dependence
on noise intensity are calculated based on extreme value
theory (Burry, 1975).

2. Background of watershed transform
methods

2.1. Watershed transform. Let A be a set, and a and
b two points of A. The geodesic distance dA(a, b) in A
is the lower bound of the length of the paths connecting a
and b in A. In the case of a digital image, the distance is
inherited from the underlying grid. The geodesic distance
dA(a, B) from a point a to the set B is defined as

dA(a, B) = min
c∈B

dA(a, c). (1)

Let

B =
k⋃

i=1

Bi ⊂ A,

where Bi are connected components of B. The geodesic
influence zone izA(Bi) of Bi is defined as

izA(Bi) = {a ∈ A, ∀j ∈ [1, k]\{i},
dA(a, Bi) < dA(a, Bk)}. (2)

The union of the influence zones izA(Bi) of Bi is denoted
by IZA(B) (Fig. 1). Finally, let f : A → Z be a bounded
function from A to the set of natural numbers, hmin =
min f, hmax = max f, [f ]h = {a ∈ A, f(a) ≤ h}. The
set of catchment basins of f is the set Xhmax obtained after
the following recurrence:

Xhmin = [f ]hmin,

Xh+1 = Reg_Minh+1(f) ∪ IZ[f ]h+1(Xh),
(3)

where Reg_Minh+1(f) denotes the union of the regional
minima of f at the level h+1. A regional minimum M at
the intensity h is a connected set of pixels with the inten-
sity h, such that it is impossible to reach a pixel with an
intensity h′ < h starting from M without having to pass a
pixel with an intensity h′′ > h. The watershed of f is the
complementary of Xhmax (Fig. 2).

2.2. Hierarchical segmentation. An undesirable
property of the watershed transform is that it usually leads
to strong oversegmentation. According to the notion of
hierarchical segmentation (Beucher, 1994), one computes
the importance of the contours with respect to some cri-
teria, instead of preventing oversegmentation. The impor-
tance of a contour is used to define a hierarchy of parti-
tions. Formally, a hierarchy P = {Pi, i ∈ {1, 2, . . . , k}}

Fig. 1. Influence zone of every connected subset of an image
(e.g., black disks) includes image pixels which are closer
to a given subset than to the other one. Gray lines denote
pixels which are equidistant relative to at least two con-
nected subsets of an image. These lines form a skeleton
by influence zones.

Fig. 2. Successive steps of the watershed algorithm. Gray lev-
els vary from 1 (darkest region) to 3 (brightest region).
Regional minima are pointed with arrows. Black lines,
consisting of pixels which are not within influence zones
of any regional minima, constitute watershed dams.

on the set A is a family of partitions

Pi = {Pij :
⋃

j

Pij = A,

∀m, n, m �= n : Pim �= Pin}
of A, such that i > j implies that any region of Pi is a
disjoint union of regions of the partition Pj . While the
hierarchy is defined, the features at a given hierarchy level
can be extracted from the scene.

A first example of hierarchical segmentation is
the waterfall algorithm (Beucher and Meyer, 1993;
Beucher, 1994). According to that method, the subse-
quent levels of hierarchy are built based on markers con-
structed from watershed dams of the preceding hierar-
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chy level. Another hierarchy can be constructed relying
on the notion of the dynamics of a regional minimum
(Grimaud, 1992). The dynamics dyn(M) of a regional
minimum M are equal to the highest t such that M is
included in some regional minimum of the geodesic re-
construction by the erosion E∞

f (ft) of ft over f , where
ft(a) = f(a) + t. Consequently, one can create hierar-
chy assigning to every dam of a watershed the maximal
value of t for which the dam belongs to the watershed of
E∞

f (ft) (Najman and Schmitt, 1996). More specifically,
let a be the lowest intensity point on a watershed dam sep-
arating two basins Yi and Yj . A set Bas(a) ⊂ Yi ∪Yj can
be constructed:

Bas(a) = {b : ∃γ, γ(0) = a, γ(1) = b,

∀s ∈ (0, 1] : f(γ(s)) < f(a)}. (4)

The set Bas(a) can be divided into several (at least two)
connected components Bi :

Bas(a) =
⋃

i

Bi.

Then the morphological dynamics dyn(C) associated
with the contour C, to which the saddle point a belongs,
are given by the equation

dyn(C) = min
i

max
bi∈Bi

{f(a) − f(bi)}. (5)

Basically, morphological dynamics of a watershed
dam are the depth (measured relative to the lowest point
of the contour) of the shallowest basin neighboring to the
dam (Fig. 3). Recently, also another definition of contour
dynamics was proposed (Haris et al., 2001):

Dmean(C) = 〈f(C)〉 − min
k,bi∈Bk

f(bi), (6)

where 〈f(C)〉 is the mean value of gray-level intensities
along the contour C. It was argued that Dmean(C) should
be possibly more robust with respect to noise, in compari-
son with dyn(C), because the latter depends only on gray-
level intensities in some two pixels.

3. Interpretation of the dynamics of water-
shed contours

Below, the robustness of the two definitions of contour
dynamics with respect to noise is studied. It is assumed
that the analyzed image A (a subset of Z2) contains only
two regions of constant (on average) gray-level intensity,
separated by a boundary line. Later this assumption is
relaxed. The gray-level intensity f(x, y) within A is given
after appropriate rescaling in the form

Dynamics of

a watershed dam

Fig. 3. Illustration of the notion of contour dynamics.

f(x, y)

= η +

⎧
⎪⎨

⎪⎩

hmin, x < xmin,

k (x − xmin) + hmin, xmin ≤ x ≤ xmax,

k (xmax − xmin) + hmin, x > xmax,

(7)

where η is a zero mean noise term and the parameter k
measures the sharpness of transition between the two re-
gions: a higher value of k denotes a more sharp transition.
Applying a derivative operator to f(x, y) is a common
way to obtain a magnitude of the gradient image, being
the input for the watershed transform. In an ideal case of
no noise, both definitions of contour dynamics, given in
Eqns. (5) and (6), are equivalent and the value of contour
dynamics is equal to the parameter k in Eqn. (7), i.e., it is
a direct measure of the sharpness of the boundary. Below,
an expression for contour dynamics is derived under the
assumption that η is zero mean Gaussian noise with the
standard deviation equal to σ.

Applying a central difference operator to the gray-
level function defined in Eqn. (7), one obtains the magni-
tude of the gradient E(x, y) in a pixel with the coordinates
(x, y) equal to

E(x, y)

=

{√
(k + N1)2 + N2

2 , xmin ≤ x ≤ xmax,√
N2

1 + N2
2 , x < xmin or x > xmax,

(8)

where N1 = 0.5(η(x + 1, y) − η(x − 1, y)), N2 =
0.5(η(x, y+1)−η(x, y−1)), and η(x′, y′) is the value of
the noise term in a pixel with the coordinates (x′, y′). The
probability density function (pdf) pNi of the noise term
Ni (i = 1, 2) can be calculated in a usual way, given the
pdf pη of η:

pNi(s) =
∫

pη(t1)pη(t2)P (s|t1, t2) dt1 dt2, (9)



352 Z. Tabor

where P (s|t1, t2) is the conditional probability that s is
equal to 0.5(t1 − t2), for given values of t1 and t2. This
term is trivially proportional to the Dirac delta function
δ(s − 0.5(t1 + t2)). If η is a zero mean Gaussian ran-
dom variable with the standard deviation σ, then Ni is
also a Gaussian random variable with the standard devi-
ation σ/

√
2. To calculate the pdf of E(x, y), a random

variable s (s = E(x, y)) is defined as s =
√

y2
1 + y2

2 ,
where y1 = k + N1, y2 = N2. The pdfs pY1 and pY2 of
y1 and y2 are equal to

pY1(y1) =
1

σ
√

π
exp

(
− (y1 − k)2

σ2

)
,

pY2(y2) =
1

σ
√

π
exp

(
− y2

2

σ2

)
.

(10)

The pdf pk(s) of s can be calculated from the equation

pk(s) =
∫

pY1(y1)pY2(y2)δ(s2 − (y2
1 + y2

2)) dy1 dy2.

(11)
It can be shown, after switching to polar coordinates,

that the distribution pk(s) of the gradient magnitudes s in
the range xmin < x < xmax is given by

pk(s) =
s

πσ2

π∫

−π

exp
(
− (s − k cos θ)2

σ2

)

· exp
(
− k2sin2θ

σ2

)
dθ.

(12)

If the ratio k/σ is sufficiently large, the damping factor
exp(−k2sin2θ/σ2) is very close to zero except for θ ≈ 0.
Then, replacing it that limit sin(θ) by θ, the damping fac-
tor can be integrated and the following approximation to
pk can be obtained:

pk(s) =
1√
π

s

kσ
exp

(
− (s − k)2

σ2

)
. (13)

For k/σ → ∞, one has
∫∞
0 pk(s) ds = 1. In that

limit, the mean value 〈pk〉 and the standard deviation σpk

of s can be calculated from Eqn. (13). It follows that both
these quantities are increasing functions of σ (Fig. 4):

〈pk〉 = k +
σ2

2k
,

σpk
=

√
σ2

2

(
1 − σ2

k2

)
.

(14)

The distribution pk(s) is parameterized by the value of k
in Eqn. (7). In the limit k = 0, an exact expression for the
distribution pbgr(s) of the gradient magnitudes s in the
range x < xmin or x > xmax is approached:

pbgr(s) =
2s

σ2
exp

(
− s2

σ2

)
, (15)

Fig. 4. Mean value (a) and standard deviation (b) of the distri-
bution of gray-level intensities along an edge for the pa-
rameter k in Eqn. (7) equal to 100 and Gaussian noise
characterized by the standard deviation equal to σ.

with the mean value 〈pbgr〉 and the standard deviation
σpbgr depending only on σ:

〈pbgr〉 =
σ

2
√

π,

σpbgr
=

σ

2
√

4 − π.
(16)

It is reasonable to assume that the watershed trans-
form, when applied to a gradient magnitude image of the
gray-level function specified in Eqn. (7), produces water-
shed dams in edge regions, while watershed basins arise in
regions of f fluctuating around constant values. Then the
distribution of gray-levels within dams and basins follows
from Eqns. (13) and (15), respectively. Having these dis-
tributions determined, morphological dynamics of a dam
can be estimated. For that purpose, it is assumed that
a dam consists of Ledge pixels while a watershed basin
neighboring to the dam contains Lbgr pixels. Then the
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expected value of the dynamics of a dam C is equal to

〈dyn(C)〉 = 〈min(Ledge, pk)〉
− 〈min(Lbgr , pbgr)〉,

〈Dmean(C)〉 = 〈pk〉 − 〈min(Lbgr, pbgr)〉,
(17)

where min(Ledge, pk) denotes a minimal value from a se-
ries of Ledge numbers sampled from the pk distribution
and min(Lbgr, pbgr) is a minimal value from a series of
Lbgr numbers sampled from the pbgr distribution. To cal-
culate 〈min(Lbgr, pbgr)〉, one should notice that the prob-
ability P (min(Lbgr, pbgr) < x) that min(Lbgr, pbgr) is
less than x is equal to

P (min(Lbgr, pbgr) < x) = 1−(1−Fbgr(x)
)Lbgr , (18)

where Fbgr(x), the cumulative distribution function of
pbgr, is equal to

Fbgr(x) = 1 − exp
(
− x2

σ2

)
. (19)

Given the cumulative distribution function of
min(Lbgr, pbgr) (Eqn. (18)), the expected value
〈min(Lbgr, pbgr)〉 and the standard deviation
σmin(Lbgr,pbgr) of min(Lbgr, pbgr) can be calculated:

〈min(Lbgr, pbgr)〉 = 〈pbgr〉 1√
Lbgr

=
σ

2

√
π

Lbgr
,

σmin(Lbgr,pbgr) = σpbgr

1√
Lbgr

=
σ

2

√
4 − π

Lbgr
,

(20)

where 〈pbgr〉 and σpbgr are the expected value and the
standard deviation of the pbgr distribution. Assuming
that pk is approximately a Gaussian with the mean and
the standard deviation given in Eqn. (14), the distri-
bution of min(Ledge, pk) converges to the Gumbel dis-
tribution (Burry, 1975). Then it follows that the ex-
pected value 〈min(Ledge, pk)〉 and the standard deviation
σmin(Ledge,pk) of min(Ledge, pk) are equal to

〈min(Ledge, pk)〉 = 〈pk〉 + (aLedgeγ + bLedge)σk,

σmin(Ledge,pk) = −σpk
aLedge

π√
6
,

(21)

where 〈pk〉 and σpk
are the mean and the standard devia-

tion of the pk distribution, respectively, γ ≈ 0.5772 is the
Euler constant, aLedge and bLedge are equal to

bLedge = F−1

(
1

Ledge

)
,

aLedge = F−1

(
1

aLedge

)
− bLedge ,

(22)

F−1(·) is the inverse of the cumulative distribution
function of the standardized Gaussian distribution and

e = exp(1). The values of 〈min(Lbgr, pbgr)〉 and
〈min(Ledge, pk)〉 are plotted vs. σ for a fixed value of the
number of pixels in Fig. 5 and vs. the number of pixels
within an edge/basin for a fixed value of σ = 30 in Fig. 6.
Combining Eqns. (14), (16), (17), (20) and (21), one has
expressions for the dynamics in the limit of large k/σ:

〈dyn(C)〉 = k + σ

(
σ

2k
+

(γaLedge + bLedge)√
2

−
√

π

4Lbgr

)
,

〈Dmean(C)〉 = k + σ

(
σ

2k
−
√

π

4Lbgr

)
,

(23)

where terms proportional to (σ/k)2 are neglected in the
parentheses.

It follows from Eqn. (22) that in the regime of pk

being approximately Gaussian, Dmean(C) differs from
dyn(C) only by the factor proportional to (aLedgeγ +
bLedge)σ. Keeping in mind that for any given water-
shed dam 〈min(Lbgr, pbgr)〉 and 〈min(Ledge, pk)〉 are es-
timated from a measurement performed in a single pixel,
while 〈pk〉 is estimated from Ledge measurements, the er-
rors of estimating dyn(C) and Dmean(C) are

Err(dyn(C)) =
√

σ2
min(Ledge,pk) + σ2

min(Lbgr,pbgr)
,

Err(Dmean(C)) =

√
σ2

pk

Ledge
+ σ2

min(Lbgr,pbgr)
.

(24)

Fig. 5. Expected value of the minimum from 100 numbers sam-
pled from the pk distribution, plotted vs. the standard
deviation σ of Gaussian noise. The case k = 0 corre-
sponds to the distribution pbgr (Eqn. (15)).

It follows from Eqn. (22) that the error of the mean
of Lbgr numbers sampled from the distribution pbgr is
equal to the error of a single measurement of mini-
mum from these Lbgr numbers, both given by the sec-
ond equation of (20). Consequently, it is not statisti-
cally justified to replace min(Lbgr, pbgr) in the defini-
tion of dynamics by some form of averaging over gra-
dient magnitude values. On the other hand, it may be
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Fig. 6. Expected value of the minimum from L numbers sam-
pled from the pk distribution, plotted vs. L. The stan-
dard deviation σ of Gaussian noise was equal to 30.

advantageous to replace min(Ledge, pk) by 〈pk〉. To see
this, it is shown below how the error of min(Ledge, pk),
equal to σmin(Ledge,pk), decreases with increasing Ledge.
σmin(Ledge,pk) depends on Ledge only through the factor
aLedge , defined in Eqn. (22), which is a decreasing func-
tion of Ledge. The cumulative distribution function F of
the standardized Gaussian distribution is related to the er-
ror function through the expression

F (x) =
1
2

(
1 + erf

(
x√
2

))
. (25)

To calculate bLedge and aLedge , an approximation to
F (x), correct for large x, can be used:

(erf(x))2 ≈ 1 − exp(−x2). (26)

Thus, from Eqns. (25) and (26), one has

F (x1) =
1

Ledge
=

1
2

(
1 +

√

1 − exp
(
− x2

1

2

))
,

F (x2) =
1

eLedge
=

1
2

(
1 +

√

1 − exp
(
− x2

2

2

))
.

(27)

aLedge is equal to the difference x2–x1 and it can be shown
that aLedge approaches for large Ledge,

aLedge ≈
(
2 · ln(Ledge)

)−0.5
. (28)

Consequently, because the error of min(Ledge, pk) de-
creases like ln(Ledge)−0.5, while the error of 〈pk〉 de-
creases like (Ledge)−0.5, Dmean(C) can be possibly more
robust to noise than dyn(C).

There can be, however, a serious disadvantage of us-
ing either dyn(C) or Dmean(C) to assess contour dynam-
ics. Namely, it follows from Eqn. (23) that for sufficiently

large Lbgr, Dmean(C) increases with σ, which is unde-
sirable because noise usually destroys edges but not am-
plifies them. 〈dyn(C)〉 decreases with σ as long as the
absolute value of the negative term γaLedge + bLedge and
thus Ledge are sufficiently large. In fact, it is easy to see
that it happens for all σ, k and Ledge for which σ/k is
small. The values of dyn(C) and Dmean(C) are plotted
vs. σ in Fig. 7 together with the respective error bars.

Unfortunately, if f(x, y) is piecewise linear, then
both dyn(C) and Dmean(C) may behave poorly under
some circumstances. Indeed, if f(x, y) is piecewise linear,
then the distribution pmix(s) of the gradient magnitudes s
within an image is a mixture of pk distributions:

pmix(s) =
kmax∑

k=kmin

πk · pk(s), (29)

with some minimal kmin and maximal kmax values of k.
Then, if an image contains an edge with k = kmax = 250,
separating regions of more slowly varying gray-levels
(k = kmin = 150), then both dyn(C) and Dmean(C)
may increase with σ (Fig. 8).

Fig. 7. Morphological (squares) and statistical (circles) contour
dynamics plotted vs. the standard deviation σ of Gaus-
sian noise. The dynamics were calculated for gray-level
intensity function given in Eqn. (7). In the calculations,
the following values of parameters were used: k = 100,
Ledge = 40, Lbgr = 1600.

Another disadvantage of calculating dynamics, based
on either Eqn. (5) or (6), is that dynamics so defined de-
pend on the shape of the basin. Assuming again that
f(x, y) is piecewise linear and the distribution of gradient
magnitudes is given by Eqn. (29), the minimum intensity
min(Lbgr, pmix) within a basin consisting of Lbgr pixels
is equal to

min(Lbgr, pmix)
= min{min(Lbgr · πk, pk) :

k ∈ {kmin, kmin + 1, . . . , kmax}}.
(30)

Clearly, min(Lbgr, pmix) is in general dependent on all
πks and it follows from Eqns. (20) and (21) that, for ex-
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Fig. 8. Morphological (squares) and statistical (circles) contour
dynamics plotted vs. the standard deviation σ of Gaus-
sian noise. The dynamics were calculated for a piece-
wise linear gray-level intensity function with kmin =
150, kmax = 250, Ledge = 40, Lbgr = 1600.

ample, its value for large πkmin is different from the value
for small πkmin .

Summarizing the results of the current section, it has
been shown that in an ideal case the dynamics of a contour
measure the difference Δk of gradient magnitudes within
a watershed dam and a watershed basin. If noise is present
in an analyzed image, the dynamics defined in Enqs. (5)
and (6) give, however, a biased estimate of that differ-
ence, systematically dependent on σ as demonstrated in
Eqn. (23). The dynamics depends also on the shape of the
basin. Finally, the error of measuring dyn(C) decreases
only logarithmically with the length of a watershed dam,
while a smaller error of dynamics estimation is possible
when averaging is performed instead of taking minimal
values from gradient magnitudes.

4. Vector-based definition of statistical dy-
namics

Even if the difference between gradient magnitudes within
a basin and a watershed dam is zero, in the presence of
noise contrast dynamics are nonzero, as demonstrated in
the previous section. To obtain an unbiased, with this re-
spect, estimate of contour dynamics, a two-dimensional
random variable Y = (y1, y2) is introduced, such that the
pdfs of the components y1 and y2 are generalizations of
Eqn. (10) and thus the pdf of Y has the form

p(Y) =
1

σ
√

π
exp

(
− |Y − k|2

σ2

)
, (31)

where | · | denotes a vector norm and the vector k can gen-
erally be a function of the coordinates (x, y). Because the
pdf of a sum of Gaussian distributions is also a Gaussian,
averaging Ys over a watershed dam is a means of esti-
mating the mean gradient vector k. Hence, the magnitude
|ȲD| of the arithmetic mean ȲD, taken over Ys within a

watershed dam (in contrast to the arithmetic mean of mag-
nitudes, used in the definition of dynamics), provides an
unbiased and independent on σ estimate of the mean gra-
dient magnitude along the dam. The standard deviation of
|ȲD| is equal to σ/

√
Ledge.

Assuming an arbitrary shape of the watershed basin,
the distribution of Ys within a basin is a mixture of Gaus-
sians. To find that component of the mixture which cor-
responds to the minimal gradient magnitude within the
basin, a growth process is performed as described in
the next section. As the result of the process, a single-
connected set of pixels S is created, which contains the
pixel with the lowest gradient magnitude within the water-
shed basin and such that the gradient magnitudes within S
can be approximated by a plane of a constant gray level.
Then the mean value |ȲS| of Ys within S is an estimate
of the mean gradient vector g within S. Finally, the mag-
nitude |ȲS| is compared with |ȲD|, as described below.

The key observation is that statistical dynamics can
be assigned to a watershed dam by means of the following
statistical testing procedure. Namely, it is shown below
that the pdf of the variable z defined by

z =
|ȲD| − |ȲS|

σ√
2

√
Ledge + LS

LedgeLS

(32)

(where LS is the number of pixels within S) can be ap-
proximated by the standard normal distribution if |k| =
|g|. Thus, according to the null hypothesis, it is assumed
that |k| = |g| (a watershed dam is not related to a true
edge). Then the value of z is calculated and it is checked,
based on the known pdf of z, whether the null hypothe-
sis can be rejected given some significance level. Clearly,
any given significance level corresponds to a level of the
hierarchy of partitions: the level of the hierarchy is con-
structed by leaving only those watershed dams which are
statistically significant.

Now, to show that the pdf of z is a standard nor-
mal distribution, let us assume that the components of the
mean gradient vector k within a watershed dam consisting
of Ledge pixels are equal to k1 and k2 in some orthogonal
frame of reference. Then it follows that the pdf pD(s) of
the magnitude s of |ȲD| is equal to

pD(s) =
Ledge

πσ2

∞∫

0

r dr

2π∫

0

dθ

· e
−Ledge

σ2

(
(r cos θ−k1)

2+(r sin θ−k2)
2

)

· δ(r − s).

(33)

Because the integral over the angle variable is invariant
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under rotations, pD(s) can be rewritten in the form

pD(s) =
s · Ledge

πσ2

2π∫

0

dθ

· exp
(
− Ledge

σ2

(
(s cos θ − |k|)2

+ (s sin θ)2
))

,

(34)

which is analogous to Eqn. (12). The pdf pS(s) of the
magnitude s of ȲS can be found in a similar manner.
Then a random variable u is introduced such that u =
|ȲD| − |ȲS|. The pdf pu(u) of u is equal to

pu(u) =
Ledge · LS

π2σ4

∞∫

0

ds · s(s − u)

· F
(

s − u, |k|, σ√
Ledge

)
F

(
s, |g|, σ√

LS

)
,

(35)

where

F (x, k, σ)

=

2π∫

0

dθ · exp
(
− (x cos θ − k)2 + x2 sin2 θ

σ2

)
.

(36)

Assuming again that k/σ is large and |k| = |g|,
Eqn. (35) can be rewritten in the form

pu(u) =

√
Ledge · LS

πσ2|k|2
∞∫

0

ds · s(s − u)

· exp
(
−Ledge(s − |k|)2

σ2

)

· exp
(
−LS(s − u − |k|)2

σ2

)
.

(37)

Changing the variable s to x = s − |k|, one obtains

pu(u)

=

√
Ledge · LS

πσ2

∞∫

−|k|

dx

(
1 +

x

|k|
)
·
(

1 +
x − u

|k|
)

· exp
(
−Ledgex

2

σ2

)
exp

(
−LS(x − u)2

σ2

)
.

(38)

If |k| is large, the following approximation is valid:

pu(u) ≈
√

Ledge · LS

πσ2

∞∫

−∞
dx

· exp
(
−Ledgex

2

σ2

)
exp

(
−LS(x − u)2

σ2

)
,

(39)

which is the pdf of the difference of two Gaussian random
variables. Hence it follows that z defined in Eqn. (32)
is a standard Gaussian random variable. In fact, it can
be easily verified experimentally that the approximation
given in Eqn. (39) is quite good even for k/σ ≈ 0.5.

Concluding this section, the procedure of assigning
statistical significance to a watershed dam consists of the
following steps:

• Calculate and average the components of the gradient
along a watershed dam and then calculate the magni-
tude of the average.

• Calculate and average the components of the gradient
within the subset S of the watershed basin and then
calculate the magnitude of the average.

• Calculate the statistics z, given in Eqn. (32), and test,
assuming some significance level, whether this is sig-
nificantly different from zero.

5. Growth model

Generally, the problem of finding a simply-connected set
of pixels S, which contains the pixel with the lowest gra-
dient magnitude within the watershed basin and such that
the gradient magnitudes within S can be approximated by
a plane of a constant gray level, can be reformulated as a
properly defined growth process. The growth starts from
an initial decomposition of an analyzed image into flat
zones, as from the definition of flat zones they are planes
of constant gray levels. Then the flat zone correspond-
ing to the pixel with the lowest gradient magnitude within
a basin is eventually merged with groups of neighboring
flat zones. The merge step is accepted only if the gray
levels within the set of merged flat zones can be approxi-
mated with a plane of a constant gray level. This condition
can be tested with appropriate statistical tools. Here, the
multiple regression model is used and the plane is con-
sidered to be of a constant gray level if the corresponding
coefficients of the regression model are not significantly
different from zero, given some significance level.

To the best of the author’s knowledge, the compu-
tational complexity of such a procedure is exponential.
Thus in the present study the following growth process
was performed to find S: an empty stack is created for
every gray level in the image. The growth starts from
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(a) (b) (c)

(d) (e) (f)

Fig. 9. (a) Artificially generated noisy image, (b) its magnitude gradient image calculated using a two-point operator, (c) watersheds
of (b), (d) watersheds significant at the 10−5 significance level, (e) watershed dams with morphological dynamics higher than
three, (f) watershed dams with morphological dynamics higher than four.

the pixel with the minimal gradient amplitude within the
basin. The neighbors of the initial point are added to the
heaps corresponding to the gray levels of these pixels.
Next, the growth starts from the pixel at the top of the
non-empty stack having the lowest gray-level. This pixel
is removed from the stack and its neighbors are added to
corresponding stacks. Only pixels belonging to the same
basin as the initial pixels are considered in the growth.
The growth is terminated if all stacks become empty or
if the size of S exceeds some limiting value. Every m
iterations (m = 5 was used in this study), it is checked
if the gray-levels within the cluster of pixels can be ap-
proximated with a plane of a constant gray level. If this

condition is fulfilled, the configuration of pixels is stored.

6. Results and discussion

The drawbacks of morphological dynamics manifest
themselves in a most striking manner when analyzing im-
ages with the gray-level function equal to some constant
plus Gaussian noise. While, intuitively, the dynamics of
such an image should be zero, morphological dynamics
are not. The distribution of gradient magnitudes is given
by Eqn. (15) in such a case. Assuming that the mean area
of a basin is equal to L pixels (L is roughly equal to the
inverse of the probability of obtaining such 3 × 3 config-
uration of pixels that a minimal gray-level is in the center
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. (a) Image of a real scene (blocks), (b) watersheds of the gradient magnitude of (a), (c) watershed dams with morphological
dynamics higher than 0, (d) watershed dams with morphological dynamics higher than one, (e) watersheds significant at the
0.06 significance level, (f) watersheds significant at the 0.02 significance level.

of a 3 × 3 cluster. If a Gaussian filter with the kernel of
size s is applied to a noise image, then L is proportional
to the square of s, because only minima global within the
filter support survive filtering) and the length of a dam
is proportional to the square root of L, it follows from
Eqn. (20) that morphological dynamics are proportional
to L−1/4−L−1/2, hence equal to zero only in the limit of
an infinite L. In contrast, the expected value of statistical
dynamics is equal to zero independently of L.

To further test the performance of the proposed pro-
cedure of calculating statistical dynamics, it was applied
to images of artificial structures (a sample structure is pre-

sented in Fig. 9). Both morphological and statistical dy-
namics were calculated according to Eqns. (5) and (32),
respectively. In Fig. 9(d), only watershed dams signifi-
cant at the 10−5 level were left (z > 4.26). In Figs. 9(e)
and 9(f), watershed dams with morphological dynamics
higher than 3 and 4, respectively, were left. Clearly, in-
creasing the threshold for morphological dynamics results
in removing both false and true edges from the watershed
image. In contrast, statistical dynamics are quite robust to
noise. In fact, almost all artificial dams are removed at the
10−3 significance level.

The procedure for statistical dynamics was also ap-
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. (a) Image of a real scene (washers), (b) watersheds of the gradient magnitude of (a), (c) watershed dams with morphological
dynamics higher than four, (d) watershed dams with morphological dynamics higher than six, (e) watersheds significant at the
2 × 10−7 significance level, (f) watersheds significant at the 10−12 significance level.

plied to images of real scenes (Figs. 10 and 11). The ac-
tual values of the dispersion of noise are not known in that
case and the significance levels in the caption were calcu-
lated assuming σ = 5. In contrast, morphological dynam-
ics are an absolute quantity. It is, however, clear from the
images that even if the actual noise intensity and the noise
model are not known, the evaluation of watershed dams
with statistical dynamics better removes false dams than
morphological dynamics.

In the derivations presented in the previous sections,
the properties of a gradient image, generated with the sim-

plest, two-point gradient operator, were analyzed. Clearly,
if one replaces the two-point gradient operator with an-
other linear gradient kernel, involving n points instead of
two, σ/

√
2 in the denominator on the right-hand side of

Eqn. (32) must be replaced with σ/
√

n. If the standard
deviation of noise is not known, its value can be removed
from Eqn. (32) with the cost that statistical significance
can be no longer assigned to the watershed dams.

The proposed definition of statistical dynamics can
be extended to the case of non-uniform noise. In many
important cases of image acquisition devices, the photon
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counting, underlying image acquisition, is a Poisson pro-
cess with the standard deviation inversely proportional to
the square root of the number of registered photons. Usu-
ally, the assumption about the Gaussian distribution of
noise is reasonable because the Poisson distribution ap-
proaches the Gaussian one for a large number of regis-
tered photons. However, for linear detectors, the standard
deviation of noise is inversely proportional to the square
root of the gray-level intensity and may change across an
image if the gray-level intensity function is not constant.
This phenomenon can, however, be easily accounted for
if Eqn. (32) is appropriately modified (for example, z can
be multiplied by a square root of the mean gray level in-
tensity within a basin).

A growth procedure analogous to the one used for
watershed basins can also be applied to watershed dams,
provided that the growth is restricted only to pixels con-
tained within the watershed and that the growth cannot
pass through nodes of the graph associated with the wa-
tershed. In an extreme case, if planes of constant gray
levels associated with pixels having the lowest gradient
magnitudes within basins and dams cannot be found, then
statistical dynamics reduce to morphological ones.

The watershed transform creates closed-curve repre-
sentations of object boundaries, even if the boundary is
not actually closed. Common statistical tools can be used
to find gaps within watershed dams and to evaluate dams
appropriately.

In conclusion, in was shown in this study that mor-
phological dynamics provide a biased estimate of the in-
tensity jump across an object boundary. An unbiased es-
timate of the difference of gradient magnitudes between
a watershed dam and a neighboring watershed basin was
derived. The proposed statistical definition of contour dy-
namics allows defining a hierarchy of partitions, based on
the significance level of watershed dams.
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in 1970. He received an M.Sc. degree in phy-
sics from Jagiellonian University in Cracow,
Poland, in 1994, and a Ph.D. degree from the
same University in 1999. In 2000, he became
an associate professor of biophysics at Jagiel-
lonian University. Since 2006, he has been with
the Cracow University of Technology, where he
is an associate professor at the Image Analysis
Department of the Institute of Applied Com-

puter Science. His research interests focus on biomedical engineering,
biomedical image analysis, and simulations of biological processes.

Received: 26 January 2008
Revised: 30 April 2008


	Introduction
	Background of watershed transform methods
	Watershed transform
	Hierarchical segmentation

	Interpretation of the dynamics of watershed contours
	Vector-based definition of statistical dynamics
	Growth model
	Results and discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


