
Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 3, 399–412
DOI: 10.2478/v10006-009-0033-3

INTERVAL ANALYSIS FOR CERTIFIED NUMERICAL SOLUTION OF
PROBLEMS IN ROBOTICS

JEAN-PIERRE MERLET

INRIA, 2004 Route des Lucioles, 06902 Sophia-Antipolis, France
e-mail: Jean-Pierre.Merlet@inria.fr

Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved
numerically with a computer. Examples of such problems are system solving and global optimization, but numerous
other problems may be addressed as well. This approach has the following general advantages: (a) it allows to find
solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are
physical parameters; (b) numerical computer round-off errors are taken into account so that the solutions are guaranteed;
(c) it allows one to take into account the uncertainties that are inherent to a physical system. Properties (a) and (c) are of
special interest in robotics problems, in which many of the variables are parameters that are measured (i.e., known only up
to some bounded errors) while the modeling of the robot is based on parameters that are submitted to uncertainties (e.g.,
because of manufacturing tolerances). Taking into account these uncertainties is essential for many robotics applications
such as medical or space robotics for which safety is a crucial issue. A further inherent property of interval analysis that
is of interest for robotics problems is that this approach allows one to deal with the uncertainties that are unavoidable in
robotics. Although the basic principles of interval analysis are easy to understand and to implement, this approach will be
efficient only if the right heuristics are used and if the problem at hand is formulated appropriately. In this paper we will
emphasize various robotics problems that have been solved with interval analysis, many of which are currently beyond the
reach of other mathematical approaches.

Keywords: interval analysis, uncertainties, robotics.

1. Introduction

In this paper we will consider robotized systems whose
main purpose is to manipulate objects, although many
other objectives may be assigned to such systems. A first
important component of the robot is its end-effector which
will grasp the object. The pose of the end-effector is
defined as a set of parameters that allows one to deter-
mine what is the location/orientation of the end-effector
in its surrounding world. For that purpose, a reference
frame Rf = (O, x, y, z) is defined, while a mobile frame
Rm = (C, xr , yr, zr) is attached to the end-effector. A
possible set of parameters for defining a pose is first the
three coordinates of the point C of the end-effector and
three angles (such as Euler’s angles), and it allows one
to define a rotation matrix R between the vectors of the
mobile frame and those of the reference frame. The end-
effector is thus considered as a rigid body and it is well
known that in the 3D space the minimal number of param-
eters necessary to define the location/orientation of this
body is six. The objective of a robot manipulator is to con-

trol all or part of the possible motion of the end-effector,
called its degree of freedom. If a robot allows to control
all possible motion of the end-effector it will be called a
6 degrees-of-freedom robot, or a 6 d.o.f. robot for short.
For some tasks it is not necessary to control all motion:
for example, a crane that moves an object only along the
x, y, z axis without offering the possibility of changing its
orientation is a 3 d.o.f. robot.

In order to control the d.o.f. of the end-effector,
a robot manipulator has a mechanical structure, i.e., an
arrangement of joints and links. A link is a rigid body
that connects two (or more) joints. A joint allows rela-
tive motion between two links that are connected to it. In
robotics, the most frequently used joints allow only one
possible type of motion between the links, for example, a
rotation around a given axis for revolute joint or a transla-
tion along a given axis for prismatic joint. Joints may be
passive (they just follow the overall motion of the struc-
ture according to mechanical laws) or actuated: a motor
is able to modify the relative position of the links that are

Jean-Pierre.Merlet@inria.fr

400 J.-P. Merlet

connected to the joint. For actuated joints, sensors are
used to measure the relative motion of the links.

A typical robot manipulator is the Scara robot pre-
sented in Fig. 1. It has four d.o.f., allowing to move the
end-effector along the x, y, z axis, but also to rotate it
along the z axis.

joint

links

end-effector

Fig. 1. 4 d.o.f. SCARA robot.

Its mechanical architecture is called serial: starting
from the ground we find a series of links and actuated
joints. If we denote by L a link, by R a revolute joint and
by P a prismatic joint, then the structure of the robot may
be described as LRLRLRLP, the end-effector being con-
nected to the extremity of the prismatic joint. All joints of
this robot are actuated and it has no passive joint.

Hence a robot is a motion generator that allows one
to modify the pose q of the end-effector (the objective) by
adjusting the relative position θ of the links of the struc-
ture using the actuated joints (the control). As we will see,
most robotic problems involve the management of the re-
lationship between q and θ (and possibly their time deriva-
tives) under various constraints.

2. Robotics and certification

Certification is a crucial issue in robotics at different lev-
els:

• for a better understanding of the complex behavior of
robotized systems: simulations, even based on a the-
oretical model of the robot, should be able to present
all aspects of the possible behavior of the robot. For
example, a robot may move among obstacles that
have to be avoided and a simulation system should
be able to detect all such collisions in spite of numer-
ical round-off errors;

• for critical applications: robots may have to perform
safety-critical applications (e.g., medical robots per-
forming surgical operations) and have thus to be cer-
tified, i.e., we have to ensure that even in the worst
case the robot will behave correctly.

However, as every mechanically controlled system, un-
certainties are an unavoidable element of a robotized sys-
tem: we have manufacturing tolerances in the mechani-
cal parts, sensor measurement errors, control errors, nu-
merical round-off errors in the computer used for control
and uncertainties in the surrounding world of the robot,
to name a few. All these elements have to be taken into
account when designing and building the robot and when
controlling its motion.

Fortunately, all these uncertainties have a common
feature: they may be all bounded, i.e., we are able to de-
termine intervals for each of them so that we are sure that
the real value of a given parameter lies within the interval.
Hence, interval analysis is a tool that has to be consid-
ered when dealing with a robotic problem. Interval anal-
ysis (Hansen, 2004; Jaulin et al., 2001; Moore, 1979) is a
numerical method that allows one to solve a broad range
of problems (going from system solving to global opti-
mization). In robotics, it has been early used for solving
the inverse kinematic problem (a problem that will be de-
veloped in the next section) for a serial 6R robot (Rao
et al., 1998) but is now used for addressing other robotic
problems such as

• the effect of clearance on the accuracy of robots (Wu
and Rao, 2004),

• ensuring robot reliability (Carreras and Walker,
2001),

• a mobile robot’s localization and navigation
(Ashokaraj et al., 2004; Clerentin et al., 2003; Ki-
effer et al., 2000; Seignez et al., 2005), and
simultaneous localization and mapping (SLAM)
(Drocourt et al., 2003),

• planning the motion of robot (for example, for avoid-
ing obstacles) (Piazzi and Visioli, 2000),

• collision detection (Redon et al., 2004),

• calibration (i.e., find the real value of some geomet-
rical parameters of the robot, the input being external
measurements of the end-effector pose at various lo-
cation) (Daney et al., 2006)

to name a few. We will address in this paper some of these
problems and explain how interval analysis may provide a
certified answer to them.

3. Interval analysis

In this special issue we will assume that the basic prin-
ciples of interval arithmetic have been exposed. In prac-
tice, for the implementation we use the interval arithmetic
package BIAS/Profil1, which is widely distributed.

1http://www.ti3.tu-harburg.de/Software/
PROFILEnglisch.html

http://www.ti3.tu-harburg.de/Software/
PROFILEnglisch.html

Interval analysis for certified numerical solution of problems in robotics 401

Our algorithms will use interval boxes (i.e. a set of inter-
vals), and we will assume that we are looking for a solu-
tion of a robotic problem only within a bounded domain,
called the search domain, in the space of unknowns. For
the sake of simplicity, we will assume that the search do-
main is also defined as a box, but this assumption may
be dropped at will. In general, an interval analysis algo-
rithm may be described as the management of a list of
boxes, each box in the list being submitted to four opera-
tors, namely, filtering, evaluation, existence and bisection.

We will now briefly describe the role of these opera-
tors when applied to a given box:

• filtering: this operator may show, in a certified way,
that either the problem has no solution within the cur-
rent box or that only a smaller box strictly included
in the current box may contain solutions of the prob-
lem;

• evaluation: this operator may show, in a certified
way, that the problem has no solution within the cur-
rent box or that all values of the unknowns within the
current box are solutions of the problem;

• existence: this operator may show, in a certified way,
that there is a single solution of the problem in a box
included in the current box, and the solution that may
be calculated with an arbitrary accuracy;

• bisection: this operator splits the current box in two
(or more) boxes by splitting one of the box interval
into two (or more) intervals whose union is the initial
interval.

A box procedure manages the list of boxes, which
has a single element, the search domain, when starting the
algorithm. It will discard from the list the boxes that have
already been submitted to the operators or have been elim-
inated by the filtering or evaluation operators and add to
the list the boxes resulting from the bisection operator. It
will also store the solution as determined by the existence
operator and the algorithm will complete whenever the list
becomes empty. It may be seen that such an algorithm is
of the branch and bound type, whose worst case complex-
ity is exponential because of the bisection process. How-
ever, the practical complexity is quite often tractable, as
will be seen later on.

We will now present some practical examples of the
filtering, evaluation and existence operators, applied using
a very simple example, finding the solutions of the equa-
tion f(x) = x2 − 4x+ 1 = 0 in the interval [−10, 10].

3.1. Filtering. There are numerous methods that may
be used for the filtering operator (Lebbah et al., 2004),
but we will shortly describe a simple filtering approach,
called the 2B method. The equation f(x) = 0 may also
be written as 4x = x2 + 1. Assuming that x has an

interval value, this interval will include a solution only
within the intersection of the interval evaluation of 4x
and of x2 + 1. If x is [−10, 10], then this intersection is
[−40, 40]∩ [1, 101] = [1, 40]. Assuming an interval eval-
uation of [1, 40] for 4x, we deduce that x should lie in the
interval [1/4, 10] while the inverse evaluation of [1, 40] =
x2 + 1 leads to [−√

39,
√

39] as a possible value for x.
Combining these two results, we get that within the search
domain only the interval [1/4,

√
39] may include a solu-

tion of the equation. Hence with a few arithmetic opera-
tions we have been able to reduce the width of the search
domain from 20 to less than six. Note that we may repeat
the procedure using the new interval for x by computing
[1, 4

√
39]∩ [17/16, 40] = [17/16, 4

√
39] but with a much

smaller gain. While this method has been illustrated with
a simple example it can also be used using a more complex
one. Consider, for example, sin(x2y−x) = 0, which may
be written also as sin(x) = cos(x) sin(x2y)/ cos(x2y),
provided that the interval evaluation of cos(x2y) does not
include 0. Computing the interval evaluation of both terms
of this equation may lead to an improvement in sin(x),
which may then be used to improve the interval for x.

Such a filtering method is called local because it
deals with one equation and one variable at a time
but there are also global methods (such as interval
Newton) that may manage simultaneously several equa-
tions (Neumaier, 1990).

3.2. Evaluation. The most simple evaluation operator
just consists in calculating the interval evaluation of the
equation and determining if it includes 0. For example, if
we assume that x has the interval value [−10,−4], then
the interval evaluation of f(x) is [33, 141] and we may
safely discard this box as it cannot contain a solution of
the equation. But more sophisticated evaluation operators
exist, as will be presented later on.

3.3. Existence. We will now briefly introduce the Kan-
torovitch theorem that may be used to define an existence
operator. Let a system of n equations in n unknowns

f = {fi(x1, . . . , xn) = 0, i ∈ [1, n]},

each fi being at least C2. Let x0 be a point and a ball
U , U = {x/||x − x0|| ≤ 2B0}, the norm being ||A|| =
Maxi

∑
j |aij |. Assume that x0 is such that

1. the Jacobian matrix of the system has an inverse Γ0

at x0 such that ||Γ0|| ≤ A0,

2. ||Γ0f(x0)|| ≤ B0,

3.
∑n

k=1 |∂
2fi(x)
∂xj∂xk

| ≤ C for i, j = 1, . . . , n and x ∈ U ,

4. the constants A0, B0, C satisfy 2nA0B0C ≤ 1.

402 J.-P. Merlet

Then there is a unique solution of f = 0 in U and the
Newton method used with x0 as the estimate of the so-
lution will converge toward this solution (Tapia, 1971).
Kantorovitch being a second order method will usually
leads to a better result than the interval Newton method.

We will now illustrate how this theorem may be used
to determine a ball centered at x0 = 4, which will include
a single solution of x2−4x+1 = 0. The Jacobian is 2x−4
whose inverse at x0 is A0 = 1/4, while Γ0f(x0) = 1/4,
thus leading to B0 = 1/4. The Hessian is constant and
equal to C = 2. As n = 1, we get 2nA0B0C = 2 ×
1/4 × 1/4 × 2 = 1/4. Consequently, the Kantorovitch
theorem is satisfied and we may conclude that there is a
single solution of f in the interval [3.5, 4.5] (which indeed
includes the solution 2 +

√
3).

Note that a ball that includes a single solution
of the system (denoted as the existence ball) may be
widened using the inflation process described by Neu-
maier (Neumaier, 2001). Inflating the existence ball is
interesting as later on we will consider other boxes Bi
that may have an intersection with the existence box Be.
Hence we shall consider only the complement of Bi with
respect to Be, provided that this complement is simple to
calculate.

Let us assume that xs is a solution of the system
f(x) = 0 and consider a box B(xs) centered at xs. If
J is the Jacobian of the system and, for all points in B,
J is not singular, then the box includes only one solution
of the system. As B is a box, calculating J for all points
of the box leads to a set S of matrices. If we calculate
now the interval evaluation of each element of J for B,
we get an interval matrix, i.e., a set I of matrices, such
that S ⊂ I as the overestimation of the interval evalua-
tion of the elements of J may lead to matrices that do not
belong to S. Consequently, if we are able to show that the
interval matrix does not include any singular one, then we
can guarantee that xs is the only solution of f = 0 in B.
Checking if an interval matrix does not include singular
matrices may be performed using the following theorem.

Let u be the diagonal element of a matrix H having
the lowest absolute value, let vi be the maximum of the
absolute value of the sum of the elements at row i of H ,
discarding the diagonal element of the row, and let v be
the maximum of the vis. If u > v, then the matrix is
denoted diagonally dominant and H is regular.

This theorem may be extended to the interval ma-
trix by taking for u the lower bound of the absolute value
of the interval diagonal elements of I and for v the upper
bound of the interval valued vis. Note however, that a pre-
conditioning of the interval matrix I may be necessary for
getting a stronger result: instead of applying the theorem
on I, we may use the interval matrix J(xs)−1I, where
J(xs)−1 is the inverse of the Jacobian at xs. Assume
now that Kantorovitch theorem has led to an existence

box and that an approximate solution xs has been calcu-
lated using the Newton scheme. If we define a “small”
constant ε and a sequence of boxes centered at xs as
[xs − 2mε, xs + 2mε],m ∈ [0, 1, 2, . . .], then we may ap-
ply the regularity condition on each box of the sequence
until it fails for m = m1 and get a new existence box as
[xs − 2m1−1ε, xs + 2m1−1ε].

As soon as existence boxes have been determined,
we may use them for a filtering operator: if a box submit-
ted to filtering has an intersection with an existence box,
then we substitute it with its complement with respect to
the existence box. Note, however, that this should be done
only if this complement is a single box (or possibly a set
of two boxes) as creating multiple new boxes may have
a negative influence on the efficiency of the solving algo-
rithm.

3.4. Bisection. When using the bisection process it
is necessary to choose the unknown to which the bisec-
tion will be applied. This is a sensitive issue as this
choice may drastically modify the running time of the al-
gorithm. Classical choice methods are largest first (choos-
ing the unknown having the interval value with the largest
width) and round-robin (bisecting each variable in turn).
The drawback of these methods is that they do not take
into account the influence of the variable on the prob-
lem. Another method is based on the smear function in-
troduced by Kearfott (Kearfott and Manuel, 1990). Let
J = ((Jij)) be the Jacobian matrix of the equations sys-
tem and let us define for each variable xi the smear value
si = Max(|Jij(xi, xi)(xi − xi)|, |Jij(xi, xi)(xi − xi))|.
In the smear approach, the bisected variable will be the
one having the largest si. Our method of choice is to ap-
ply the smear function by default but to apply the largest
first method afterm iterations of the algorithm,m being a
fixed integer that depends on the geometry of the problem.

3.5. General comments. We have presented in the
above sections some fundamentals of interval analysis.
Although the basic principles of interval analysis are
pretty simple, it must be mentioned that in practice the
implementation of an efficient interval analysis requires a
high level of expertise. A very important issue is the way
you define your problem: although mathematically equiv-
alent, the various forms are not so with interval analysis.
This already appear in interval arithmetic as, for example,
x2 + 2x + 1 and (x + 1)2 are mathematically equivalent
but will not always lead to the same interval evaluation;
we will elaborate on that later on but a common mistake is
to translate into interval analysis an already elaborated so-
lution of the problem at hand instead of focusing on what
the problem really is. Such a mistake may be illustrated
by a request we have had from a colleague which provides
us three very complex functions in three variables x, y, z,

Interval analysis for certified numerical solution of problems in robotics 403

asking us to provide an approximation of the region in the
variables space for which the 3 functions values were ly-
ing within some given interval. After a short discussion, it
has appeared that the functions were the closed-form solu-
tions of a third order polynomial whose coefficients were
simple x, y, z functions. Using the closed-form of the so-
lutions, it was almost impossible to determine the region
as their interval evaluation has a very large width, even
for almost point interval, while working with the polyno-
mial was a trivial matter. Hence you must think in terms
of interval analysis and forget about other approaches.

Another issue is that the running time is heavily de-
pendent upon the right choice of heuristics that are used
in the filtering, existence and bisection operator (an effi-
ciency ratio of 1/100 000 can easily be obtained between
a naive implementation and a sophisticated one). Unfor-
tunately, there is no known method allowing one to deter-
mine what is the best combination of heuristics for a given
problem.

This has motivated our development of the C++
ALIAS interval analysis library (Merlet, 2000), which in-
cludes a large number of heuristics and is combined with
a Maple interface for an easier use. Note that ALIAS in-
cludes some new developments in interval analysis theory
that will not be described here, our purpose in this paper
being only to illustrate how interval analysis may be used
to solve difficult robotics problems.

We will now discuss the use of an interval analysis
based algorithm in relation to typical robotics problems.

4. Kinematics

4.1. Introduction. Kinematics is one of the first is-
sue that has to be addressed when given a robot to con-
trol. The purpose is to establish the relationship between
the pose parameters q of the end-effector and the actuated
joint variables θ. We may distinguish two types of prob-
lems:

• Inverse kinematics: Given a pose to be reached by the
end-effector, what should be the corresponding joint
variables? This is the basic problem for control as
the objective of a manipulator is to be able to reach a
desired pose.

• Direct kinematics: Given the value of the joint vari-
ables (e.g., obtained through the sensors) what is
(are) the possible corresponding pose (s) of the end-
effector? This is also a basic control problem as
soon as the robot is controlled through a closed-loop
scheme.

To illustrate this problem, we will consider a spe-
cial robot structure called a parallel robot. In a serial
robot, the end-effector is connected to the ground through

a single kinematic chain, while in a parallel robot several
chains are used for the same purpose. A typical exam-
ple of a parallel robot is the Gough platform (Gough and
Whitehall, 1962), shown in Fig. 2. In this robot, the end-

A1
A2

A3

A4

A5

A6

B1

B2

B3 B4

B5

B6

C

O

x

y

z

yr

zr

xr

U joint

S joint

Fig. 2. Another possible mechanical structure for a robot: the
Gough platform.

effector is the upper platform while the lower platform
(the base) is fixed. The end-effector is connected to the
base through six identical chains, called the legs of the
robot. Each chain is constituted by a passive spherical
joint at Ai (which allows any rotation of the link around
Ai), an actuated prismatic joint and a passive spherical
joint at Bi. The attachment points of the leg on the base
are in a known position in the reference frame, while the
attachments points on the platform are in a fixed position
that is known in the mobile frame. The joint variables
of this robot are the six lengths ρ of the legs (that can
be modified by controlling the motion of the prismatic
joints). Hence solving inverse kinematics of this robot
amount to determining the six ρ for a given pose of the
mobile platform, while direct kinematics is the problem
of determining what are the possible poses of the mobile
platform for given values of the six ρ.

Inverse and direct kinematics are a dual problem for
which the same set of equations is used, but whose un-
knowns will change according to the problem at hand.
First we will establish the relationship between q and ρ,
and for that purpose we should note that for a given leg
i the leg length ρi is the Euclidean norm of the vector
AiBi. From now on we will drop the leg index as the for-
mula that will be derived is identical for all legs. Using
the Chasles relation, we get

AB = AO +OC + CB. (1)

404 J.-P. Merlet

As mentioned before, the coordinates of B are
known in the mobile frame and therefore the components
of the vector CB are known in this frame. We will de-
note by CBm this vector when its components are ex-
pressed in the mobile frame. If the rotation matrix R(q)
between the mobile frame is known, then the components
of the vector CB in the reference may be obtained as
CB = R(q)CBm. Thus we have

ρ2 = ||AB||2 = ||(AO +OC +R(q)CBm)||2. (2)

Equation (2) is the core equation that will be used for
both inverse and direct kinematics. Note that in this equa-
tion we have components that are derived from the ge-
ometry of the robot (OA,CBm), joint parameters (ρ) and
elements that may be derived directly from q (OC,R(q)).
For inverse kinematics, q is known and hence the right
hand side of (2) can be directly calculated, leading to the
square of the joint variables. Consequently, solving in-
verse kinematics is straightforward. For direct kinematics,
the six ρ2

i are known and we must determine the q that sat-
isfies the six equations (2). This problem is quite difficult
(it was qualified as “the Everest of modern kinematics”
by F. Freudenstein, the father of this discipline). It may be
shown that the problem may have up to 40 real and com-
plex solutions (Ronga and Vust, 1992) and that there exists
configuration with 40 real solutions (Dietmaier, 1998).

As mentioned previously, finding all solutions is im-
portant because the solution (i.e., the pose at which the
end-effector is currently located) will be used for robot
control: missing the solution or, worse, choosing the in-
correct one may lead to catastrophic situations. If we as-
sume that the core kinematic equations are algebraic (and
the kinematic equations for the Gough platform may in-
deed be converted into such a form), there are three possi-
ble methods to solve them:

• the elimination method (Innocenti, 2001),

• the continuation method (Wampler, 1996),

• the Gröebner basis method (Rouillier, 1995).

The first two methods have merits but also a major
drawback: they may miss solutions as they do not take
into account round-off errors. The third method is, as in-
terval analysis, certified in the sense that it cannot miss a
solution and furthermore exact in the sense that it can pro-
vide the solutions with an arbitrary accuracy. The main
limitation of the Gröebner basis method is that only ratio-
nal coefficients may be used, thereby imposing in some
cases the solution of only an approximation of the real
system.

The above methods also have a drawback: they com-
pute all possible solutions, although for the robotic prob-
lem we are only interested in the one that represents the
actual pose of the platform. Currently there is no known

method to sort out from among the set of solutions which
one corresponds to the actual pose. A second drawback
is that it is almost impossible to use a priori knowledge
on the solution within the solving scheme. For example,
physical joints have motion limits that will be incompati-
ble with some theoretical solution of the kinematic equa-
tions, direct kinematics may have been solved a short time
before the current calculation, which allows to state that
the current actual pose lies within some ball centered at
the previous pose. All this information can only be used
after the solving in order to eliminate an incompatible so-
lution and therefore it does not influence the solving time.

Furthermore, direct kinematics may be used in a real-
time context (i.e., the solution should be obtained as fast
as possible). Typically, a robot controller has a sampling
time between 1 and 5 ms and the solving time should be
less than this sampling step. But in that case, as direct
kinematics are solved at each sampling period, we may
easily derive from the last obtained pose and the maximal
velocities of the end-effector a relatively small ball S that
must include the actual pose. This explains why the New-
ton scheme is used most of the time in this context. But
this is not a safe approach because we have no guarantee
about the convergence of this method, and furthermore it
is well known that the Newton scheme may converge to-
ward a solution that is not closest to the initial guess. An-
other problem with the Newton scheme is that it is not
able to manage the case where we have several solutions
of the problem within S, meaning that the obtained mea-
surements do not allow us to determine the actual pose.
In such case, the robot must be stopped immediately as
we are no more able to control it safely. Hence a certified
method, which is able to find all solutions within a given
ball and allows one to incorporate additional knowledge,
is needed.

4.2. Solving direct kinematics with interval analysis.

4.2.1. Problem formulation. It can be seen that inter-
val analysis may look like an appropriate tool for solving
this problem. But as mentioned in the general comments,
we have to determine which form of the problem is the
most appropriate. We have already exposed a possible
form with a minimal number of parameters for the pose
of the end-effector, but it has the drawback that multiple
occurrences of the variables appear in the core equations.
We will propose here another formulation that avoids this
drawback but increases the number of variables. For the
sake of simplicity we will assume that the end-effector is
planar, i.e., theBi points all lie in the same plane. We will
choose as variables of the problem the coordinates of three
of the Bi points (called reference points), say B1, B2, B3,
leading to a total of nine unknowns. It is then easy to

Interval analysis for certified numerical solution of problems in robotics 405

show that for the remaining Bi there exists a set of three
constants αki , k ∈ [1, 3] such that

OBi =
k=3∑

k=1

αkiOBk, i ∈ [4, 6]. (3)

We may now write the six kinematics equations giving the
square of the leg lengths as

ρ2
i = ||AiO +OBi||2. (4)

These six equations are basically distance equations that
can be written as functions of the nine variables. Among
these equations the one obtained for leg 1 to 3 each in-
volves only three variables. Furthermore, each variable
appears only once in the equations, thereby leading to
an optimal interval evaluation. Also, these equations are
quite appropriate for the 2B filtering.

Three additional constraint equations are obtained by
writing that the distance between each pair of points in the
set {B1, B2, B3} is a fixed constant dij :

||BiBj ||2 = d2
ij ∀i, j ∈ [1, 3], i �= j. (5)

Note that each of these equations involves only six of the
nine variables and that, again, there is a single occurrence
of the variables in the equations. Consequently, we end
up with a system of nine quadratic equations in nine vari-
ables and, consequently, the Jacobian matrix elements are
linear in the variables while the Hessian matrix is a con-
stant matrix.

Another interest of this formulation is that all the
variables may be bounded. Indeed, in practice there are
limits on the maximum length of the the leg as a prismatic
actuator can only extend up to a certain limit. Let us de-
note by ρimax the maximal length of leg i and by di the dis-
tance betweenC andBi. With this notation all the compo-
nents of the vectorAiBi are constrained to lie in the inter-
val [−ρimax−di, ρimax+di]. If we consider now the com-
ponents of the vector OBi, we may use the Chasles rela-
tion OBi = OAi + AiBi to obtain bounds for the coor-
dinates of Bi as the components of OAi are known. Fur-
thermore, it may be shown (Merlet, 2004) that the search
domain obtained when considering individually each leg
may be reduced if we consider a chain constituted by two
legs of the platform (e.g., the chain A1, B1, B2, A2) as,
clearly, the closed structure of this chain imposes more
constraints on the motion of Bi.

Note also that we may choose at will the reference
points, this choice having influence on the computation
time of the solving. This may be seen when computing the
bounds for the variables (i.e., the search space): selecting
the legs whose absolute values for ρimax + di are minimal
decreases the size of the search space. But the choice also
influences the values of the αij coefficients, which play a

central role in the algorithm. In (Merlet, 2004), we con-
sidered the computation time for all possible choices of
the reference points and showed that the ratio between the
minimal and maximal computation time was about 28, a
heuristic rule allowing to determine what is the best choice
for a manipulator of given geometry.

4.2.2. Existence operator and the inflation process.
The structure of the system we have to solve is quite spe-
cial and allows one to specialize the theorems that are used
in the general case. For example, we have been able to
show that for the Kantorovitch theorem this special struc-
ture allows one to substitute n (number of equations, here
n = 9) with the dimension of the ambient space (here 3),
thereby leading to a wider existence box. We will now
show that the inflation process may also be specialized so
that instead of incrementally increasing the size of the ex-
istence box until the regularity condition holds (which is
computer intensive), we may directly compute the largest
radius of the existence box.

We have seen that each component of the Jacobian
matrix of the system is linear in terms of the unknowns.
Let {x0

i } be the elements of X0, J−1
0 the inverse of the

Jacobian matrix computed at X0, and let X1 be defined as
{x0

i +κ}, where κ is the interval [−ε, ε]. Each component
Jij of the Jacobian at X1 can be calculated as αij + βijκ,
where αij , βij are constants which depend only upon X0.
If we multiply J by J−1

0 , we get a matrix U = J−1
0 J =

In + A, where In is the identity matrix of dimension n
and A is a matrix such that Aij = ζijκ, where ζij can
be calculated as a function of the β coefficients and of
the components of J−1

0 . For a given line i of the matrix
U , the diagonal element has a mignitude 1 − |ζii|ε while
the sum of the magnitude of the non diagonal element is
ε
∑j=n
j=1 |ζij |, j �= i. The matrix U will be guaranteed to

be regular if, for all i,

ε

j=n∑

j=1

|ζij | (i ∈ [1, n], j �= i) ≤ 1 − |ζii|ε, (6)

which leads to

ε ≤ 1

|ζii| + Max(
∑j=n

j=1 |ζkj |), k ∈ [1, n], j �= k
. (7)

Hence the minimal value εm of the right term of this
inequality over the lines of U allows us to define a box
[X0 − εm, X0 + εm] which contains a unique solution of
the system. In general, this box will be larger than the box
computed with the Kantorovitch theorem.

4.2.3. Adding constraints. Physical constraints such
as passive joint limits may allow us to eliminate some of
the theoretical solutions of the equation systems which vi-
olate this constraint. Such a constraint may be easily taken

406 J.-P. Merlet

into account in the filtering operator. Consider, for exam-
ple, the passive joint limits: typically a spherical joint has
a major direction defined by a unit vector t and the angle
between this direction and the direction of the leg that is
connected to this joint cannot exceed a given limit λ. This
constraint may be written as

− cos(λ) ≤ AiBi.t

ρi
≤ cos(λ). (8)

For a box in the interval analysis scheme, we get ranges
for the coordinates of Bi and it is easy to compute an in-
terval evaluation [a, a] of AiBi/ρi. The current box may
be eliminated if a > cos(λ) or a < − cos(λ). Further-
more, the 2B method can be applied to both inequalities
to reduce the size of the box.

4.2.4. Results and managing uncertainties. Exten-
sive results are provided in (Merlet, 2004) and show that
interval analysis is competitive with the fastest Gröebner
basis method for providing all solutions (typically in a
computation time ranging between 10 and 30 seconds).
But as soon as additional constraints, such as joint limits,
are introduced, interval analysis becomes the fastest avail-
able certified method. This is also true for the real-time
context for which the interval analysis method, although
presenting a computation time that is larger than the clas-
sical Newton scheme, remains compatible with the sam-
pling rate of the robot controller while providing the right
solution or detecting that multiple solutions lie within the
search domain.

But there is an additional benefit in the use of interval
analysis for this particular problem. All our calculations
are based on perfect knowledge of the physical parame-
ters of the robot. In practice, however, we have bounded
errors on the location of Ai on the base, on the location of
Bi on the end-effector and on the leg lengths ρ as they are
measured by a sensor that is inherently inaccurate. Still
the core kinematic equations remain valid although their
coefficients have now interval values. Consequently, there
is no more a finite number of solutions to the equation
system but a solution region. Interval analysis may still be
used in that case and will provide an inner and an outer ap-
proximation of this region, allowing us to safely determine
if the real robot presents kinematic performances that are
compatible with the task at hand.

5. Singularities

We may now address an issue regarding parallel robots
that is very important in practice. We consider the rela-
tionship between the end-effector velocities (translational
and angular) and the actuated joint velocities θ̇. First we
must mention that there are no pose parameters whose
time-derivative correspond to the velocity vector of the
end-effector. However, for simplicity, we will denote by q̇

the six dimensional vector (v,Ω) that represents the trans-
lational and angular velocities of the end-effector. A well-
known robotics property is that θ̇ and q̇ are linearly re-
lated:

q̇ = J(q, θ)θ̇, (9)

where the matrix J is dependent upon the pose of the end-
effector and on the values of the joint parameters (active
and passive). In the robotics literature, this matrix is called
the Jacobian of the robot although it is not a Jacobian
in the mathematical sense. For a serial robot, the matrix
J can be simply derived from the structure of the robot,
while for parallel robots it is usually easier to derive the
inverse Jacobian matrix, which, for simplicity, we will de-
note by J−1, so that

θ̇ = J−1(q, θ)q̇. (10)

An interesting property occurs when J−1 is singular: the
end-effector velocity may not be 0 although the active
joints are locked (i.e., θ̇ = 0). Hence the robot may ex-
hibit infinitesimal motion with locked actuators and so the
robot is no more controllable. The locations q, θ at which
J−1 is singular are called the singularities of the robot.

But there is another property of singularities that is
very important. For reaching a mechanical equilibrium
the external forces and torques (summed up in the wrench
F) to which the end-effector is submitted must be com-
pensated by the internal forces in the legs, which will
be denoted τ . For a Gough platform, the internal forces
are directed along the leg and applied at the point Bi on
the end-effector. As there is a complete duality between
wrench and velocities because of the virtual work princi-
ple, F and τ are linearly related:

F = J−T (q, θ)τ. (11)

Being given F , the components of τ may be expressed as
the ratio

τi =
|Ai|
|J−T | , (12)

where Ai is the minor associated to τi. As |J−T | appears
in the denominator, if the robot comes close to singularity
the joint forces may go to infinity, leading to the break-
down of the robot. It is therefore important to check that
the robot will not encounter singularity within its work
area (called a workspace in robotics), and this will be ad-
dressed in the next section.

5.1. Checking workspace for singularity.

5.1.1. Principle. In the general case, the inverse Jaco-
bian matrix of a six d.o.f. robot is a 6× 6 matrix and for a
Gough platform the i-th line J−1

i of this matrix is written
as

J−1
i =

(
AiBi
ρi

CBi ×AiBi
ρi

)

. (13)

Interval analysis for certified numerical solution of problems in robotics 407

Note that such a line is the normalized Plücker vector of
the line associated to the leg i. Although the matrix has an
analytical form, calculating the expression of its determi-
nant leads to a huge expression that is not easy to manip-
ulate. A geometrical analysis has shown that the inverse
Jacobian will be singular only for specific respective posi-
tion of the lines associated to the legs (Merlet, 1989), but
this geometrical approach does not allow us to determine
if a given workspace is singularity free.

Assume now that the pose parameters have interval
values, these intervals being possibly reduced to a point
interval. The inverse Jacobian matrix is now an interval
matrix and an interval evaluation of its determinant may
be calculated using an interval extension of classical de-
terminant calculation methods such as row or column ex-
pansion and the Gaussian elimination.

The problem we want to address is determining if a
given workspace (assumed here for simplicity to be de-
fined as a box in the pose parameters space) is singularity
free. Note that the location of the singularity, if any, will
be necessary to change the design of the robot. Conse-
quently, we are not interested in singularity location.

We will first select an arbitrary pose q1 within the
workspace and compute the determinant of the inverse Ja-
cobian at this pose. More exactly, we are interested in the
sign of the determinant at this pose and interval arithmetic
is used to safely determine this sign. Note that if the inter-
val evaluation of the determinant at a given pose has not a
constant sign, either the workspace will include singular-
ities or we will not be able to state that the workspace is
singularity free without using a more accurate arithmetic.
Let us assume that at q1 the determinant is positive. As the
determinant is a continuous function of the pose parame-
ters, if we are able to determine a pose q2 at which the
determinant is negative, then we can guarantee that any
path path joining q1 and q2 has to cross a pose at which
the determinant is 0, i.e., a singular pose. We may now
design an interval analysis algorithm whose purpose is to
determine q2 poses or to show that q2 poses do not exist
within the workspace.

5.1.2. Operators. The evaluation operator is simple to
design as interval arithmetic allows one to calculate the
interval evaluation of the determinant of the inverse Jaco-
bian for a given box, but, as usual, it will be preferable
to use a pre-conditioned matrix (Kreinovich et al., 1998).
The special structure of the inverse Jacobian matrix also
indicates that a symbolic step before pre-conditioning
may lead to a better interval evaluation of the determinant.
Indeed, if x denotes the first component of the pose pa-
rameter, then the elements of the first column of J−1 may
be written as x+ui where ui has a value that depends only
upon the orientation angles of the end-effector and upon
geometrical features of the robot. If we use a pure nu-
merical pre-conditioning by multiplying the interval ma-

trix J−1 by a constant matrix K = ((kij)) to produce the
pre-conditioned matrix Jc, then the element Jc11 of Jc will
be calculated as Jc11 =

∑
k1jx+

∑
k1juj , which has six

occurrences of the variable x. If we assume now that K
is a symbolic matrix that will be numerical only later on,
we may use symbolic simplification procedures to obtain
Jc11 = x

∑
k1j +

∑
k1juj , which has only a single oc-

currence of x and, consequently, may have a significantly
lower width than the former version.

Assuming now that an interval evaluation of the de-
terminant has been obtained for the current box, if its
lower bound is positive, then we may discard the box (as
it cannot contain any q2 pose), and if its upper bound is
negative, then we will have shown that the workspace is
not singularity-free as all poses in the box are q2 pose. Fi-
nally, if the algorithm has processed all the boxes in its
list, then the workspace is singularity free.

The filtering operator may use a regularity test pro-
posed by Rex and Rohn (Rex and Rohn, 1998). We define
H as the set of all n-dimensional vectors h whose compo-
nents are either 1 or −1. For a given box, we denote by
[aij , aij] the interval evaluation of the component J−1

ij of

J−1 at the i-th row and j-th column. Given two vectors
u, v of H , we then define the set of matrices Auv whose
elements Auvij are

Auvij =
{
aij if uiv̇j = −1,
aij if uiv̇j = 1.

These matrices have thus elements with fixed numerical
values (which are upper or lower bounds of the interval
evaluations of the elements of J−1). There are 22n−1 such
matrices sinceAuv = A−u,−v. It may be shown that if the
determinant of all these matrices has the same sign, then
all the matricesA′ whose elements have a value within the
interval evaluation of J−1

ij are regular (Kreinovich, 2000).
Hence, for a 6 × 6 matrix J−1, if the determinant of the
2048 scalar matrices Auv has the same sign, then J−1 is
regular for the current box. Note that we have proposed
another regularity test that takes the particular structure of
the Jacobian matrix even more into account but which is
more computer intensive (Merlet and Donelan, 2006).

As for the bisection process, it is beneficial to care-
fully order the created boxes in the list. Indeed, although
the order is of no importance when the workspace is sin-
gularity free as all boxes will be processed, the ordering
has considerable influence when there is singularity in the
workspace: the sooner we process the boxes that include
singularities, the sooner the algorithm will stop. To order
the new boxes, we calculate for each of them the interval
evaluation of the determinant. If the lower bound of this
evaluation is positive, the box is not stored, while if the
upper bound is negative, we have found a box which has
only q2 poses. If the evaluation [a, a] includes 0, then we

408 J.-P. Merlet

store on top of the list the box that has the lowest a (if the
determinant at q1 has been negative we will store on top
of the list the box having the lowest |a|).

The worst situation for the algorithm is when the
workspace includes a singular pose that is located exactly
on the border of the workspace. To manage this prob-
lem, we exchange the box on top of the list with the last
box in the list after a fixed number of bisections of the
algorithm. If some singular poses are located inside the
workspace, they will be more easily located than the pose
on the border. It may, however, occur that for all poses
in the workspace the determinant is positive except for a
single pose at which the determinant is exactly 0. This
problem may be managed by flagging boxes whose width
is lower than a given threshold, discarding them (although
they are stored) and then performing a local analysis of
the flagged box when the algorithm completes.

5.1.3. Dealing with uncertainties. Clearly, properly
dealing with singularity is safety-critical as a parallel
robot may be used as a medical robot or for an entertain-
ment theater that accommodates the public. Hence mod-
eling errors should also be taken into account. In this par-
ticular case the sources of uncertainty are possible manu-
facturing tolerances on the location of the Ai, Bi points.

There are two possibilities for dealing with these
sources:

• leaving their interval values in J−1. A consequence
is that the determinant will always have an interval
value. This may lead to a failure of the algorithm as
at a given pose the interval evaluation of the deter-
minant may not have a constant sign. However, such
a failure can be detected and we may switch to the
other option;

• adding the coordinates of the Ai, Bi (or some of
them) as new variables in the algorithm and there-
fore submitting them to the bisection process. This
will significantly increase the computation time.

However, with this adaptation we get an application cer-
tified algorithm: if it returns that the workspace is singu-
larity free, then the real robot will also be singularity free.

5.1.4. Results. We have considered a 6 d.o.f. robot
without uncertainty and tested various algorithm variants:
using only the interval evaluation of the determinant (1),
the interval evaluation of the determinant with the Rohn
filtering (2), using symbolic post-conditioning of J−1 (3),
applying symbolic post-conditioning of J−1 and the Rohn
filtering (4), and finally using symbolic pre-conditioning
of J−1. Typical computation time for these variants is
presented in Table 1. This table shows that symbolic pre-
conditioning is by far the most efficient method. If we

Table 1. Computation time in seconds for a regularity check of
a robot without uncertainty.

Algorithm 1 2 3 4 5

Time 9076.2 2.6 34.79 2.8 0.01

have a [−ε, ε] interval uncertainty on all the coordinates of
the Ai, Bi points, we get the computation time presented
in Table 2 for various workspaces (x, y, z are the coordi-
nates of C, while ψ, γ, φ are the three orientation angles)
and for various values for ε (that are compatible with clas-
sical manufacturing tolerances). In these tests we have
used symbolic pre-conditioning of J−1, and a (D) indi-
cates that we have left the uncertainties in J−1 while a
(V) indicates that they have been added as new variables.
For the last workspace, the time in parenthesis is obtained
when using also the Rohn filtering. It may be seen that

Table 2. Computation time for a regularity check for various
workspaces and uncertainty [−ε, ε] for the location of
the Ai, Bi points.

ε x, y ∈ [−5, 5] x, y ∈ [−5, 5] x, y ∈ [−15, 15]
z ∈ [45, 50] z ∈ [45, 50] z ∈ [45, 50]
ψ, γ, φ ψ, γ, φ ∈ ψ, γ, φ

∈ [−5◦, 5◦] [−15◦, 15◦] ∈ [−15◦, 15◦]
(D) ±0.05 0.01 0.23 5.5 (7.32)
(V) ±0.05 0.01 0.63 14.07 (4.54)
(D) ±0.1 0.01 4.47 1540.74 (514.5)
(V) ±0.1 0.02 2.55 2614.55 (402.2)

even with relatively large uncertainties it is not necessary
to add new variables while the Rohn filtering shall be used
as soon as they become large. It must be noted that in each
case the tested workspace was singularity free; if this is
not the case, the algorithm is much faster as the heuris-
tic used to order the box in the list allows us to determine
quickly a box with only the q2 pose, avoiding the process-
ing of the remaining boxes.

We have also investigated a variant of the proposed
algorithm in which we want to detect if for a pose in the
workspace the absolute value of |J−1| is lower than a fixed
threshold. We are currently investigating a practical ap-
proach whose purpose is to determine the regions of the
workspace in which the forces in the leg are lower, in ab-
solute value, than a fixed threshold: this corresponds ex-
actly to an engineering problem in which each mechanical
element has a known breaking force, the robot having to
avoid poses at which the force in a leg is larger than the
minimal breaking force of the elements of the leg. We
have exhibited an algorithm relying on algebraic geome-
try that is able to calculate the border of 2D cross-sections
of the safe regions for a given wrench applied on the end-
effector (Hubert and Merlet, 2008), but an extension of
this algorithm to be able to deal with a set of wrenches
and with uncertainties in the robot modeling will require

Interval analysis for certified numerical solution of problems in robotics 409

the use of interval analysis.

6. Appropriate design

Up to now we have addressed a problem that may be
coined an analysis problem: given a robot (possibly with
uncertainties), we have conduced an analysis of its per-
formances and verified if they were in accordance with
the requirements. But if performance analysis shows that
the robot does not comply with the requirements, we then
have to determine a new design for the robot. This de-
sign area is coined a synthesis problem in which, starting
from a general topology of the mechanical structure of the
robot, we have to determine the geometrical parameters of
the structure so that

• we may effectively build the robot,

• the robot will comply with the requirements in spite
of unavoidable uncertainties in its physical realiza-
tion.

6.1. Principle. A robot geometry is defined by a set of
m parameters (that may be lengths, a unit vector of rota-
tion axis, inertia, . . .) that are summed up in the vector P .
We define the m-dimensional parameter space as a space
in which each dimension is associated to one element of
P . Hence a point in this space corresponds to a physical
instance for the robot. For example, for a parallel robot
the vector P includes the coordinates of the attachment
points Ai, Bi and possibly other parameters such as the
minimal and maximal length of the legs. In practice, note
that to solve a synthesis problem we will not have to ex-
plore the whole parameters space: as the parameters have
a physical meaning we may safely assume that they are
bounded (e.g., the length of a robot link cannot be lower
than 0 and has certainly an upper limit . . .). Hence we
may define a search domain in the parameters and only
solutions within this search domain should be found for
the synthesis problem.

A typical requirement from an end-user usually in-
volves a minimal workspace W (the robot should be able
to reach any pose within W) and constraints that may be
defined as

∀q ∈ W f(q,P) ≤ 0, g(q) = 0, (14)

where f, g are some explicit functions of q. For exam-
ple, if the leg lengths of a Gough platform over W should
be lower than a given threshold ρmax, then f will be the
function ρ2(q)−ρ2

max and there is no g constraint. On the
other hand, if the requirement is that the absolute value of
the force τ in the legs overW should be lower than a given
threshold τmax for a given wrench F , we cannot use the
analytical form of τ as a function of F , q (which is very

complex) and we will use instead

|τ | − τmax ≤ 0, F − J−T (q)τ = 0.

Usually design algorithms in mechanical engineering
rely on an optimization procedure that numerically de-
termine a single value of P which minimizes some real
valued cost function that mixes all requirements (possibly
with weights on each requirements), and they are there-
fore refered to an optimal design approach. We have some
reservations on these approaches (e.g., that building the
cost function is not an easy task whenever we have several
requirements involving, for example, different units, with-
out mentioning other drawbacks (Das and Dennis, 1997)).
Our approach is instead based on certified satisfaction of
all requirements (14) and will provide not a single solu-
tion but a continuous set of solutions that will allow us
to manage uncertainties in physical realization, as will be
seen later on. Hence we have termed our methodology
appropriate design.

Assuming that we have a single requirement, the con-
straints (14) define a set R of regions in the parameter
space whose points all satisfy the constraints. An exact
calculation ofR is almost impossible except in a very sim-
ple case. Furthermore, computing R exactly may be con-
sidered as overkill: indeed, points on the border of these
regions are only theoretical solutions as designing a robot
with such parameters may lead to a real robot whose rep-
resentative point in the parameter space lies outside R and
therefore violates the constraints. Consequently, we aim at
proposing an approach that is able to compute an approxi-
mation of R while ensuring that for all proposed theoreti-
cal solutions there will be a physical instance that will still
satisfy the constraints.

6.2. Method for a single requirement. Starting from
the search domain, we may use an interval analysis al-
gorithm S1 whose variables are the one of P and whose
boxes will be denoted by BP . The evaluation procedure is
somewhat special as it has also a structure of an interval
analysis algorithm S2, whose variables are the one of W
and whose boxes will be denoted by BW . This evaluation
is in charge of ensuring that, being given the robot param-
eters interval values defined by the current box BP , for all
poses in W either (14) is satisfied or for some box BW the
constraint (14) will always be violated, thereby disquali-
fying BP as a design solution. If S2 completes, then BP
is retained as a design solution.

Clearly, if the width of the intervals in BP is large, S2

will not complete. Hence we allow only a limited number
of bisections in S2, is inversely proportional to the width
of BP . If this number is reached, S2 returns a signal to S1

that indicates that a bisection on the current BP must be
performed.

410 J.-P. Merlet

We also impose a lower limit on the width on each el-
ement of BP for allowing a bisection on this element. For
the current box, a bisection will be performed only on the
variable of P which has an interval width larger than their
threshold. If none of the intervals satisfy this constraint,
then the current BP is discarded. The threshold for each
element of P is twice the error bounds is assigned to the
physical instance of the parameters. The motivation for
this rule is that, although BP may include theoretical de-
sign solutions, a physical instance of this solution, even
designed with the center of the box as nominal values for
the parameters, may lie outside the box and therefore vio-
late the constraint (14).

The output of our algorithm is therefore a list of
boxes BP that defines closed regions. Post-processing de-
termines for each box in this list if the box obtained by
growing the box by the error bound on each parameter is
still included in the region. If this is the case, the box is
definitely retained as a design solution, otherwise we de-
crease the box by the the error bound on each parameter
and store the obtained box as a design solution. Conse-
quently, the final output, if any, is an approximation of R
and provides only certified design solutions whose physi-
cal instances are guaranteed to satisfy (14).

6.3. Dealing with multiple requirements. Two meth-
ods may be used if the problem has several performance
requirements. We may first determine the region R for
each of the requirements and then compute the intersec-
tion of the results (which amounts to computing the in-
tersection of boxes) for obtaining a region for which all
requirements are satisfied. This approach has the advan-
tage that the size of R for each requirement indicates how
difficult the satisfaction of the requirements is: if the fi-
nal result is empty, we may provide information on which
requirement has to be relaxed. But this method has the
drawback that it is computer intensive as all requirements
are treated independently.

An alternative approach is to feed as a search domain
for dealing with a given requirement the result of a pre-
vious run for another requirement. Dealing in sequence
with Requirement 1, 2, . . . allows us in general to decrease
the size of the search domain at each step, thereby speed-
ing up the computation. Furthermore, there is no need
to compute any intersection as the final result is guaran-
teed by construction to satisfy all constraints. A drawback
appears if the final result is empty as there is no way to
determine which requirements should be relaxed to get a
result.

6.4. Limits and results. The proposed approach has
the advantage of providing multiple solutions, thereby al-
lowing a final choice that may be based on various cri-
terion, including economical ones. But the computation

time heavily increases with the number of design parame-
ters in P . Currently, we are able to solve design problems
with up to 29 parameters by using distributed implemen-
tation of our algorithms. Indeed, although we have not
mentioned yet this point, interval analysis algorithms are,
by essence, appropriate for such a distributed implemen-
tation with, for example, a master computer managing the
list of boxes and sending boxes to slave computers that
perform a few iterations of the algorithm on the received
box and send the result (new boxes and solutions) back to
the master computer.

We consider a Gough platform with a planar base
and an end-effector and similar legs. The six attachments
points of the legs on the base are supposed to lie on a cir-
cle of radius R1 with two adjacent points separated by an
angle α (Fig. 3). The locations of the attachment pointsAi
on the base are fully defined ifR1, α are known. Similarly,
the locations of theBi on the platform are fully defined by
the radius r1 of the platform and the angle β. The linear

O

x

z

C

zr

yr

xr

y

α

A1

R1

β

B1

r1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

120◦

120◦

120◦

β

Fig. 3. Design parameters for a Gough platform.

actuator in the leg has a stroke S and the minimal length
of the leg is ρmin. Hence the leg lengths ρ are constrained
to lie in the range [ρmin, ρmin+S]. Our set of five design
parameters P is defined as R1, α, r1, β, ρmin, S.

The requirements are that all poses of a given
workspace should be reachable by the robot, and that
this workspace should be singularity free (Fang and Mer-
let, 2005). Furthermore, bounds for the sensor measure-
ment errors Δρ are supposed to be known and their influ-
ence on the positioning errors Δq of the platform should
not exceed a given threshold (note that these quantities are
related by Δρ = J−1(q)Δq). Figure 4 shows a cross sec-
tion in the α, β,R1 space of the parameter space volume
that is obtained as a design solution.

Interval analysis for certified numerical solution of problems in robotics 411

20
21

22
23

24 R

0
0.05

0.1
0.15

0.2
0.25a

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

b

1

Fig. 4. Cross-section in the α, β, R1 space of the design solu-
tion region.

7. Conclusion

In this paper we have shown that certification is an impor-
tant issue in robotics, while uncertainties in such electro-
mechanical systems are unavoidable. A possible tool to
obtain this certification and managing uncertainties is in-
terval analysis. Some typical robotics problems were pre-
sented but numerous other issues were also addressed,
such as workspace analysis (Chablat et al., 2002), robots
performance comparison (Chablat et al., 2004), calibra-
tion (Daney et al., 2006) or robust control (Didrit, 1997).

Interval analysis may be used for small and medium
size problems (although problems with up to 400 un-
knowns have been solved). One of the drawbacks of this
method is that, although its basic principles are quite sim-
ple, an efficient implementation requires to think in terms
of interval analysis when formulating the problem, an ex-
tended knowledge of possible heuristics to be applied on
the problem at hand, and the availability of efficient and
complete interval analysis libraries. For the later point,
the interval analysis community must accept making the
important effort of providing unified libraries as well as
working on possible interfaces between these libraries
and common scientific and engineering software such as
Maple, Scilab, etc. This is indeed a very important issue
as most end-users are not willing (or do not have the time)
to learn a specific programming language to apply interval
analysis just to solve a few steps of their whole engineer-
ing problem, that they have already formulated in one of
the current engineering software.

References

Ashokaraj, I., Tsourdos, A., Silson, P. and White, B. A. (2004).
Sensor based robot localisation and navigation: Using in-

terval analysis and extended Kalman filter, Proceedings of
the 5th Asian Control Conference, Melbourne, Australia.

Carreras, C. and Walker, I. (2001). Interval methods for fault-
tree analysis in robotics, IEEE Transactions on Reliability
50(1): 3–11.

Chablat, D., Wenger, P. and Merlet, J.-P. (2004). A comparative
study between two three-dof parallel kinematic machines
using kinetostatic criteria and interval analysis, Proceed-
ings of the 11th IFToMM World Congress on the Theory
of Machines and Mechanisms, Tianjin, China, pp. 1209–
1213.

Chablat, D., Wenger, P. and Merlet, J.-P. (2002). Workspace
analysis of the Orthoglide using interval analysis, Ad-
vances in Robot Kinematics, Caldes de Malavalla, Spain,
pp. 397–406.

Clerentin, A., Delahoche, L., Brassart, E. and Izri, S. (2003). Im-
precision and uncertainty quantification for the problem of
mobile robot localization, Proceedings of the Performance
Metrics for Intelligent Systems Workshop, Gaithersburg,
MD, USA.

Daney, D., Andreff, N., Chabert, G. and Papegay, Y. (2006). In-
terval method for calibration of parallel robots: A vision-
based experimentation, Mechanism and Machine Theory
41(8): 929–944.

Das, I. and Dennis, J. (1997). A closer look at drawbacks of min-
imizing weighted sums of objectives for Pareto set gener-
ation in multicriteria optimization problem, Structural Op-
timization 14: 63–69.

Didrit, O. (1997). Analyse par intervalles pour l’automatique;
Résolution globale et garantie de problèmes non linéaires
en robotique et en commande robuste, Ph.D. thesis, Uni-
versité Paris XI Orsay, Paris.

Dietmaier, P. (1998). The Stewart-Gough platform of general ge-
ometry can have 40 real postures, Advances in Robot Kine-
matics, Strobl, Austria, pp. 7–16.

Drocourt, C., Delahoche, L., Brassart, E., Marhic, B. and
Clerentin, A. (2003). Incremental construction of the
robot’s environmental map using interval analysis, Pro-
ceedings of the 2nd International Workshop on Global
Constrained Optimization and Constraint Satisfaction
(COCOS’03), Lausanne, Switzerland.

Fang, H. and Merlet, J.-P. (2005). Multi-criteria optimal design
of parallel manipulators based on interval analysis, Mech-
anism and Machine Theory 40(2): 151–171.

Gough, V. and Whitehall, S. (1962). Universal tire test machine,
Proceedings of the 9th International Technical Congress
F.I.S.I.T.A., London, UK, Vol. 117, pp. 117–135.

Hansen, E. (2004). Global Optimization Using Interval Analysis,
Marcel Dekker, New York, NY.

Hubert, J. and Merlet, J.-P. (2008). Singularity analysis through
static analysis, Advances in Robot Kinematics, Batz/mer,
France, pp. 13–20.

Innocenti, C. (2001). Forward kinematics in polynomial form of
the general Stewart platform, ASME Journal of Mechanical
Design 123(2): 254–260.

412 J.-P. Merlet

Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied
Interval Analysis, Springer-Verlag, Heidelberg.

Kearfott, R. and Manuel, N. I. (1990). INTBIS, a portable in-
terval Newton/Bisection package, ACM Transactions on
Mathematical Software 16(2): 152–157.

Kieffer, M., Jaulin, L., Walter, E. and Meizel, D. (2000). Ro-
bust autonomous robot localization using interval analysis,
Reliable Computing 6(3): 337–362.

Kreinovich, V. (2000). Optimal finite characterization of lin-
ear problems with inexact data, Technical Report CS-00-
37, University of Texas at El Paso, TX.

Kreinovich, V., Lakeyev, A., Rohn, J. and Kahl, P. (1998). Com-
putational Complexity and Feasibility of Data Processing
and Interval Computations, Kluwer, Dordrecht.

Lebbah, Y., Michel, C., Rueher, M., Merlet, J.-P. and Daney, D.
(2004). Combining local consistencies with a new global
filtering algorithm on linear relaxations, SIAM Journal of
Numerical Analysis, 42(2076).

Merlet, J.-P. (2004). Solving the forward kinematics of a Gough-
type parallel manipulator with interval analysis, Interna-
tional Journal of Robotics Research 23(3): 221–236.

Merlet, J.-P. (2000). ALIAS: An interval analysis based li-
brary for solving and analyzing system of equations, SEA,
Toulouse, France.

Merlet, J.-P. (1989). Singular configurations of parallel manip-
ulators and Grassmann geometry, International Journal of
Robotics Research 8(5): 45–56.

Merlet, J.-P. and Donelan, P. (2006). On the regularity of the
inverse jacobian of parallel robot, Advances in Robot Kine-
matics, Ljubljana, Slovenia, pp. 41–48.

Moore, R. (1979). Methods and Applications of Interval
Analysis, SIAM Studies in Applied Mathematics, SIAM,
Philadelphia, PA.

Neumaier, A. (1990). Interval Methods for Systems of Equa-
tions, Cambridge University Press, Cambridge.

Neumaier, A. (2001). Introduction to Numerical Analysis, Cam-
bridge University Press, Cambridge.

Piazzi, A. and Visioli, A. (2000). Global minimum-jerk trajec-
tory planning of robot manipulators, Transactions on In-
dustrial Electronics 47(1): 140–149.

Rao, R., Asaithambi, A. and Agrawal, S. (1998). Inverse kine-
matic solution of robot manipulators using interval analy-
sis, Journal of Mechanical Design 120(1): 147–150.

Redon, S. et al. (2004). Fast continuous collision detection for
articulated models, Proceedings of the 9th ACM Sympo-
sium on Solid Modeling and Applications, Genoa, Italy,
pp. 145–156.

Rex, G. and Rohn, J. (1998). Sufficient conditions for regular-
ity and singularity of interval matrices, SIAM Journal on
Matrix Analysis and Applications 20(2): 437–445.

Ronga, F. and Vust, T. (1992). Stewart platforms without com-
puter?, Proceedings of the Conference on Real Analytic
and Algebraic Geometry, Trento, Italy, pp. 197–212.

Rouillier, F. (1995). Real roots counting for some robotics prob-
lems, in B. R. J-P. Merlet (Ed.), Computational Kinemat-
ics, Kluwer, Dordrecht, pp. 73–82.

Seignez, E., Kieffer, M., Lambert, A., Walter, E. and Maurin,
T. (2005). Experimental vehicle localization by bounded-
error state estimation using interval analysis, IEEE/RJS
IROS, Edmonton, Canada.

Tapia, R. (1971). The Kantorovitch theorem for Newton’s
method, American Mathematic Monthly 78(1.ea): 389–
392.

Wampler, C. (1996). Forward displacement analysis of gen-
eral six-in-parallel SPS (Stewart) platform manipulators
using soma coordinates, Mechanism and Machine Theory
31(3): 331–337.

Wu, W. and Rao, S. (2004). Interval approach for the modeling
of tolerances and clearances in mechanism analysis, Jour-
nal of Mechanical Design 126(4): 581–592.

Jean-Pierre Merlet is a senior researcher at
INRIA Sophia Antipolis-Mediterranee, where
he leads the COPRIN project team. He was
granted a Ph.D. in control theory in 1986 from
Paris VI University. His research interest is
the development of mathematical tools such
as algebraic geometry and interval analysis for
robotics, especially closed-loop mechanisms
which are robots with the most complex me-
chanical structure. Currently, he is investi-

gating the management of uncertainties for the design and control of
robots. J-P. Merlet has been an associate editor of IEEE Transactions
on Robotics, the editor-in-chief of the Electronic Journal of Compu-
tational Kinematics and is currently an associate editor of Mechanism
and Machine Theory (Elsevier) and the ASME Journal of Mechanisms
and Robotics. He has received the Micron d’Or and Fondation Altran
Special Awards for his work on micro-robots. He chairs the French
IFToMM Committee and was the general chair of the 2007 IFToMM
World Congress and of the IEEE/RSJ IROS 2008 Conference.

Received: 18 August 2008
Revised: 9 February 2009

	Introduction
	Robotics and certification
	Interval analysis
	Filtering
	Evaluation
	Existence
	Bisection
	General comments

	Kinematics
	Introduction
	Solving direct kinematics with interval analysis
	Problem formulation
	Existence operator and the inflation process
	Adding constraints
	Results and managing uncertainties

	Singularities
	Checking workspace for singularity
	Principle
	Operators
	Dealing with uncertainties
	Results

	Appropriate design
	Principle
	Method for a single requirement
	Dealing with multiple requirements
	Limits and results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

