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A new supervised classification algorithm of a heavily distorted pattern (shape) obtained from noisy observations of non-
stationary signals is proposed in the paper. Based on the Gabor transform of 1-D non-stationary signals, 2-D shapes of
signals are formulated and the classification formula is developed using the pattern matching idea, which is the simplest
case of a pattern recognition task. In the pattern matching problem, where a set of known patterns creates predefined classes,
classification relies on assigning the examined pattern to one of the classes. Classical formulation of a Bayes decision rule
requires a priori knowledge about statistical features characterising each class, which are rarely known in practice. In the
proposed algorithm, the necessity of the statistical approach is avoided, especially since the probability distribution of noise
is unknown. In the algorithm, the concept of discriminant functions, represented by Frobenius inner products, is used. The
classification rule relies on the choice of the class corresponding to the max discriminant function. Computer simulation
results are given to demonstrate the effectiveness of the new classification algorithm. It is shown that the proposed approach
is able to correctly classify signals which are embedded in noise with a very low SNR ratio. One of the goals here is to
develop a pattern recognition algorithm as the best possible way to automatically make decisions. All simulations have been
performed in Matlab. The proposed algorithm can be applied to non-stationary frequency modulated signal classification
and non-stationary signal recognition.

Keywords: non-stationary signals, signal classification, pattern recognition, time-frequency transforms.

1. Introduction

The term “classification” has two distinct meanings. We
may be given a set of observations with the aim of estab-
lishing the existence of classes or clusters in the data. On
the other hand, we may know that there are many classes,
and the aim is to establish a rule whereby we can clas-
sify a new observation on the basis of observed attributes
or features into one of the existing classes. The former
type is known as unsupervised learning (or clustering),
the latter as supervised learning. The construction of a
classification procedure from a set of data for which the
true classes are known has also been variously termed
as pattern recognition or discrimination. Generally, pat-
tern recognition is a science for the description or clas-
sification/recognition of measurements interrelated with
statistical, syntactical or structural and neural approaches
(Bishop, 2006; Duda et al., 2001; Fukunaga, 1990; Jain
et al., 2000; McLachlan, 1992).

Despite different kinds of classifiers (statistical or

non-statistical), a uniform formula of classification can
be described by a set of discriminant functions gi(x),
i = 1, . . . , K , where x is an element of a feature space
extracted from observations. For each point x in a fea-
ture space, an i-th class is chosen with the corresponding
largest (smallest) discriminant measure gi(x) calculated
from some optimisation algorithm.

In the statistical approach with a feature vector x and
two kinds of conditional probability functions, discrimi-
nant functions gi(x) can be formulated as

• the Bayes rule gi(x) = −�(αi|x), where � is a
Bayesian risk,

• a maximum a posteriori (MAP) rule gi(x) = P (i|x),

• a maximum likelihood (ML) rule gi(x) = P (x|i),

with the following classification rule: Choose an i-th class
for max gi(x).
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In the statistical approach, it is assumed that the form
of a relevant probability distribution is known. Now, as-
sume that the form of the discriminant function is known
and that it is linear either in components or functions of x.
In such cases, linear discriminants LDF are relatively easy
to compute and analytically attractive. A linear discrimi-
nant function in the related literature (Duda et al., 2001)
is written in the form

gi(x) = wi,0 + wT
i x, (1)

where x is a vector of features and wi is a pattern vector.
The intercept wi,0 can be absorbed by augmenting

the vector x with an additional constant dimension, and
gi(x) can be represented by the inner product of vectors
〈·, ·〉,

gi(x) = w0 + wT
i x = [w0 wT

i ]
[

1
x

]

= aT
i y =

〈
aT

i , y
〉 (2)

The selection of maximum gi(x) for i = 1, 2, . . . , K
can be proposed as a simple classification rule. This
means that the feature space is divided into K classes and
current data belong to the i-th class with gi(x) being the
largest.

The generalisation of the inner product to matrices—
the Frobenius inner product—is proposed as a discrimina-
tion function for matrices. The Frobenius inner product
(denoted as A : B) is defined as

A : B =
∑

i

∑
j

AijBij

= trace(AT B) = trace(ABT ).
(3)

The discrimination function gi(x) based on a matrix
X of features and a matrix Wi of the pattern for an i-th
class can be reformulated as

gi(X) = Wi : X. (4)

The selection of maximum gi(X) assigns data to the
i-th class.

Shape matching is a method of classification espe-
cially useful in computer vision (Belongie et al., 2002;
Demirci et al., 2007; Hagedoorn and Veltkamp, 1999; Jain
et al., 2000). Matching is a generic operation in pat-
tern recognition which is used to determine the similar-
ity between two entities (points, curves, or shapes) of
the same type (Basri et al., 1998; Gdalyahu and Wein-
shall, 1999; Latecki and Lakamper, 2000; Liu and Srinath,
1990; Umeyama, 1993; Younes, 1999). Features which
are used for shape description can be very different, for
example, algebraic moments, area, circularity, eccentric-
ity, compactness, major axis orientation, Euler number,
concavity tree, shape numbers (Jain et al., 2000; Zhang

and Lu, 2003). The main difficulties are that many de-
scriptions are sensitive to noise.

Similarity between two shapes can rely on compar-
ing each point on the first shape with the “best” matching
point on the second shape. Many similarity measures of
shapes are based on the Lp distance between two points
(x, y) (Fry, 1993; Hagedoorn and Veltkamp, 1999; San-
tini and Jain, 1999; Veltkamp, 2001). The Lp distance can
be treated as equivalent to a discriminant function. For
two points (x, y) in R

k, the Lp distance is defined as

Lp(x, y) =

(
k∑

i=0

|xi − yi|p
)1/p

. (5)

This is also often called the Minkowski distance. For p =
2, this yields the Euclidean distance L2, while for p = 1,
we get the Manhattan, city block, or taxicab distance L1.

Typically, two sets of points A (points on the first
shape) and B (points on the second shape) are of a dif-
ferent size, so that no one-to-one correspondence exists
between all points. In that case, a dissimilarity measure
that is often used is the Hausdorff distance (Santini and
Jain, 1999; Veltkamp, 2001; Zhang and Lu, 2004). The
Hausdorff distance is defined not only for finite point sets,
but it is also defined on non-empty closed bounded sub-
sets of any metric space. The directed Hausdorff distance
�h(A, B) is defined as the lowest upper bound (supremum)
over all points in A of the distances to B: with d(a, b) the
underlying distance, e.g., the Euclidean distance L2. The
Hausdorff distance H(A; B) is the maximum of �h(A, B)
and �h(B, A):

H(A, B) = max
{
�h(A, B),�h(B, A)

}
, (6)

where
⇀

h (A, B) = sup
a∈A b∈B

inf d(a, b).

The Hausdorff distance is not translation, scale and
rotation invariant (Zhang and Lu, 2004). Unfortunately, it
is also very sensitive to noise and some modifications of
this distance are introduced to get less sensitivity (Zhang
and Lu, 2004), so that this distance is impractical in the
problems considered in this paper.

One way to describe a shape is to locate a finite num-
ber of points, so-called landmarks, on the shape curve.
The shape correspondence can be defined as matching
from the set of landmarks on one shape to that on the next
(Gdalyahu and Weinshall, 1999; Petrakis et al., 2002). In
(Xie et al., 2008), the authors developed a mechanism to
generate coarse segment matching between different in-
stances of an object, based on representative skeletal fea-
tures. This approach is especially useful in anatomical
modelling and shape retrieval of living beings.

Most shape matching techniques concentrate much
more on distortions coming from scaling, rotation and
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shifting, but not on heavy noise. There are few papers
describing the influence of random noise on deformation
of a shape (Manay et al., 2006; Sebe and Lew, 2002).

In this paper, shapes are the results of a two-argument
transformation of 1-D signals, leading to 2-D represen-
tation. It is assumed that the signals considered are de-
terministic with a frequency modulation law. The single
component of a non-stationary signal s(t) is described by
the relation

s(t) = exp(j 2 π

∫ t

0

f(τ) dτ) = exp(j 2 π φ(t)), (7)

where f(t) is an instantaneous frequency (IF) (Auger
et al., 1996).

The received signal (an observation) r(t) is modelled
by

r(t) = s(t)+n(t) = exp
(
j2π

∫ t

0

f(τ) dτ
)
+n(t), (8)

where n(t) is additive noise with an unknown statistical
description.

Among other methods, 1-D non-stationary signals
can be processed by time-frequency algorithms, which
create a 2-D time-frequency structure on the plane (t, f),
understood as an individual image of a signal. It allows us
to display changeable features of a signal (coming from
its non-stationarity), which is not possible to be exposed
in the original time domain or the Fourier domain. For
mono-component, non-stationary signals coming from
frequency modulations (FM), time-frequency transforms
create a trajectory of IF on the (t, f) plane. Unfortunately,
these transformations, because of their properties and nu-
merical implementation, smear an ideal trajectory, creat-
ing a specific shape rather than an ideal curve. Numerical
implementations of these transformations are represented
by matrices corresponding to a displayed image, where
each element of a matrix corresponds to a pixel of an im-
age. This convention allows us to work with images in
a way similar to working with any other type of matrix
data. Therefore, an image and a matrix will be used inter-
changeably in this paper.

Here, mono-component signals with non-linear fre-
quency modulation laws are addressed and the discrete
Gabor transform is used as an example of 2-D transforma-
tion useful in developing a new classification algorithm,
based on the pattern matching idea.

2. Selected topics of classification based on
time-frequency representations

In many pattern recognition applications, features are
traditionally extracted from standard quadratic time-
frequency representations (TFRs) of a signal r(t) from a

Cohen’s class Cφ
r (t, f),

Cφ
r (t, f)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(j2πν(u − t))φ(ν, τ)

· r(u +
τ

2
)r∗(u − τ

2
) exp(−j2πfτ) dν du dτ,

(9)

where φ(ν, τ) is a two-dimensional function called a ker-
nel of the representation defined in another time-freqency
plane (ν, τ ) and r(t) is a transformed signal.

There exist several methods based on kernel opti-
misation of TFRs, which lead to a minimum classifi-
cation error or a minimum probability of the error for
non-stationary signal classification. In (Breakenridge and
Mesbah, 2003), data-driven, time-frequency representa-
tions are proposed based on kernel optimisation (an expo-
nential kernel and a Gaussian-shaped kernel), which lead
to the minimum classification error for non-stationary sig-
nal classification. The optimisation of the parameterised
kernel, which best separates the classes based on the avail-
able training signals, is governed by an objective function.
In (Breakenridge and Mesbah, 2003), an estimated prob-
ability of the error and Fisher’s discriminant ratio (FDR)
are considered as objective functions. The classifier uses
a properly defined distance d (Basseville, 1989; Doncarli
et al., 2001). The proposed time-frequency (TF) classifier
uses the following decision rule.

The observation r(t) is assigned to the i-th class with
the rule

i = arg min
i=1,...,K

d(Cφ
r , C̄φ

i ), (10)

where C̄φ
i is a representative TFR characterising the i-

th class and Cφ
r is a real-valued TFR from Cohen’s

class. Several TF classifiers use the general decision rule
based on Eqn. (10) (Richard and Lengell, 1999; Davy and
Doncarli, 1998), or a similar rule (Flandrin, 1988). In
(Heitz, 1995; Richard and Lengell, 1999), the classifier
relies on TF correlations, the kernel parameters being op-
timised using a contrast criterion. The kernel types are
smoothed pseudo-Wigner-Ville distribution and spectro-
gram, respectively.

In (Vincent et al., 1994), TF distance measures are
implemented, the TFR being the Wigner-Ville distribu-
tion. In (Gillespie and Atlas, 2001), a special class-
dependent kernel is computed directly in the plane (τ, ν)
by selecting discriminant (τ, ν) locations. The decision
rule involves the Mahalanobis distance. In (Colas and
Gelle, 2004), the L-Wigner distribution (LWD4) and the
fourth-moment Wigner distribution (MWD4) as statisti-
cal expectation of LWD4 are defined. The classification
scheme is a bank which contains a number of L MWD4—
“energy compensated” detectors (to ensure normalisation)
for which the outputs can be viewed as a special case of
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the “minimum distance”,

d2
i =

∑
n

∫
f

(MWD4r(n, f) − MWD4refi
(n, f))2 df,

(11)
In the literature there are studies of time-frequency

tools such as a Gabor filter or a wavelet transform which
are used for extracting features from the texture of an im-
age (Grigorescu et al., 2002; Huang et al., 2003; Kyrki
et al., 2004; Li and Shawe-Taylor, 2005; Tai, 2007). The
classifier is trained based on some labelled texture features
as the training set, used to classify unlabelled texture fea-
tures of images into some pre-defined classes.

Here another time-frequency representation—the
discrete Gabor transform (DGT)—is selected for the
classification. The finite, discrete Gabor transform of
a discrete signal r ∈ C

L (CL is the space of L-
dimensional complex vectors) is given by a set of coef-
ficients (Gröchenig, 2001; Sondergaard, 2006; Qian and
Chen, 1993),

c(m, n) =
L−1∑
l=0

r(l)win∗(l − an) exp(−2π j m l/M).

(12)
Here win is an analysis window that localises the sig-

nal in both time and frequency. We focus on the case
when win and r are equally long (Sondergaard, 2006).
Using the Gabor frame approach, we find an easy way
to construct the inverse discrete Gabor transform (IDGT).
The idea is to have analysis mapping and synthesis map-
ping, where the frames (winm,n) and (γm,n) are dual
(Gröchenig, 2001; Sondergaard, 2006; Werther et al.,
2005).

A finite, discrete Gabor frame is a family of functions
winm,n which come from a reference function win by its
translation in time and modulation in frequency,

winm,n = win(l − na) exp(2π j m l/M), (13)

for m = 1, . . . , M and n = 1, . . . , N , where L =
aN = bM for some M ∈ N, N ∈ N. The sampling
(shift) parameters are also denoted in this paper as b =
ΔM = L/M and a = ΔN = L/N. If MN > L, the
frame is redundant (oversampled). A large redundancy
R = L/(ab) is assumed, which gives better accuracy but
requires greater computational efforts. The inverse Gabor
transform with the synthesis window γm,n is calculated
according to the formula

r =
N−1∑
n=0

M−1∑
m=0

c(m, n) exp(2π j m l/M)γ(l−an). (14)

The accuracy of the Gabor transform and the inverse
Gabor transform depends on compact localisation of syn-
thesis and analysis windows in time and in frequency. In
experiments, a Gaussian window is chosen as the analysis
window win .

3. Concept of a new classification scheme
of deterministic, non-stationary signals
based on the Gabor transform

The algorithm presented here is yet another proposal to re-
solve a noisy matching shape problem with a low SNR ra-
tio for the classification task. 2-D noisy shapes come from
time-frequency transformation of 1-D non-stationary data
heavily distorted by random noise. Rigid template match-
ing cannot be performed because of large unpredictable
deformation and the loss of many points in noisy shapes
compared with to non-noisy ones. That is why a more
heuristic approach should be taken into account.

The complete, discrete multi-classification algorithm
in terms of discriminant functions can be executed in the
following way:

1. Initial step

• Establish the length L of an observation window (as-
sumed time of observations) longer than the length of
K examined signals ri, i = 1, . . . , K. (This assump-
tion allows the signal to appear at a random time mo-
ment in the observation window.)

• Establish a redundancy R = L/(ab) of the time-
frequency Gabor transformation, where M = L/b
is the number of frequency samples, N = L/a is the
number of time samples in the time-frequency plane.

• Establish K matrices KM M×N,i for i = 1, . . . , K
by the Gabor transforming of K ideal non-noisy use-
ful signals. (This step is equivalent to the training
step for creating patterns in different classification al-
gorithms.)

• Create a bank of K masks called also ideal patterns
(ideal shapes) represented by the matrix PM m×n,i

based on selected sub-matrices of KM M×N,i of
lower dimensions mi × ni, i = 1, . . . , K , contain-
ing only non-zero Gabor coefficients. Transform the
matrix PM m×n,i to binary form, replacing non-zero
elements by ones.

2. Preparation of auxiliary matrices for classification

• Compute the Gabor transform of the received signal
r to create the image on the time-frequency plane
represented by the matrix RM M×N of the received
signal.

• Establish an auxiliary threshold thaux lower than the
maximum value of Gabor coefficients.

• Determine a secondary plane (the thresholding
plane) located at thaux , represented by the secondary
matrix SCM M×N , leaving time-frequency coeffi-
cients crossing the secondary plane and setting the
rest of coefficients to zero.
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3. Preparation of the set of discriminant functions

• Find the best localisation of the useful signal (lo-
calisation is random because of a random moment
of the signal arrival in the observation window) in
the secondary plane by computing a few Frobenius
inner products by slightly shifting the mask matrix
PM m×n,1 over the secondary matrix SCM M×N in
the neighbourhood of the biggest values (the most
probable localisation of the useful signal). Only
translations along the time axis and the frequency
axis are allowed from the physical point of view.
In the background, the matrix of the noisy mask
NM m×n,1 (the ideal mask distorted by heavy noise)
is computed. Select the max Frobenius inner prod-
uct denoted as MFP1. Repeat the same process for
i = 2, . . . , K.

• Take the collection of MFP i, i = 1, . . . , K as the
set of discriminant functions MFP i ⇒ gi(r) treated
as a two-dimensional extension of linear discrimina-
tion functions with weights represented by ideal pat-
tern images and features represented by images of re-
ceived signals. For simplicity, discriminant functions
are further denoted as g(r) instead of g(X), where
X is a matrix of Gabor coefficients of a received sig-
nal r.

4. Final step—classification

• Assign the received observation to the i-th class with
the max gi(r).

Motivating applications of signals with different fre-
quency modulations range from communications to a
sonar and a radar. For example, a low probability of in-
tercept radar (LPI) is designed to be difficult to detect.
An LPI radar works with such frequency modulated sig-
nals which are acknowledged to be hard to detect. Un-
fortunately, such signals are secret. Signals with differ-
ent frequency modulation laws are also met in the animal
world. These signals are recorded by researches and are
rarely accessible. That is the main reason why that multi-
classification has been limited to three accessible signals
embedded in heavy noise generated in simulations in this
paper.

In the 3-class classification task, three discrete sig-
nals with different lengths and approximately polynomial
frequency modulation and hyperbolic frequency modula-
tion laws were used. The non-noisy real radar signal RAD
(the signal lasts 460 samples) was received by a radar re-
ceiver. The original non-noisy bat signal BAT (the sig-
nal has 1024 samples) with an approximately hyperbolic
frequency modulation law was received by a specialised
device and a synthetic signal with the exactly hyperbolic
frequency modulation law called shortly HFM (the sig-
nal has 256 samples) was formed by a Matlab function,

according to the formula describing its spectral content,
varying with time (Auger et al., 1996),

HFM (n) = exp
(
j 2π

(
f0n +

c

log(|(n)|)
))

. (15)

These three accessible signals are assumed to be
ideal in this paper and are used for forming ideal patterns.

The corresponding time representations of the sig-
nals considered are shown below. Additionally, as func-
tions of time, the signals are randomly put in the obser-
vation window of the length L = 1024, simulating an un-
known moment of the signal arrival during observation.
All signals are normalised to the range [−1, 1].

Fig. 1. Real part of the HFM 256-sampled signal.

Fig. 2. Real 1024-sampled BAT signal.

Having three signals, three ideal shapes (ideal masks)
are created from regions occupied by Gabor coefficients.
These shapes are strongly dependent on the assumed val-
ues of redundancy R (R = 128 in the experiments) of
the Gabor transform. In the numeric computational envi-
ronment, the Gabor transform is represented by the matrix
KM M×N with dimension M × N = 512 × 256.
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Fig. 3. Real 460-sampled RAD signal.

Fig. 4. Ideal shape of the HFM signal for R = 128, thini = 3.5.

Fig. 5. Ideal shape of the non-noisy RAD signal for R = 128,
thini = 3.5.

Images of patterns (sub-matrices) are limited to es-
sential pixels for particular signals. The initial threshold
thini = 3.5 is taken in order to reject negligible Gabor
coefficients (caused, e.g., by computational inaccuracies).

Fig. 6. Form of a non-noisy BAT signal for R = 128,
thini = 3.5.

Matrices PM m×n,i, are transformed to binary form by
setting non-zero values to ones. In this way, a bank of
three masks is created, represented numerically by matri-
ces PM m×n,i, i = 1, 2, 3.

Next, signals are gradually emerged in noise with
a decreasing SNR ratio, which causes the deterioration of
the Gabor transformation. Noise with a Weibull distribu-
tion (a typical distribution for a radar clutter) is chosen
as a model of disturbances. Noise modelled by Rayleigh,
Rice or normal distributions behaves similarly. Random
noise tends to spread its energy over the entire time-
frequency domain, while signals concentrate their energy
within limited time intervals and frequency bands (Auger
et al., 1996). Coefficients of the Gabor transform of a sig-
nal with additive noise are a sum of coefficients of the Ga-
bor transform of a signal (signal Gabor coefficients) and
coefficients of the Gabor transform of noise (noise Gabor
coefficients), because of the linearity of this transform.

In the region occupied by signal coefficients in the
ideal mask, we can only have signal coefficients distorted
by noise coefficients. Outside this region, we have only
noise Gabor coefficients. An example of the relation be-
tween the time observation for SNR ≈ −20 dB and the
ideal RAD signal in the background is visible in Fig. 7.
For this value of SNR (noise + signal), Gabor coefficients
and noise Gabor coefficients are utterly undistinguishable,
which can be seen in Fig. 8. For comparison, the Gabor
transform of the non-noisy RAD signal is shown in Fig. 9.

The BAT and RAD signals are real and their complex
analytic form should be computed before computing the
Gabor transform, otherwise the effect of repeating a neg-
ative spectral component appears (Fig. 9).

According to rules in the complete classification
algorithm, a secondary plane (the thresholding plane)
should be determined, located at the threshold level
thaux , slightly lower than max(abs(c(m, n))). Gabor
(noise + signal) coefficients should be theoretically



Classification in the Gabor time-frequency domain of non-stationary signals. . . 141

Fig. 7. Relation between time observation and the ideal RAD
signal in the background for SNR ≈ −20 dB.

Fig. 8. Gabor transform of observation with the embedded RAD
signal for SNR ≈ −20 dB.

Fig. 9. Gabor transform of the real, non-noisy RAD signal (only
signal coefficients) with spectral repeat effects, R =
128.

slightly bigger compared with only Gabor noise coeffi-
cients. In this secondary plane, represented by the sec-
ondary matrix SCM M×N , time-frequency coefficients
crossing the secondary plane are left and the rest of coef-
ficients are set to zero. The thresholding causes that many
(but not all) of Gabor noise coefficients are rejected. In the
secondary plane, the area occupied by Gabor (noise + sig-
nal) coefficients creates a heavily distorted shape called a
noisy mask, represented by the matrix NM m×n,i.

According to the earlier assumptions that a signal
can appear at a random time instant in an observation
window, the localisation of a noisy mask is also ran-
dom. This localisation should be found automatically
in the algorithm. Thus the local Frobenius inner prod-
uct is computed a few times for a slightly shifted pattern
matrix (mask) PM m×n,i, i = 1 over a secondary ma-
trix SCM×N in the neighbourhood of the biggest values
(only translations along the time axis and the frequency
axis are allowed from the physical point of view). The
biggest local Frobenius inner product MFP1 indicates the
most probable localisation of Gabor (noise + signal) coef-
ficients (best matching localisation). The same operations
have to be repeated for the two remaining ideal masks for
computing MFP2 and MFP3. The collection of MFP i,
i = 1, 2, 3 is also the collection of discriminant functions
gi(r) = MFP i. The received signal is assigned to the i-
th class, i = 1, 2, 3, with max gi(r). This means that the
noisy mask NM m×n for the signal really embedded in
noisy observation has just been found.

Fig. 10. Noisy mask of an analytic form of the BAT signal with
the best matching with the ideal mask corresponding to
SNR ≈ −16 dB.

In Figs. 10–12 it is clearly visible how an ideal cohe-
sive pattern shape has been changed into a noisy mask be-
cause of the disturbing noise. It is obvious that the higher
SNR, the less distorted the noisy mask and the easier the
matching process.

In the experiments, two kinds of noisy masks were
considered: NM m×n with absolute values of Gabor coef-
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Fig. 11. Noisy mask of the analytic form of the BAT signal
with the best matching with the ideal mask for SNR ≈
−5.5 dB.

Fig. 12. Noisy mask of the real RAD signal with the best match-
ing with the ideal mask for SNR ≈ −8 dB.

ficients and NMBm×n with ones instead of absolute val-
ues of Gabor coefficients. This assumption results in two
variants of classification rules:

α = max
i=1,2,3

(gi(r)) = max
i=1,2,3

MFP i (16)

provided that NMBm×n,i is used,

β = max
i=1,2,3

(gi(r)) = max
i=1,2,3

MFP i (17)

provided that NM m×n,i is used.
Generally, in a multi-class classification problem the

same classifications rules could be taken for i = 1, . . . , K.

4. Numerical evaluation of the proposed
classification method

The number of proper classifications versus the SNR ratio
is assumed as the criterion of effectiveness of the proposed

classification algorithm. The dependence of the number of
proper classifications for RAD, BAT, HFM signals in 200
trials for each value of SNR versus increasing values of
SNR ratios shown in Figs. 13–15 presents experimental
evaluation of the proposed classification algorithm.

The classification of the HFM signal presented in
Fig. 15 requires some explanations. It is worth noticing
that the mask of the HFM signal for chosen parameters of
computation might be completely contained in the mask
of the BAT signal. In such a situation, a classifier could
make a wrong decision taking the BAT signal instead of
the HFM signal. Classification was performed assuming
that HFM is always located outside the BAT mask, like in
Fig. 16 in numerical experiments. The threshold thaux is
selected as thaux = ξmax(abs(c(m, n)). Classification
was performed with two variants of classification rules
α and β from Eqns. (16)–(17) and a varying value of ξ.
The results of classification for ξ = 0.5, 0.7, 0.85 respec-
tively using the example of the RAD signal are shown in
Figs. 14 and 17–18. The value of ξ has to be carefully
established. If ξ is too small, more undesired noisy Ga-
bor coefficients will appear in the secondary plane. If ξ is
too high, less desired signal coefficients will appear in the
secondary plane.

Fig. 13. Classification according to the rules α and β in 200
trials when the BAT signal is present in observations,
thaux = 0.7 max(abs(c(m, n))).

The comparison of Figs. 13–15 shows that the pro-
posed algorithm is more effective in the range −18 dB to
−12 dB for longer signals (the BAT signal is the longest
signal whereas the HMF is the shortest one). For shorter
signals, the possibility of incorrect matching of non-noisy
and noisy masks substantially increases.

Experiments reveal that this strategy allows us to ob-
tain almost as good as 100% classification accuracy for
SNR higher than −8 dB, independently of the value thaux

for the three examined values of ξ. Comparing the clas-
sification results, ξ = 0.7 turns out to be the reasonable
choice.
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Fig. 14. Classification according to the rule α and β in 200 tri-
als when the RAD signal is present in observations,
thaux = 0.7max(abs(c(m,n))).

Fig. 15. Classification according to the rule α and β in 200 tri-
als when the HFM signal is present in observations,
thaux = 0.7max(abs(c(m,n))).

Fig. 16. Forbidden and allowed positions of the HFM signal in
relation to the BAT signal.

Fig. 17. Classification according to the rule α and β in 200 tri-
als when the RAD signal is present in observations,
thaux = 0.5 max(abs(c(m, n))).

Fig. 18. Classification according to the rule α and β in 200 tri-
als when the RAD signal is present in observations,
thaux = 0.85 max(abs(c(m, n))).

The proposed algorithm was compared with the clas-
sification algorithm based on discrete wavelet decompo-
sition and the LVQ neural network with the same ex-
perimental conditions. The structure of this algorithm
was built using typical approaches to signal processing,
which can be seen in Fig. 19, originated from (Sejdic et
al., 2009).

Looking at the scheme in Fig. 19, the algorithm pre-
sented in the paper can be roughly matched to the follow-
ing path: Time-Frequency Domain ⇒ Amplitude Levels in
TF bands ⇒ Distance Measures represented in the paper
by the Frobenius inner product in the TF plane ⇒ Deci-
sion. The classification algorithms based on the wavelet
decomposition for creating a feature vector and artificial
intelligence as a classifier were chosen as representative
methods for comparison. This algorithm can be also seen
in the following path in Fig. 19: Time-Frequency Domain



144 E. Świercz

Fig. 19. Signal processing for pattern classification in signal ap-
plications, from (Sejdic et al., 2009).

⇒ Wavelet Coefficients ⇒ Artificial Intelligence ⇒ De-
cision. It is worth pointing out that classification in the
scheme wavelet decomposition jointly with the LVQ net-
work classifier has some restrictions—the algorithm re-
quires an established point of occurrence of all signals
in time, e.g., at the beginning of the observation win-
dow. The algorithm presented in the paper does not im-
pose such constraints; the signal can start at a random
time point, which corresponds to a random time point in
an observation window and a random localisation in the
time-frequency plane.

The wavelet decomposition algorithm was used with
the same three signals as described in previous experi-
ments, i.e., the real life bat signal (BAT), the received
radar signal (RAD) and the synthetic signal with hy-
perbolic modulation of frequency (HFM). It was found
by experience that Daubechies wavelets are very useful
in the proposed classification experiments. Using the
Daubechies No. 4 mother wavelet up to the fourth level of
decomposition, the feature vector was created from vari-
ances of detail coefficients for four decomposition levels.

A learning vector quantisation (LVQ) neural network
was chosen as an intelligent classifier. The LVQ network
has a first competitive layer and a second linear layer. The
LVQ structure with the four-element input (number of fea-
tures) and the three-element output (number of classes)
was trained with 11 training signals in each class. Among
the examined LVQ architectures, the one with three neu-
rons (one neuron per class) in the competitive layer and
one neuron per class in the linear output layer turned out to
be the simplest and sufficient configuration for the classifi-
cation. The training set was created by adding to the orig-
inal signals small low-pass noise, which can be roughly
treated as measurement noise.

The detection ability of the LVQ network was eval-
uated using the set of signals RAD, BAT, HFM with ap-
proximately the same range of SNR ratios as in the ex-
periments in the proposed algorithm. The results of this

classification were quantified in terms of trials classified
correctly.

Fig. 20. Classification in 200 trials for each value of the SNR
ratio when the BAT signal is present using wavelet de-
composition and the LVQ algorithm as the intelligent
classifier.

Fig. 21. Mean classification accuracy—jointly for three signals
in 200 trials for each value of the SNR ratio using
wavelet decomposition and the LVQ algorithm as the
intelligent classifier.

Figures 20–22 display the results obtained with two
methods: the one proposed in the paper (Fig. 13–18) and
the one based on wavelet decomposition (Fig. 20–21).
Comparing the results of the classification using the exam-
ple of the BAT signal in two methods, cf., Fig. 13 and 20,
it is clearly seen that the proposed method is more effi-
cient especially for a low SNR ratio. For SNR ≈ −10 dB,
the LVQ network utterly loses classification abilities. The
confusion matrix for SNR < −9 dB has permanently the
same form as presented in Table 1.

The overall classification rate is about 9.3% for
SNR < −9 dB, which is the result of losing the classi-
fication ability.
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Fig. 22. Mean classification accuracy—jointly for three signals
in 200 trials for each value of the SNR ratio using the
proposed algorithm.

Table 1. Confusion matrix for the test set; SNR < −9 dB.
Class Assignment

of RAD to
a class [%]

Assignment
of BAT to
a class [%]

Assignment
of HFM to
a class [%]

RAD 9.09 0.00 0.00
BAT 90.91 100.00 90.91
HFM 0.00 0.00 9.09

There is no point in using the proposed classifica-
tion method with some intuitive approach in small noise
environments. There are numerous efficient classification
algorithms, which are based on precise mathematical re-
lations, but they can fail in heavy noise conditions.

5. Discussion and conclusions

In this paper, a study of a new classification algorithm
based on the matching shape idea of non-stationary sig-
nals available from observations was presented. The de-
veloped algorithm is suitable for non-stationary signals,
well characterised by a frequency modulation law (FM).
For this reason, not every non-stationary signal could be
classified by the proposed algorithm. For example, speech
cannot be classified by it.

The proposed algorithm requires the following steps:

• Create an ideal pattern (ideal mask) for an individual
class by creating a characteristic image for the class
on the Gabor time-frequency plane.

• Create an image of features by the Gabor transforma-
tion of received observations.

• Define a set of discriminant functions (computed as
Frobenius inner products).

• Find a maximal discriminant function and make a de-
cision about signal recognition embedded in observa-
tions.

The key idea is based on the comparison of shapes
(ideal and noisy) obtained from the Gabor transform,
which enhances frequency properties of signals belong-
ing to the class. In the examined problem, there is no re-
lation between each sample point on one shape and the
corresponding sample point on the noisy shape, because
of deformation caused by heavy noise. This kind of un-
predictable deformation and the loss of a lot of points in
noisy shapes cannot be explained in an easy way in the
Gabor plain. Then, rather intuitive comparison of the pat-
tern shape to the noisy shape is adopted to derive the over-
all classification algorithm.

The algorithm was demonstrated for three class clas-
sification of signals embedded in heavy noise and charac-
terised by approximately polynomial and hyperbolic fre-
quency modulation laws. Despite a low number of cases
in the data set, the algorithm turned out to be effective
for a low SNR ratio, as expected. The developed proce-
dure gives reasonable results for the three non-stationary
signals considered, and performance analysis showed that
classification accuracy in numerical experiments is about
100% for SNR above −8 dB. In the same experiment
conditions, classification based on wavelet decomposition
and LVQ classification was performed. This LVQ clas-
sifier lost the classification ability for the SNR value, for
which the proposed algorithm performs the classification
task with a good classification rate.

It seems that the proposed method is general and can
be successfully used in the recognition/classification of
different frequency modulated, non-stationary signals.
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