
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 157–174
DOI: 10.2478/v10006-010-0012-8

SELF–ADAPTATION OF PARAMETERS IN A LEARNING CLASSIFIER
SYSTEM ENSEMBLE MACHINE

MACIEJ TROĆ, OLGIERD UNOLD

Institute of Computer Engineering, Control and Robotics
Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland

e-mail: {maciej.troc,olgierd.unold}@pwr.wroc.pl

Self-adaptation is a key feature of evolutionary algorithms (EAs). Although EAs have been used successfully to solve
a wide variety of problems, the performance of this technique depends heavily on the selection of the EA parameters.
Moreover, the process of setting such parameters is considered a time-consuming task. Several research works have tried
to deal with this problem; however, the construction of algorithms letting the parameters adapt themselves to the problem
is a critical and open problem of EAs. This work proposes a novel ensemble machine learning method that is able to
learn rules, solve problems in a parallel way and adapt parameters used by its components. A self-adaptive ensemble
machine consists of simultaneously working extended classifier systems (XCSs). The proposed ensemble machine may be
treated as a meta classifier system. A new self-adaptive XCS-based ensemble machine was compared with two other XCS-
based ensembles in relation to one-step binary problems: Multiplexer, One Counts, Hidden Parity, and randomly generated
Boolean functions, in a noisy version as well. Results of the experiments have shown the ability of the model to adapt the
mutation rate and the tournament size. The results are analyzed in detail.

Keywords: machine learning, extended classifier system, self-adaptation, adaptive parameter control.

1. Introduction

Learning classifier systems (LCSs) are rule-based systems
which adapt themselves to the environment (Goldberg,
1989). They were introduced by John Holland in year
1975 (Holland, 1976). Since then, numerous types of
LCSs have been proposed and used in many applications:
from data-mining to robotics (Holmes et al., 2002; Un-
old and Tuszynski, 2008; Stout et al., 2008a; 2008b; Bull
et al., 2008). The majority of these models are based on
Holland’s original idea and they belong to the group of
the Michigan approach. Every such a system consists of a
set of condition-action rules called classifiers, where each
represents a partial solution to the overall learning task,
procedures for performing classifications, procedures for
evaluation and for discovery rules. After detecting the
state of an environment, the system uses classifiers to
choose an action, performs this selected action and ob-
serves the results, which are called the payoff. The col-
lected information is used afterwards to update the rule
set. New classifiers are usually discovered with the help
of the genetic algorithm (GA). In contrast, an individ-
ual of the Pittsburgh approach is a set of rules represent-

ing a complete solution to learning problem. Thus, the
Michigan and the Pittsburgh models are quite different ap-
proaches to the learning. When trying to compare the per-
formance of the two methods, it appears that in some cases
the Pittsburgh approach is more robust, but it is also com-
putationally very expensive compared with the Michigan
method.

The extended classifier system (XCS) (Wilson,
1995) is probably still the most advanced and universal
“Michigan-style” LCS. In every step, an XCS system tries
to predict a payoff for each action which can be taken.
Therefore, adapting the XCS system relies on building a
“payoff map” of the environment in which the system acts
(Butz et al., 2004). The XCS has shown to be an effective
and flexible method for solving both one-step problems
(where the environmental payoff may be detected just af-
ter a single action of a system) and multi-step problems
(where the final payoff occurs after some number of inter-
actions with an environment). Theoretical analysis (Butz
et al., 2003; 2004) has shown how the XCS parameter
should be set. Nevertheless, some parameters are still sen-
sitive and they should be tuned with respect to the problem
which is solved by the system. The adaptation or self-

{maciej.troc, olgierd.unold}@pwr.wroc.pl

158 M. Troć and O. Unold

adaptation of XCS parameters is to overcome this draw-
back (Troć and Unold, 2008; Hurst and Bull, 2002; Huang
and Sun, 2004).

The XCS, like other LCSs, is not always imple-
mented as a stand-alone system. Ensembles, which con-
sist of several cooperating learning classifier systems, are
also under research (Bull et al., 2007; Dam et al., 2005;
Gao et al., 2007) and the possibility of parallel computing
is not the only motivation. This work delivers a descrip-
tion of an architecture where adaptive parameter control
is done in the framework of an ensemble machine built
of XCS classifier systems. In this model, the XCS com-
ponents learn in parallel using their own parameter values,
and they cooperate in solving classification problems. The
meta evolutionary algorithm (MEA) evolves the popula-
tion of components and through this process it optimizes
indirectly the XCS parameters. We consider that such an
architecture makes it possible to adapt a majority of sensi-
tive parameters used in the XCS system. We also suppose
that the proposed self-adaptive ensemble may compete ef-
fectively with the one where self-adaptation of parameters
is made at the classifier level in each component. Both
methods are compared in this work.

The remainder of this paper is organized as follows:
Section 2.1 provides an overview of the XCS system with
a survey of adaptive parameter control in XCS, reviews
self-adaptation in LCSs and classifier ensembles. In Sec-
tion 3, we introduce a new model, the self-adaptive XCS-
based ensemble machine. In Section 4, we use different
one-step binary problems to compare the proposed model
with two other XCS-based ensembles. Finally, Section 5
summarizes and concludes the work.

2. Background and related work

2.1. Extended classifier system. From its very begin-
ning (Wilson, 1995), the XCS architecture has been evolv-
ing significantly and many varieties of it have been pro-
posed (e.g., the XCSR, which processes real value inputs
(Wilson, 2000)). Standard implementation of the basic
XCS is described, among others, in (Butz, 1999). Nev-
ertheless, in this section we take into account only the
system which processes binary inputs and solves one-step
problems. Solving one-step problem relies on simple clas-
sification of an input message in each cycle of system
work. Every possible system action represents a class la-
bel.

As has been mentioned in Introduction, an XCS in-
cludes the population ([P]) of constant size linear rules
(Goldberg, 1989) called classifiers and it applies proce-
dures to adapt them, both in a parametric and structural
way. There are two important data structures in an XCS
apart from [P]: the match set [M] formed out of the cur-
rent [P] and including all classifiers that match the current
input, and the action set [A] formed out of the current [M]

and including all classifiers from [M] that propose the ex-
ecuted action.

Each classifier is a condition-action-prediction rule
and consists of the following elements:

• the condition C ∈ {0, 1, #}L specifies the subspace
of the input space of dimensionality L in which the
classifier is applicable (every “don’t care” symbol #
matches both 0 and 1);

• the action part A specifies the advocated action;

• the payoff prediction p estimates the average pay-
off expected if the classifier matches and its action
is taken by the system;

• the prediction error ε estimates the average deviation
of the payoff prediction p;

• the fitness f denotes the classifier fitness;

• the experience exp counts the number of cycles since
its creation that the classifier has belonged to an ac-
tion set;

• the time stamp ts denotes the number of cycles since
the last GA occurred in the action set in which the
classifier has attended;

• the action set size as estimates the average size of the
action sets the classifier has belonged to;

• the numerosity num denotes the number of micro-
classifiers aggregated in the classifier (the XCS stores
identical classifiers as a single macro-classifier).

As the majority of learning classifier systems, in each
cycle the XCS chooses an action as an answer for a cur-
rent environmental state. Nevertheless, it may work either
in the exploit or the explore phase, every cycle. During
exploit cycles, the system selects an action which should
cause the highest payoff (according to the prediction). In
explore cycles, the system makes a random action to learn
more about an environment (to build a payoff map of it).

At the beginning of each cycle, the system detects
an environmental state and transforms it to a vector (in-
put message s). After that, the XCS builds a match set
[M] including all classifiers which match the input. The
classifier is considered to match the input when each sym-
bol in its condition part C equals either a symbol at the
corresponding position of input message or a “don’t-care”
symbol. Every possible action should be represented by at
least one classifier in the match set. Otherwise, covering
is done for all missing actions. The covering mechanism
creates new classifier with each condition either taken
from the input message or set to the “don’t-care” symbol
(with probability determined by the parameter P#). An
action part is set to a missing action. After that, an action

Self-adaptation of parameters in a learning classifier system ensemble machine 159

a is selected and performed in the environment. While in
explore cycles, the selection is random; in exploit cycles
the system chooses an action with the highest value in the
prediction array P (a), which includes predictions for all
possible actions. Prediction for an action a ∈ A is calcu-
lated as a weighted average of predictions p of classifiers
which have a in their action parts. Classifier fitness f is
treated as a weight.

After executing the action a, the reaction of the en-
vironment is detected, transformed to the scalar payoff
R, and reinforcement learning of classifiers may be per-
formed. Classifiers are usually trained in explore cycles
only; nevertheless, some XCS implementations also carry
it out in exploit cycles. At the beginning, an action set [A]
is created including those classifiers from [M] which pro-
posed an action a. The experience exp of all classifiers
in [A] is increased, and an update of parameters is made.
The Widrow-Hoff delta rule (Widrow and Hoff, 1960) is
used to update the prediction p, the prediction error ε, and
the fitness f . Additionally, the first two parameters are up-
dated with the help of the technique known as Moyenne
Adaptive Modifée (MAM). In our implementation of the
XCS, the prediction error is updated before the prediction,
but an opposite order is often applied. The prediction is
updated by p ← p + β(R − p), where β (β ∈ (0, 1]) de-
notes the learning rate. The prediction error is updated by
ε ← ε + β(|R− p| − ε). The use of MAM causes that,
when classifier experience exp is lower than an inversion
of learning rate β, the value of 1/exp is used instead of β.
The fitness value of each classifier in [A] is updated with
respect to its current relative accuracy κ′:

κ =

{
1 if ε < ε0

α(ε/ε0)−ν otherwise,
(1)

κ′ =
κ · num∑

cl∈[A]

κcl · numcl
, (2)

f ← f + β(κ′ − f). (3)

The parameter ε0 (ε0 > 0) is a minimal classifier error
considered. If ε < ε0, the classifier is treated as an accu-
rate one. Otherwise, the accuracy κ is a scaled reciprocal
of an error, controlled by parameters ε0, α (α ∈ (0, 1))
and ν (ν > 0). The set-relative accuracy κ′ is counted
with respect to accuracies of all classifiers in [A]. Clas-
sifier fitness f is updated according to the Widrow-Hoff
delta rule, but without the use of the MAM technique. Fi-
nally, the action set size estimation as is updated (with
the help of the Widrow-Hoff delta rule and MAM) by the
current [A] size.

Besides the covering mechanism, XCS applies the
steady-state genetic algorithm for rule discovery. A GA
is run if an average time from its last call in [A] (counted
based on the average time stamp ts parameter of classi-
fiers) is greater than θGA. In early versions of the XCS

model (Wilson, 1995; Butz, 1999), a roulete-wheel selec-
tion was used in the GA, but after that, tournament se-
lection, proposed by Butz (Butz et al., 2002; 2003), has
gained in popularity, because of its attractive properties.
In this selection method, two independent tournaments are
created in an action set to select two parent classifiers. The
tournament size is calculated as a fraction (controlled by
the parameter τ) of the action set size. After reproduc-
tion, offspring classifiers are uniformly crossed (with the
probability χ) and mutated (with the probability μ). We
use simple free mutation (Butz, 1999), where an action
part and each classifier condition can be changed into one
of the remaining possible values. The parameters of off-
spring classifiers are in a majority derived from their par-
ents. At the end, time stamps ts of all rules in the action
set are updated to the current time.

GA subsumption (in the version proposed by (Butz
et al., 2002)) is fired for each offspring classifier. It checks
if there exist experienced (exp > θsub) and accurate rules
in [A] which logically subsume (with respect to the condi-
tional parts) the new classifier. If so, the numerosity of the
most general one is increased. Otherwise, the offspring
classifier is inserted into the population. During the inser-
tion, the classifier is compared with all individuals in [P].
If an exactly identical classifier is found, its numerosity
is increased. If not, a new macro-classifier is added to the
population with the numerosity set to 1, the experience set
to 0 and the fitness divided by 10.

If a population size (in the sense of the number of
micro-classifiers) is greater than the maximal value N ,
a deletion process in the whole [P] is performed. Propor-
tional selection is made with respect to two factors: action
set estimation as of the classifier and the inversion of its
relative fitness. The second factor is taken into account if
the classifier is experienced (exp > θdel) and has very low
fitness in relation to the average fitness in [P]. After the
deletion, a new cycle can begin.

As has been described above, the XCS system is con-
trolled by large numbers of parameters. They are as fol-
lows:

• β: learning rate,

• α: accuracy function fall-off rate,

• ν: accuracy function exponent,

• pI , FI , εI : initial values of classifier parameters,

• θGA: GA trigger threshold,

• τ : relative tournament size,

• χ: crossover probability,

• μ: mutation rate,

• P#: probability of using a dont-care symbol during
covering,

160 M. Troć and O. Unold

• θdel: deletion experience threshold,

• θsub: subsumption experience threshold,

• δ: mean population fitness fraction below which a
classifier fitness is considered in the deletion-vote
function.

Parameter influence on system adaption was investi-
gated, among others, in (Butz et al., 2004), where some
important assumptions for parameter tuning were. In
(Butz et al., 2002; 2003; Kharbat et al., 2005), it was
shown that using tournament selection (instead of propor-
tional one) makes parameters less sensitive. If tournament
selection is applied, the values of some parameters (like α
or ν), proposed in (Butz et al., 2003), are always appro-
priate and they do not have to be changed. Nevertheless,
some other XCS parameters need to be tuned with respect
to the type and scale of the problem being solved by the
system, the population size N , the dynamics of the envi-
ronment, the level of payoff noise, or even the properties
(like fitness or generality) of classifiers controlled by these
parameters.

The value of tournament size may be taken from
quite a broad range [0.2, 0.8] in most cases (Butz et
al., 2002; 2003), but sometimes extremely high τ of 1
is required (Kharbat et al., 2005). In (Dawson, 2002), it
was shown that high evolutionary pressure is necessary
if classifier population is very small, which also suggests
using τ = 1 in such circumstances. The mutation rate
μ is probably the most sensitive XCS parameter, because
its optimal value depends on the properties of the envi-
ronment and those of the classifier being mutated (Hurst
and Bull, 2002). In some environments, fixed μ should be
either lower or higher than 0.04, which is the value pro-
posed in (Butz et al., 2003) for classification problems.
Nevertheless, only the adaptive mutation rate, which takes
into account the current content of classifier population,
may support optimal search of the rule space. The learn-
ing rate β is another XCS parameter which requires tun-
ing. In (Butz et al., 2002; 2003) it was shown that, if β
is about 0.05, the XCS using tournament selection adapts
effectively to static environments even when the Gaussian
noise is added to environmental payoffs. Whereas adap-
tion to a dynamic environment requires a higher learn-
ing rate to enable fast recalculation of classifier parame-
ters in response to changes of the payoff landscape (Dam
et al., 2007). Additionally, the optimal value of the learn-
ing rate depends on the generality and accuracy of the
classifier being learned. The parameter β should be de-
creased for overgeneral rules, in which large fluctuations
of the prediction p, prediction error ε and fitness f may
occur (Butz et al., 2005; Orriols-Puig et al., 2009).

Because of the sensitivity, various methods for adap-
tive or self-adaptive parameter control have been proposed

(Hurst and Bull, 2002; Butz et al., 2005; Dam et al., 2007).
In the next subsection, we focus on self-adaptive ones.

2.2. Self-adaptation in learning classifier systems.
Self-adaptation in evolutionary algorithms has been inves-
tigated in numerous projects (Meyer-Nieberg and Beyer,
2007). In genetic algorithms, the main goal is to control
the mutation rate and the crossover operator. The latter is
realized mainly as an adaptation of the place of crossing
or the number of crossing points (one-point, many-points
or uniform crossover) (Spears, 1995; Meyer-Nieberg and
Beyer, 2007). In recent years, an attempt has been made
to adapt the parameters which influence not only a sin-
gle individual, but also the whole population. In (Eiben
et al., 2006a; Eiben et al., 2006b), the voting mecha-
nism was proposed to control population-level parame-
ters with the help of individual-level adaptation (accord-
ing to the Angelines classification (Meyer-Nieberg and
Beyer, 2007)). The self-adaptation of the tournament size
and the population size was performed, producing inter-
esting results.

The self-adaption of parameters has been performed
in various LCSs concerning both genetic and reinforce-
ment parameters. The meta-EP method (Fogel, 1992) has
been used to adapt the mutation rate μ, the learning rate
β and some other reinforcement parameters in two sys-
tems solving multi-step problems: the extended classifier
system (Hurst and Bull, 2002) and the zeroth-level clas-
sifier system (Hurst and Bull, 2003). In this method, the
values of parameters are stored in each classifier as real-
valued genes. During the action of the genetic algorithm,
the parameter genes are passed to child classifiers, recom-
bined and mutated using Gaussian distributions. For ex-
ample, the mutation rate μ in each offspring classifier is
mutated with the help of its own value, μ = μ + N(0, μ)
(Hurst and Bull, 2002), and then applied to the classifier
condition and action. The model presents the classic self-
adapting attitude, individual-level in the Angelines classi-
fication. Experiments were carried out in static and dy-
namic Woods environments. The results showed competi-
tive performance of the system using the self-adaptive mu-
tation rate in comparison with the classic one for some
difficult (complex or dynamic) environments. The adap-
tation of the learning rate (in both systems) and other re-
inforcement parameters (in ZCS) was made with coevo-
lutionary modification of the meta-EP method called “en-
forced cooperation” (see (Hurst and Bull, 2002; 2003) for
a description). It gave good results for some cases of ZCS
adaption.

In (Howard et al., 2008), the mutation rate μ of the
neural XCS was changed before being copied to an off-
spring using the formula μ = μ + eN(0,1). It was shown
that a self-adaptive neural XCS can perform optimally in
more complex and noisy versions of two well-known sim-
ulated maze environments. However, the authors notice

Self-adaptation of parameters in a learning classifier system ensemble machine 161

that self-adaptation does not significantly influence the
performance of the whole system (t-test value > 0.01).

In (Huang and Sun, 2004), co-adaptation between
two learning classifier systems—the Main-LCS (which
aimed at solving the problem) and the Meta-XCS (which
aimed at control parameters in the Main-LCS)—was used.
The Meta-XCS is based on two architectures: XCS and
Dyna (Sutton, 1991). It learns rules which anticipated
the future metrics of the main system (like performance
or the population size) based on the recent metrics and
the action of changing the parameters in the Main-LCS.
Latent learning is applied. Thanks to this solution, a com-
plete model of Main-LCS behavior with respect to the val-
ues of parameters is built. As was noted by the authors,
the described co-adaptive architecture combines both an
adaptive and a self-adaptive approach for parameter con-
trol. Based on the Angelines classification, we could also
say that it is a population-level type of adaptation. The
model was tested on the adaptation of the mutation rate
in a six-bit multiplexer environment and showed high per-
formance.

Many self-adaptation methods (like meta-EP) as-
sume that individuals using more optimal parameter val-
ues are usually better evaluated and they have greater op-
portunities for being reproduced. The mutation rate com-
plies with this assumption, causing the self-adaptation of
μ perform well. Nevertheless, some parameters have di-
rect influence on classifier evaluation and cannot be sim-
ply self-adapted. For example, the learning rate controls
updates of classifier parameters (among others, the fit-
ness updates) and an incorrect value of β makes inaccu-
rate classifiers over-fitted (Orriols-Puig et al., 2009). In
(Hurst and Bull, 2003) it was shown that the adaptation of
β at the individual level is “selfish” indeed and therefore
the “enforced cooperation” method, which is dedicated to
systems solving multi-step problems, was proposed.

Some parameters are even more difficult for self-
adaption, because they control operations made on sets
of classifiers or on the whole classifier population. The
tournament size τ and the deletion threshold θdel may be
given as an example of such parameters in the XCS. Al-
though an algorithm for the self-adaptation of the tourna-
ment size and the population size in genetic algorithms
has already been proposed (Eiben et al., 2006; 2006b), we
do not know works which confirm the effectiveness of this
method in a broad range of problems.

Owing to problems with self-adaptive control of
many important parameters, we think that using the MEA
for parameter adaptation in LCSs should be considered.
In this group of methods, which are in a majority derived
from the meta genetic algorithm (meta-GA) (Grefenstette,
1986), the additional, distinguished evolutionary process
is applied for searching the parameter space. In the ver-
sions proposed for parallel genetic algorithms (Tongchim
and Chongstitvatana, 2002; Takashima et al., 2003), the

model based on a population divided into several subpop-
ulations evolving in parallel is applied. Each of them uses
its own vector of parameter values. The meta evolutionary
process operates on these vectors evaluating, reproducing
and recombining them. An adaptation of the tournament
size and other important parameters has been made in this
way, giving promising results.

2.3. Classifier ensembles. A classifier ensemble is a
group of classifiers (components) which are trained in-
dividually but used together to realize the classification
task. The basic architecture of the classifier in the en-
semble may be a neural network, a decision tree, etc.
(Opitz and Maclin, 1999). To conduct classification, the
outputs of the classifiers must be combined, and the sim-
plest (but commonly used) way is by voting (Bahler and
Navarro, 2000). For example, plurality voting relies on
every classifier making a classification (the vote), and the
class with the largest number of votes becomes the out-
put of the whole ensemble. It has been shown in many
works (Opitz and Maclin, 1999; Dietterich, 2000) that the
ensemble exhibits better performance than a single clas-
sifier. Moreover, classifiers may be trained in parallel on
separate computer machines.

Two factors are important for the effectiveness of an
ensemble: the correctness of answers of the average com-
ponent and the diversity of the answers of the components.
Because classifications made by the components are not
perfect, it is obvious that the ensemble will be effective
if it makes mistakes for different inputs. To increase the
diversity, in many models (e.g., in the bagging method
(Breiman, 1996)), components are trained with separated
learning sets. Applying heterogeneous classifiers differ-
ing in type or using different parameter values is also prac-
ticed and it makes the ensemble more independent from
the problem being solved (Opitz and Maclin, 1999; Bahler
and Navarro, 2000; Tsoumakas et al., 2004). Note that a
single XCS system (or a similar classifier system) is also
some kind of classifier ensemble. Rules (classifiers) coop-
erate to type the best action for the current environmental
state and fitness-based weighted voting is applied. Never-
theless, there are several reasons for using ensembles built
of learning classifier systems.

In (Dam et al., 2005), an XCS ensemble is applied
for data-mining in a physically distributed data set. Each
subset of data is used for training a local classifier system.
An additional XCS learns how to combine outputs of local
components.

In (Bull et al., 2007), an ensemble built of YCS (yet
another) classifier systems was proposed. In the explo-
ration phase, every YCS system makes a random action
and learns the rules, but in the exploitation phase all sys-
tems type an action by voting. Moreover, the migration
mechanism is applied to move classifiers among systems
(based on their fitness). Because the classifiers in each

162 M. Troć and O. Unold

YCS system are created by a genetic algorithm and migra-
tion is used, the whole YCS-based ensemble resembles an
island model of parallel genetic algorithms (PGAs) (Bull
et al., 2007). The performance of the rule sharing ensem-
ble of YCSs was tested on 20-bit and 70-bit multiplexer
problems. The ensemble improved learning speed in com-
parison with a single YCS.

Another approach to using an ensemble of LCSs was
described in (Gao et al., 2007). The proposed system con-
sists of two levels: the first level is comprised of a set of
XCSRs (XCS with real-value attributes), the second one
uses a vote module to combine the results of the XCSRs.
The whole system mined medical data and performed im-
age steganalysis. The ensemble of XCSRs had a bet-
ter generalization ability and prediction performance than
a single XCSR and other comparable supervised learn-
ing methods; however, differences were not statistically
tested.

3. Self-adaptive XCS-based ensemble
machine

LCS-based ensembles are usually made of homogeneous
components (Dam et al., 2005; Bull et al., 2007; Gao
et al., 2007). In this work, we investigate a model where
XCS components use various values of parameters and the
meta evolutionary algorithm (MEA) is applied for adap-
tive control of these parameters in the ensemble. Each
component containing both the classifiers and the vector
of parameter values is treated as an individual, which can
be evaluated, reproduced and mutated in the population
of XCS systems. Our approach is somewhat similar to
that of (Opitz et al., 1996), where the ensemble of neu-
ral networks is optimized by means of a genetic algo-
rithm. Because each XCS component applies the GA for
rule discovery, our model is also similar to some parallel
genetic algorithms, where an adaptation of parameters is
made at the subpopulation level (Tongchim and Chongstit-
vatana, 2002; Takashima et al., 2003). The sensitiveness
of XCS parameters and problems with their adaptation at
the classifier level are the key motivation for our model.

The proposed ensemble consists of a fixed number of
XCS systems, which cooperate to solve one-step (classifi-
cation) problems and learn in parallel. The ensemble size
will be denoted as NC . Like in (Bull et al., 2007), we in-
vestigate a “coarse grained” ensemble (NC = 10 in most
experiments). The main loop of system work follows the
description placed in (Bull et al., 2007). The exploitation
and exploration phases go one after another and the com-
ponents are trained during the second ones. The generic
framework of the proposed ensemble model is given in
Fig. 1, while the pseudo code and a description of basic
components in Fig. 2.

During exploitation phases, all XCS systems com-
pute the same input and make deterministic classifica-

tions. An ensemble class is chosen by non-weighted plu-
rality voting. This means that a class which is pointed by
the majority of the components is an output of the whole
ensemble. Note that in the case of a binary class, plurality
voting is equivalent to majority one. In the case when two
(or more) classes have got the same number of votes, an
output class is selected randomly among them.

During every explore phase, components are trained
independently (in contrast to our previous works (Troć
and Unold, 2008)). Thus, they process different inputs
and after that they apply reinforcement learning on the ba-
sis of randomly selected classes. Moreover, the fitness fC

of each component is updated in this phase and the MEA
may be invoked one or more times. It will be described
in details in the following subsection. No rule migration
among XCS systems is applied.

3.1. Component learning and calling the meta evolu-
tionary algorithm. At the beginning of an explore cy-
cle, every component creates the match set [M] and the
prediction array P (a) to predict the class of the received
input instance (as is done in exploit phases). The predicted
class is compared with the target one and the result of the
comparison updates the component fitness fC , which is
the proportion of the correct classifications done in the
last sC explore cycles. Thereafter, another class is se-
lected randomly and used to learn component classifiers
in a usual way.

After the training of components, the MEA may be
invoked in the ensemble. At first a set is formed, which
includes experienced components existing in the ensem-
ble at least sC explore cycles. The best fitted individual
is selected among them as a candidate for reproduction.
Each component in the set where fitness is lower than
that of the selected one by some threshold value θMEA

is deleted from the ensemble. Empty places shall become
occupied by the offsprings of the most fitted (selected) in-
dividual. Details of component reproduction and mutation
are given in the next subsection. Now, we will try to jus-
tify the proposed scheme of calling the MEA. It seems
to be necessary because, in our previous model (Troć and
Unold, 2008), the MEA is executed in some fixed num-
ber of iterations of components in which parameter values
are optimized. Similarly, in related works (Tongchim and
Chongstitvatana, 2002; Takashima et al., 2003), the step
of meta genetic algorithm takes place in a predefined num-
ber of generations or fitness evaluations of individuals in
subpopulations.

The component fitness fC , which is the estimated
probability of correct classification based on last sC tri-
als, fluctuates, disturbs component evaluation. The lower
the parameter sC the higher the variance of fC . Note that
a similar problem has also been observed at the rule level
in a stand-alone XCS system (Butz et al., 2002; Orriols-
Puig et al., 2009), where the learning rate β is a sensitive

Self-adaptation of parameters in a learning classifier system ensemble machine 163

Fig. 1. Framework of the self-adaptive XCS-based ensemble machine.

parameter. Beside the fitness fluctuations, another prob-
lem appears in the proposed XCS-based ensemble. The
influence of parameter values owned by an XCS compo-
nent may be reliably observed only after some number of
learning trials during which these values are used. It is
hard to determine which number is large enough. The
speed of component adaptation depends on its goal, and
in some complex cases no change in system performance
may be detected for many iterations. This problem makes
component evaluation even more difficult. Therefore, we
consider that executing the MEA in a predefined number
of explore trials is not an optimal solution. Too short a pe-
riod between executions results in random reproductions,
which push a small component population in a random di-
rection (Troć and Unold, 2008). Too long one may unnec-
essarily slow down the adaption. Because of these prob-
lems, in our recent model, the MEA is called if there is
a significant difference between the fitness of a candidate
for reproduction (the best fitted component) and the fit-
ness of a candidate for deletion (other experienced com-
ponent). The threshold value θMEA several times greater
than the maximal fitness deviation guarantees high proba-
bility of reliable comparison of the components. Note that
the sensitivity of sC is reduced this way. For sC = 2000,
we use θMEA of 0.06.

The proposed method has a chance to be independent
of the problem being solved by an ensemble and other fac-
tors, which influence the learning of components. More-
over, it limits the number of reproductions. For example,
when all components are close to maximal performance,
no reproductions are made. It is an important advantage,
because every reproduction evokes some computational
cost and reduces diversity in an ensemble as well.

3.2. Reproduction and mutation of a component.
The reproduction of a component relies on making an

exact copy of it with respect to both elements, i.e., the
classifier population and the vector of parameter values.
Thereafter, the offspring XCS component is placed at the
empty position in an ensemble (done after deletion). If
an ensemble is run in the network of computers, the new
component is transmitted to the free computing node. Af-
ter that, the mutation is performed. The operator changes
only the vector of parameter values but not the classifiers.

In our recent research, the vector consists of two el-
ements. The mutation rate μ and the tournament size τ
are adapted. The first parameter is coded as a real value
gene, which is mutated according to the meta-EP formula:
μ = μ + N(0, μ). In contrast to that, the binary coded
tournament size can have only two values: 0.4 or 1.0. This
scheme is motivated by the works on tournament selec-
tion in XCS (Butz et al., 2002; Butz et al., 2003; Kharbat
et al., 2005), where it was shown that either τ belonging
to the range [0.2, 0.8] or τ of 1.0 should be set in rela-
tion to the problem being solved. The broad range of val-
ues ([0.2, 0.8]), which are appropriate in most cases, sug-
gests that they all have similar influence on system per-
formance. Therefore, an evolutionary search of the op-
timal tournament size could be difficult in the real-value
space. In our model, the bit-flip mutation with the rate
μτ is applied to mutate the binary gene of τ . We use
a high value of the rate (μτ = 0.25) to keep the high di-
versity of the τ parameter in the ensemble. Let us assume
that only the tournament size is adapted. If all compo-
nents use the same tournament size, no significant differ-
ence between their fitness values will be observed and the
MEA cannot be executed. Of course, parameter adapta-
tion gets stack in such circumstances. High μτ is to mini-
mize the risk of that.

Both adapted parameters are set in the initial compo-
nent population simply by the mutation of their commonly
used values (μ = 0.04, τ = 0.4).

164 M. Troć and O. Unold

Algorithm
ensemble—the set of XCSs in the ensemble

for each XCS in ensemble
initialize the vector of parameter values

end for each
do while (not reach the maximum learning step)

if exploit phase
distribute the same input instance to each XCS in ensemble
for each XCS in ensemble

select best class
end for each
choose the final class by plurality voting between XCSs

in ensemble
else

for each XCS in ensemble
get own input instance accompanied by a correct class
select best class
compare selected class with a correct class
update fc as a proportion of correct classifications done

in the last sc explore cycles
select random class
get reward for selected random class
perform reinforcement learning and optionally GA

end for each
invoke MEA

end if
neg exploit phase
end do while

procedure MEA
experienced← the set of XCSs existing in ensemble

at least sc explore cycles
best← select XCS from experienced with a highest fc

exchange← select XCSs from experienced
for which fc < fcbest − θMEA

ifnot empty exchange
ensemble← ensemble / exchange
for each XCS in exchange

replace XCS with a copy of best
set experience exp of XCS to 0
mutate the vector of parameter values

end for each
ensemble← ensemble ∪ exchange

end if

Fig. 2. Pseudocode of the self-adaptive XCS-based ensemble
machine.

4. Experiments

The proposed architecture has been compared with the
other two XCS-based ensembles, which only differ in pa-
rameter control. In the first of them, the fixed values of pa-
rameters (μ = 0.04 and τ = 0.4) are used without any pa-
rameter adaptation. In the second one, the self-adaptation
of the mutation rate is performed at the classifier level in

each XCS component. The meta-EP method (Fogel, 1992;
Hurst and Bull, 2002; 2003) is used for that, and μ is ini-
tialized around the value of 0.04 in classifiers created by
covering. In this ensemble, the tournament size remains
fixed (τ = 0.4).

All three ensembles are equal-sized and they solve
binary problems in the same way. Their components are
trained with two payoff levels, which are 0 (for bad classi-
fications) and 1000 (for good classifications), respectively.
The performance of every investigated ensemble is mea-
sured during exploit cycles as a moving average of the last
50 classifications (1 for every correct classification and 0
for the incorrect one). The performance curves are aver-
ages of ten independent runs. Only some presented results
are averaged over 50 runs.

4.1. Implementation and parameters of the system.
As has been noted, we investigate an ensembles consisting
of 10 components. The parameters of the MEA are tuned
as follows: sC = 2000, θMEA = 0.06, μτ = 0.25.

An implementation of a component is based on the
description of the XCS system (the second section of this
work) and it differs slightly from (Butz, 1999). Among
others, we use tournament selection, uniform crossover
and free mutation. Moreover, the method of fast classi-
fier matching (proposed in (Llorà and Sastry, 2006)) is ap-
plied. The fixed values of XCS parameters, used in most
of the experiments, are as follows: β = 0.2, α = 1.0,
ν = 5, ε0 = 1.0, θGA = 25, χ = 0.8, P# = 1.0,
θdel = 20, δ = 0.1, θsub = 20. They are taken from (Butz
et al., 2002). As mentioned above, the mutation rate is set
to 0.04 and the tournament size is set to 0.4, if they are not
adapted. Note that, like in (Butz et al., 2003), P# of 1.0 is
applied to exhibit genetic algorithm activity. The size of
the classifier population depends on the experiment.

4.2. Binary classification problems. The l-bit multi-
plexer (MP-l) is the basic benchmark problem which is
used to verify our approach. Nevertheless, some experi-
ments with a count ones l/k problem and a hidden parity
l/k problem are also performed. All of these problems
were analyzed before in (Butz et al., 2003). In all of them,
a system classifies each received string to one of the pos-
sible classes, which are labeled as: “0” and “1”, respec-
tively.

In the MP-l problem, where l = k+2k, the system is
receiving binary strings, where the first k bits represent the
address (index) of the binary position in the next 2k data
bits. In every step, the goal of the system is to determine
the bit value at the position pointed by the address.

Solving the count ones l/k problem can be described
as follows. A system processes binary strings of length
l, which contain k significant bits at the predefined posi-
tions. If more than a half of these bits equal 1, the correct

Self-adaptation of parameters in a learning classifier system ensemble machine 165

class of a string is “1”. In the opposite case, the string
should be classified as “0”. The remaining l-k bits have
no impact on the class.

In the hidden parity l/k problem, the goal of classi-
fication is to determine if there is an odd number of ones
among significant k bits in the string of length l. If so, the
correct class is “1”. Otherwise, the class is “0”. Like in
the count ones problem, significant bits are placed at fixed
positions, which are the same for every classified string.
The remaining l-k bits should be ignored by the classifier
system.

Beside the benchmark problems described above,
randomly generated Boolean functions were used during
experiments (Butz and Pelikan, 2006). The goal of classi-
fication is to determine the function value calculated from
input strings of length l (every bit in a string is a Boolean
variable). The generated functions can be expressed in
disjunctive normal form (DNF) with a fixed number of
closures s and a fixed number of literals k in every closure.
For example, the function y = x1x4 ∨ x1¬x3 ∨ ¬x2x4

consists of three closures with two literals in each.

4.3. Learning of binary problems. First, we present
results of experiments with the multiplexer problem for
three problem sizes, i.e., MP-11 (Fig. 3), MP-20 (Fig. 4)
and MP-37 (Fig. 5). As has been noted, all investigated
ensembles, which differ in the method of parameter adap-
tation, consist of ten XCS components (NC = 10). In
the first two experiments (MP-11 and MP-20 problems),
the population size N of 2000 is applied in every sin-
gle component. In the third experiment, N is enlarged
to 5000, which is the value commonly used in XCS sys-
tems solving MP-37 problems (Butz et al., 2004; Kharbat
et al., 2005). Results show that both methods of parameter
adaptation cause faster learning of the MP-11 (Fig. 3) and
the MP-37 problem (Fig. 5). The ensemble using fixed
values of parameters (μ = 0.04 and τ = 0.4) adapts very
slowly to MP-37. In (Kharbat et al., 2005), the tourna-
ment size of 1.0 was suggested for this multiplexer. In
the case of MP-20 (Fig. 4), an adaptation of parameters
is not needed at all, because fixed values are quite well
tuned to the problem size. Observe that, in all experi-
ments the ensemble, which uses the MEA for parameter
adaptation, shows better performance than the ensemble
which applies the self-adaptive mutation rate accordingly
to the meta-EP method. The average μ in the population
of components converges to values which can be theoret-
ically explained (Buts et al., 2003; 2004) with respect to
the problems being solved. Opposite to that, the average
tournament size remains close to its lower level (τ = 0.4)
all the time. Even in the case of MP-37, a low mutation
rate is more important than a high tournament size for ef-
fective learning.

Figure 6 shows the learning of the count ones 100/7
problem, where the population size N of each component

is set to 3000 (as suggested in (Butz et al., 2003)). The
mutation rate of 0.04 is too high to solve the problem and
therefore average μ falls for both methods of parameter
adaptation (Fig. 6(b)). Nevertheless, the meta-EP gives
slightly better results than the MEA.

In the experiment with the hidden parity 20/5 prob-
lem, we use the population size of 1900, which is one of
the values used for this problem in (Butz et al., 2003).
The results (Fig. 7) are averaged over 50 runs, because of
a high variance of system performance. Observe that the
ensemble, which applies classifier-level self-adaptation of
the mutation rate learns slower than the other two architec-
tures. After a rapid growth at the beginning of the learn-
ing, average μ continuously falls. Contrary to that, the
second method of parameter adaptation gives very good
results. The average values of both parameters, which are
controlled by the meta evolutionary algorithm, increase
during the learning.

The adaptation of the mutation rate is much more
important than that of the tournament size in all the in-
vestigated problems. This seems obvious, because mu-
tation is an important XCS operator, which enables the
discovery of accurate classifiers. An accurate classifier
has specific symbols (either 0 or 1) at all essential posi-
tions in its conditional part. These positions are impor-
tant to determine the class of a matching string. As re-
ported in (Butz et al., 2003), free mutation causes pres-
sure towards the average rate of specific symbols in clas-
sifiers of 0.66. This “specialization pressure” is balanced
by the “set pressure”, which favors less-specific rules
(Butz and Pelikan, 2001; Butz et al., 2004). It is a well-
known fact (Wilson, 1995; Butz and Pelikan, 2001; Butz
et al., 2003; Butz et al., 2004) that, in the XCS system,
the more general classifiers match more often input strings
and therefore these classifiers are more often reproduced
in an action set.

The mutation rate should be high enough to find spe-
cific and accurate classifiers. On the other hand, if classi-
fiers in the population are too specific, even accurate ones
may have no chance for reproduction in the limited clas-
sifier population. This mechanism is described in detail in
already cited works (Butz et al., 2003; 2004).

The experiment with the hidden parity problem
(Fig. 7) will be further analyzed, because it gave the most
interesting results. As reported in (Butz et al., 2003), there
is no “fitness guidance” when an XCS system adapts to
the hidden parity problem starting from overgeneral rules.
This is caused by the fact that every classifier which may
be created during learning is either perfectly accurate or
completely inaccurate. Accurate classifiers have in their
conditional parts specific symbols at all k positions (in our
experiment, k = 5). These classifiers are well fitted, be-
cause their prediction errors converge to 0. Analogically, a
prediction error of each classifier which has a “don’t care”
symbol at one or more significant positions is close to the

166 M. Troć and O. Unold

maximum value, even when only one significant position
is generalized. There are no “partially accurate” classi-
fiers. Under such circumstances, the only way to discover
the accurate rules starting from the overgeneral (and inac-
curate) ones is random exploration of the rule space. This
may be effectively done with an appropriately high muta-
tion rate. The more interested reader is referred again to
(Butz et al., 2003).

The self-adaption of the mutation rate at the classifier
level can now be explained in the case of the hidden parity
problem. All XCS components have too general classi-
fiers at the beginning of the learning, and there is no “fit-
ness guidance” until accurate classifiers are discovered.
Instead of that, the rules which use lower mutation rates
are usually more general, and they are more often repro-
duced because of the “set pressure”. Accordingly, an aver-
age mutation rate decreases when the meta-EP method is
applied (Fig. 7(b)). Under such circumstances, the ”spe-
cialization pressure” becomes weaker and it takes more
time to find the accurate classifiers. We can say that, in
the case of Hidden Parity problem, the self-adaptation of
μ goes in exactly the opposite direction than it should.

This drawback is not observed when MEA is applied
for parameter adaptation. The MEA is not executed at the
beginning of learning, because all XCS components have
similar, poor fitness (fC is about 0.5). For this reason,
the initial distribution of the mutation rate (with the mean
of about 0.04) is fixed in the component population. As
soon as some component finds several accurate classifiers,
it is reproduced by the MEA. It is highly probable that
this component uses a mutation rate higher than 0.04 and
therefore average μ in the ensemble increases (Fig. 7(b)).
If accurate classifiers are found in an XCS component, the
new accurate rules may be created from them by repro-
duction and mutation. A strong selection pressure makes
reproductions of accurate components more likely. This
may be the reason why XCS components which use the
tournament size of 1.0 become over-represented in the
component population (Fig. 7(b)). Finally, after all com-
ponents reach maximum performance, the MEA is no
longer executed, and the average values of both adapted
parameters do not change.

Opposite to the hidden parity problem, the count
ones problem enables strong “fitness guidance” (see (Butz
et al., 2003) for more details). In this case, meta-EP is an
effective method of self-adaptation of the mutation rate.
It gives better results than the application of the MEA
because of two main reasons: only μ is adapted, while
the fixed tournament size (τ = 0.4) is appropriate for the
problem; components are not reproduced and there is no
loss in ensemble diversity. When the XCS learns the mul-
tiplexer problem, “fitness guidance” is considered to be
weak (Butz et al., 2003). This may be the reason why the
meta-EP method is not very effective in this case. Partic-
ularly, for the MP-20 problem, an average mutation rate

seems to decrease prematurely (Fig. 4(b)).
The experiments described above focus on the mu-

tation rate. Nevertheless, we are particularly interested if
the tournament size can be effectively adapted at the com-
ponent level. In the next experiment, the MP-37 problem
is solved again, but only the tournament size is optimized
by the MEA, while the mutation rate is fixed at 0.04. The
results are presented in Fig. 8. An average tournament size
increases and exceeds the level 0.7, in which both values
of the τ parameter (i.e., 0.4 and 1.0) are equally repre-
sented in the component population. This confirms the
observation given in (Kharbat et al., 2005) that the tourna-
ment size of 1.0 is appropriate for solving the MP-37 prob-
lem when the mutation rate is approximately 0.04. Nev-
ertheless, before the 150000-th exploit cycle, the average
tournament size begins to decrease, which means that the
strong selection pressure is no longer necessary. Because
we treat the XCS component rather as a “black-box”, the
interested reader is referred to (Butz et al., 2002; Butz
et al., 2003; Kharbat et al., 2005) to learn more about tour-
nament selection in the XCS system.

The adaptive tournament size is also useful when an
ensemble solves smaller multiplexer problems but a very
low population size N is set in each XCS component.
Experiments with MP-11 and M-20 were performed for
N = 100 and N = 400, respectively. Both parame-
ters, i.e., the mutation rate and the tournament size, were
adapted. In the case of MP-11 and N = 100, none of
the investigated ensembles is able to completely learn the
problem; however, the ensemble which uses the MEA for
parameter adaptation significantly achieves better perfor-
mance than the other two (Fig. 9). The superiority in the
performance is caused by the components which have the
tournament size of 1.0. Observe that they are in major-
ity during the whole experiment (Fig. 9(b)). This result
is also in agreement with (Dawson, 2002), where it was
shown that a strong evolutionary pressure is needed if the
classifier population is very limited in size.

When the MP-20 problem is solved with N = 400,
the self-adaptive ensemble shows the highest learning
speed as well (Fig. 10). Nevertheless, the adaptation of the
tournament size is not so important in this case. The en-
semble in which the mutation rate is adapted by the MEA
but the tournament size is fixed at 0.4 shows worse perfor-
mance only at the very beginning of learning (results not
shown).

In the next experiment, we investigate learning ran-
domly generated Boolean functions defined over binary
strings of length 20 (l = 20). Each function, which is ex-
pressed in disjunctive normal form, consists of ten clauses
(s = 10) and there are five literals in every clause (k = 5).
Moreover, to make the problem more challenging, an al-
ternating noise PX = 0.1 is applied (Butz et al., 2002).
In this kind of noise, a wrong class of a string (learning
instance) is passed with probability PX to the XCS com-

Self-adaptation of parameters in a learning classifier system ensemble machine 167

ponent during an explore cycle. The noise disturbs both
the reinforcement learning of classifiers and component
evaluation. Results (Fig. 11) are averaged over 50 runs
(Boolean functions). It seems not enough; nevertheless,
it was shown in (Butz and Pelikan, 2006) that randomly
generated Boolean functions of the same complexity are
similarly difficult for XCS systems, and standard devia-
tion of average system performance is rather small.

Contrary to our previous experiments (described
above), in the recent one, the P# parameter is set to 0.6.
This is the value typically used for the input size of the
investigated problem (see (Butz et al., 2004) for a detailed
explanation). Note that, because covering is enabled, the
problem should be easier to solve by an XCS-based en-
semble. Nevertheless, the ensemble with fixed parameters
does not learn at all (Fig. 11). Both the ensembles that
adaptively control the mutation rate are able to learn, but
none of them reaches maximum performance. Observe
that the MEA gives better results, though the tournament
size does not need to be adapted. An average mutation
rate decreases continuously for both methods of param-
eter adaptation. We suppose that a low mutation rate is
needed because of alternating noise. It is worth noting
that in (Kharbat et al., 2005) the lowered mutation rate
was suggested in the XCS, when the Gaussian noise is
added to payoffs. Although it is a completely different
kind of noise than the alternating noise, some analogy may
be found.

4.4. Consequences of the meta evolutionary algo-
rithm. Though the MEA seems to be an effective adap-
tive method, it causes some unwanted effects. During ev-
ery component reproduction, a copy of an XCS compo-
nent has to be sent from one computing node to another,
which results in extra computational cost. At the same
time, some unique component has to be removed, which
results in the loss of ensemble diversity. Figure 12(a)
shows a total number of reproductions made before the
i-th exploit trial (in relation to i) in the self-adaptive en-
semble which solves one of three problems: MP-20, MP-
37 or hidden parity 20/5. Observe that reproductions stop
at some moment, when the MP-20 problem or the hidden
parity 20/5 problem is being solved. This is because all
components are about maximum fitness (maximum per-
formance).

Much more iterations are needed to learn the MP-37
problem than the two remaining ones and therefore only
the initial period of adaptation can be seen in Fig. 12(a).
During this period, XCS components are close to a lo-
cal optimum (see (Butz et al., 2003) for more details) and
have similar fitness values. Accordingly, reproductions
are rather rare. When some components discover better
classifiers, the number of reproductions grows rapidly, and
finally it achieves a total value of about 35 (not shown).
The results presented in Fig. 12(a) show that the frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

pe
rfo

rm
an

ce

exploit problems

MP-11, NC = 10, N = 2000

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 2000 4000 6000 8000 10000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

MP-11, NC = 10, N = 2000

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 3. Solving the MP-11 problem by three ensembles: the en-
semble using fixed parameters (μ = 0.04, τ = 0.4), the
ensemble including components with the self-adaptive
mutation rate (τ of 0.4 is used), and the proposed ensem-
ble with meta evolutionary adaptation of μ and τ . The
performance curves (a) and average values of adapted
parameters (b) are presented.

of reproductions depends on the state of learning. More-
over, the total number of component reproductions re-
quired for parameter adaptation is not as large as could
be expected.

Figure 12(b) illustrates the influence of MEA on the
diversity of the ensemble when the MP-20 problem is be-
ing solved. To measure the diversity, we used an entropy
measure E (Kuncheva and Whitaker, 2003). By simpli-
fying and adapting the formula (8) from (Kuncheva and
Whitaker, 2003) to our model, we have

E =
1

Exploits

Exploits∑
i=0

min(L0(i), L1(i))
NC −min(L0(i), L1(i))

, (4)

where Exploits represents the number of the most recent
exploitation problems which are taken into account. The
presented results are for Exploits of 50. L0(i) and L1(i)

168 M. Troć and O. Unold

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

pe
rfo

rm
an

ce

exploit problems

MP-20, NC = 10, N = 2000

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

MP-20, NC = 10, N = 2000

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 4. Solving the MP-20 problem by the three ensemble archi-
tectures. The fixed values of parameters are μ = 0.04,
τ = 0.4. The performance curves (a) and average values
of adapted parameters (b) are presented.

are the numbers of components choosing class 0 or 1, re-
spectively, during the i-th exploit. Note that an entropy
E ∈ [0, 1], and it is the larger the larger the diversity in
an ensemble (Kuncheva and Whitaker, 2003). Obviously,
the diversity is maximal when both classes are chosen by
the same number of components. The diversity decreases
along with learning the problem, because the number of
components which choose a correct class in an explore cy-
cle increases. Nevertheless, the diversity in the ensemble
with the MEA is lower than in the remaining two ensem-
bles (without MEA) from the very beginning of learning
(Fig. 12(b)). As has been shown (among other, in Fig. 4),
this loss does not affect significantly the performance for
θMEA = 0.06, and therefore using the MEA is still rea-
sonable. Lower θMEA results in more frequent component
reproductions and lower diversity. In Fig. 13(a) the total
number of reproductions is presented for three values of
θMEA (0.006, 0.06, 0.12) when the MP-20 problem is be-
ing solved. For θMEA = 0.006, more than a hundred of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000

pe
rfo

rm
an

ce

exploit problems

MP-37, NC = 10, N = 5000

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

MP-37, NC = 10, N = 5000

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 5. Solving the MP-37 problem by the three ensemble ar-
chitectures. N is 5000 in each XCS component. The
fixed values of parameters are μ = 0.04, τ = 0.4. The
performance curves (a) and average values of adapted
parameters (b) are presented.

reproductions will be made before the ensemble achieves
maximum performance, but the learning speed is not very
high (Fig. 13(b)). In this case, the reproductions base on
unreliable comparisons of components, because of a small
minimal difference (θMEA) between their fluctuating fit-
ness values. Many of these reproductions are unnecessary
or even detrimental. On the other hand, if θMEA is set to
0.12, the probability of a “missed” reproduction is very
low but the rare reproductions result in a slow adaptation
of parameters (Fig. 13(b)). θMEA of 0.06 is a compro-
mise which has occurred to be effective in the investigated
problems.

Because the MEA operates on components, the en-
semble size (NC) is a critical factor, which determines
algorithm effectiveness. It seems obvious that the more
components, the more vectors of parameter values may be
simultaneously evaluated. Moreover, the appropriate large
ensemble prevents the adaptation process from stacking.

Self-adaptation of parameters in a learning classifier system ensemble machine 169

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

pe
rfo

rm
an

ce

exploit problems

Count Ones 100 / 7, NC = 10, N = 3000

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

Count Ones 100 / 7, NC = 10, N = 3000

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 6. Solving the count ones 100/7 problem by the three en-
semble architectures. N is 3000 in each XCS compo-
nent. The fixed values of parameters are μ = 0.04,
τ = 0.4. The performance curves (a) and average values
of adapted parameters (b) are presented.

Note that, if all the components in the ensemble have sim-
ilar parameter values, they will be similarly fitted as well
and the MEA will not be executed for a long time. The
risk that such an undifferentiated component population
will arise is the lower the higher the population size. In
our model, this risk is additionally minimized by strong
mutation of parameters.

In the following experiments, the ensembles consist
of only three components. Note that NC of 3 is a mini-
mal configuration for which any voting can be done. The
methods of parameter adaptation (the meta-EP and the
MEA) are compared in these experiments. When the MP-
37 problem is solved, parameter adaptation at the classifier
level (meta-EP) gives significantly better results (Fig. 14).
Note that this method is independent of the number of
components. In the second experiment, the ensemble with
the MEA seems to learn faster the hidden parity 20/5 prob-
lem (Fig. 15). Nevertheless, this ensemble achieves max-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

pe
rfo

rm
an

ce

exploit problems

Hidden Parity 20 / 5, NC = 10, N = 1900

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

pe
rfo

rm
an

ce

exploit problems

Hidden Parity 20 / 5, NC = 10, N = 1900

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(b)

Fig. 7. Solving the hidden parity 20/5 problem by the three en-
semble architectures. N is 1900 in each XCS compo-
nent. The fixed values of parameters are μ = 0.04,
τ = 0.4. The performance curves (a) and average values
of adapted parameters (b) are presented. The results are
averaged over 50 independent trials.

imum average performance after more cycles than the en-
semble with meta-EP achieves. As it has been explained
before, when the MEA is used for the hidden parity prob-
lem, the parameter values in the initial component popu-
lation play the key role. The components with high muta-
tion rates, which have the biggest chances to find accurate
classifiers, should be represented in the initial population.
Nevertheless, if the mutation rate is initialized around the
μ0 value, the probability that no component has a muta-
tion rate higher than μ0, is 0.5Nc. Note that, for NC = 10,
this probability is about 0.001, while for NC = 3, it is
as high as 0.125. That is why, occasionally, an ensem-
ble with a MEA learns slower the hidden parity problem
than an ensemble with a fixed or self-adaptive (at the clas-
sifier level) mutation rate. As has been shown, this risk
decreases dramatically with the ensemble size NC .

170 M. Troć and O. Unold

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

pe
rfo

rm
an

ce
, t

ou
rn

. s
iz

e

exploit problems

MP-37, NC = 10, N = 5000

perf.; fixed parameters
perf.; ensemble adaptation of τ

avg. τ; ensemble adaptation of τ

Fig. 8. Comparison of the adaptive tournament size and the
fixed one (τ = 0.4) in an ensemble solving the MP-
37 problem. Fixed μ of 0.04 is used in both cases. The
performance curves and the change of the average tour-
nament size are shown.

5. Summary and future work

In this work we have presented a model of an XCS-based
ensemble machine, in which adaptive parameter control
is performed by means of the MEA operating on compo-
nents. A detailed experimental study demonstrated a pos-
sibility of adapting important XCS parameters, i.e., the
mutation rate and the tournament size. The proposed
model was compared with two other XCS-based ensem-
bles: the ensemble with the self-adaptation of the muta-
tion rate at the classifier level (meta-EP method) and the
ensemble without any parameter adaptation. Advantages
and disadvantages of both adaptive techniques (i.e., MEA
and meta-EP) were discussed. Limitations of the MEA,
which are caused by small component populations and
difficulties with reliable evaluation of components, were
analysed in detail. Despite these drawbacks, in most ex-
amined cases, the XCS-based ensemble with the MEA
outperforms the compared architectures, and we believe
that applying the MEA may make the XCS-based ensem-
ble a more universal approach.

In future works, we will investigate how the migra-
tion of classifiers between components (proposed in (Bull
et al., 2007)) reduces parameter sensitivity. We will try to
join both the MEA and classifier migration in one XCS-
based ensemble.

References
Bahler, D. and Navarro, L. (2000). Methods for com-

bining heterogeneous sets of classifiers, Proceed-
ings of the 17th National Conference on Artificial
Intelligence (AAAI 2000), Workshop on New Re-
search Problems for Machine Learning, Austin,
TX, USA, http://www4.ncsu.edu/˜bahler/
aaai2000/aaai2000.pdf.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200000 400000 600000 800000 1e+006

pe
rfo

rm
an

ce

exploit problems

MP-11, NC = 10, N = 100

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200000 400000 600000 800000 1e+006

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

MP-11, NC = 10, N = 100

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 9. Learning the MP-11 problem with small classifier popu-
lations (N = 100) in each component. Three architec-
tures are compared. The fixed values of parameters are
μ = 0.04, τ = 0.4. The performance curves (a) and
average values of adapted parameters (b) are presented.

Breiman, L. (1996). Bagging predictors, Machine Learning
24(2): 123–140.

Bull, L., Mansilla, E. B. and Holmes, J. (Eds) (2008).
Learning Classifier Systems in Data Mining, Springer,
Berlin/Heidelberg.

Bull, L., Studley, M., Bagnall, A. and Whittley, I.
(2007). Learning classifier system ensembles with rule-
sharing, IEEE Transactions on Evolutionary Computation
11(4): 496–502.

Butz, M. V. (1999). An implementation of the XCS classi-
fier system in C, Technical Report 99021, Illinois Genetic
Algorithms Laboratory, University of Illinois, Urbana-
Champaign, IL.

Butz, M. V., Sastry, K., Goldberg, D. E. (2002). Tournament
selection in XCS, Technical report, Proceedings of the
Fifth Genetic and Evolutionary Computation Conference
(GECCO-2003), pp. 1857–1869.

Butz, M. V., Goldberg, D. E. and Lanzi, P. L. (2005). Gradient
descent methods in learning classifier systems: Improving

http://www4.ncsu.edu/~bahler/
aaai2000/aaai2000.pdf.

Self-adaptation of parameters in a learning classifier system ensemble machine 171

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200000 400000 600000 800000 1e+006

pe
rfo

rm
an

ce

exploit problems

MP-20, NC = 10, N = 400

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200000 400000 600000 800000 1e+006

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

MP-20, NC = 10, N = 400

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 10. Learning the MP-20 problem with small classifier pop-
ulations (N = 400) in each component. Three archi-
tectures are compared. The fixed values of parameters
are μ = 0.04, τ = 0.4. The performance curves (a)
and average values of adapted parameters (b) are pre-
sented.

XCS performance in multistep problems, IEEE Transac-
tions on Evolutionary Computation 9(5): 452–473.

Butz, M. V., Goldberg, D. E. and Tharakunnel, K. (2003).
Analysis and improvement of fitness exploitation in XCS:
Bounding models, tournament selection, and bilateral ac-
curacy, Evolutionary Computation 11(3): 239–277.

Butz, M. V., Kovacs, T., Lanzi, P. L. and Wilson, S. W. (2004).
Toward a theory of generalization and learning in XCS,
IEEE Transactions on Evolutionary Computation 8(1): 28–
46.

Butz, M. V. and Pelikan, M. (2001). Analyzing the evolu-
tionary pressures in XCS, in L. Spector, E. Goodman,
A. Wu, W. Langdon, H. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. Garzon, and E. Burke (Eds), Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO2001), Morgan Kaufmann, San Francisco, CA,
pp. 935–942.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50000 100000 150000 200000 250000 300000

pe
rfo

rm
an

ce

exploit problems

DNF 10/5/20, PX = 0.1, NC = 10, N = 2000, P# = 0.6

perf.; fixed parameters
perf.; meta-EP adaptation of μ

perf.; ensemble adaptation of μ and τ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

DNF 10/5/20, PX = 0.1, NC = 10, N = 2000, P# = 0.6

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 11. Learning random Boolean functions in DNF represen-
tation (10 closures, k = 5, l = 20). The altering noise
with Px = 0.1 is applied. Three architectures are com-
pared. The P# parameter is set to 0.6 in every com-
ponent. The fixed values of parameters are μ = 0.04,
τ = 0.4. The performance curves (a) and average val-
ues of adapted parameters (b) are presented.

Butz, M. V. and Pelikan, M. (2006). Studying XCS/BOA learn-
ing in boolean functions: Structure encoding and random
boolean functions, GECCO ’06: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Compu-
tation, Seattle, WA, USA, pp. 1449–1456.

Dam, H. H., Abbass, H. A. and Lokan, C. (2005). DXCS: An
XCS system for distributed data mining, in H.-G. Beyer
and U.-M. O’Reilly (Eds), GECCO, ACM, New York, NY,
pp. 1883–1890.

Dam, H. H., Lokan, C. and Abbass, H. A. (2007). Evolutionary
online data mining: An investigation in a dynamic envi-
ronment, in S. Yang, Y.-S. Ong and Y. Jin (Eds), Evolution-
ary Computation in Dynamic and Uncertain Environments,
Studies in Computational Intelligence, Vol. 51, Springer,
Berlin/Heidelberg, pp. 153–178.

Dawson, D. (2002). Improving extended classifier system per-
formance in resource-constrained configurations, Master’s

172 M. Troć and O. Unold

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000 40000

re
pr

od
uc

tio
ns

exploit problems

NC = 10, θMEA = 0.06

MP-20, N = 2000
MP-37, N = 5000

Hidden Parity 20 / 5, N = 1900

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10000 20000 30000 40000 50000

di
ve

rs
ity

exploit problems

MP-20, NC = 10, N = 2000

div.; fixed parameters
div.; meta-EP adaptation of μ

div.; ensemble adaptation of μ and τ

(b)

Fig. 12. Consequences of the MEA: the total number of compo-
nent reproductions made by the MEA (in relation to the
number of exploit trials) in the ensemble which solves
the MP-20, thte MP-37 and hidden parity 20 / 5 prob-
lems (a), the diversity in the ensembles solving the MP-
20 problem (b).

thesis, California State University, Chico, CA.

Dietterich, T. (2000). An experimental comparison of three
methods for constructing ensembles of decision trees: Bag-
ging, boosting, and randomization, Machine Learning
40(2): 139–158.

Eiben, A., Schut, M. and de Wilde, A. (2006a). Boosting ge-
netic algorithms with (self-) adaptive selection, Proceed-
ings of the IEEE Congress on Evolutionary Computation
(CEC 2005), Vancouver, BC, Canada, pp. 1584–1589.

Eiben, A., Schut, M. and de Wilde, A. (2006b). Is self-adaptation
of selection pressure and population size possible? A case
study, in T. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-
Guervs, L. D. Whitley and X. Yao (Eds), Parallel Prob-
lem Solving from Nature (PPSN IX), Lecture Notes in
Computer Science, Vol. 4193, Springer, Berlin/Heidelberg,
pp. 900–909.

Fogel, D. B. (1992). Evolving artificial intelligence, Ph.D. the-
sis, US San Diego, La Jolla, CA.

 0

 20

 40

 60

 80

 100

 120

 0 10000 20000 30000 40000 50000

re
pr

od
uc

tio
ns

exploit problems

MP-20, NC = 10, N = 2000

θMEA = 0.006
θMEA = 0.06
θMEA = 0.12

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

pe
rfo

rm
an

ce
, m

ut
. r

at
e

(*
10

)

exploit problems

MP-20, NC = 10, N = 2000

perf.; θMEA = 0.006
perf.; θMEA = 0.06
perf.; θMEA = 0.12

avg. μ; θMEA = 0.006
avg. μ; θMEA = 0.06
avg. μ; θMEA = 0.12

(b)

Fig. 13. Different values of the θMEA parameter in the adaptive
ensemble solving the MP-20 problem. Performance,
the average mutation rate and the total number of repro-
ductions are presented for θMEA = 0.006, 0.06, 0.12.

Gao, Y., Huang, J. Z. and Wu, L. (2007). Learning classifier
system ensemble and compact rule set, Connection Science
19(4): 321–337.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wesley Profes-
sional, Reading, MA.

Grefenstette, J. J. (1986). Optimization of control parameters for
genetic algorithms, IEEE Transactions on Systems, Man,
and Cybernetics SMC–16(1): 122–128.

Holland, J. (1976). Adaptation, in R. Rosen (Ed.), Progress
in Theoretical Biology, Plenum Press, New York, NY,
pp. 263–293.

Holmes, J. H., Lanzi, P. L., Stolzmann, W. and Wilson, S. W.
(2002). Learning classifier systems: New models, success-
ful applications, Information Processing Letters 82(1): 23–
30.

Howard, D., Bull, L. and Lanzi, P. (2008). Self-adaptive
constructivism in neural XCS and XCSF, in M. Keijzer,
G. Antoniol, C. Congdon, K. Deb, N. Doerr, N. Hansen,

Self-adaptation of parameters in a learning classifier system ensemble machine 173

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000

pe
rfo

rm
an

ce

exploit problems

MP-37, NC = 3, N = 5000

perf.; meta-EP adaptation of μ
perf.; ensemble adaptation of μ and τ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

MP-37, NC = 3, N = 5000

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 14. Solving the MP-37 problem by ensembles consisting of
only three components.

J. Holmes, G. Hornby, D. Howard, J. Kennedy, S. Kumar
and F. Lobo (Eds), GECCO-2008: Proceedings of the Ge-
netic and Evolutionary Computation Conference, Atlanta,
GA, USA, pp. 1389–1396.

Huang, C.-Y. and Sun, C.-T. (2004). Parameter adaptation
within co-adaptive learning classifier systems, in K. Deb,
R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Dar-
wen, D. Dasgupta, D. Floreano, J. Foster, M. Harman,
O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi,
D. Thierens and A. Tyrrell (Eds), Genetic and Evo-
lutionary Computation—GECCO-2004, Part II, Lecture
Notes in Computer Science, Vol. 3103, Springer-Verlag,
Berlin/Heidelberg, pp. 774–784.

Hurst, J. and Bull, L. (2002). A self-adaptive XCS, IWLCS ’01:
Revised Papers from the 4th International Workshop on
Advances in Learning Classifier Systems, Lecture Notes
in Artificial Intelligence, Vol. 2321, Springer-Verlag, Lon-
don, pp. 57–73.

Hurst, J. and Bull, L. (2003). Self-adaptation in classifier system
controllers, Artificial Life and Robotics 5(2): 109–119.

Kharbat, F., Bull, L. and Odeh, M. (2005). Revisiting genetic
selection in the XCS learning classifier system, Congress

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

pe
rfo

rm
an

ce

exploit problems

Hidden Parity 20 / 5, NC = 3, N = 1900

perf.; meta-EP adaptation of μ
perf.; ensemble adaptation of μ and τ

(a)

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 20000 40000 60000 80000 100000

m
ut

. r
at

e
(*

10
) ,

 to
ur

n.
 s

iz
e

exploit problems

Hidden Parity 20 / 5, NC = 3, N = 1900

avg. μ; meta-EP adaptation of μ
avg. μ; ensemble adaptation of μ and τ
avg. τ; ensemble adaptation of μ and τ

(b)

Fig. 15. Solving the hidden parity problem by ensembles con-
sisting of three components. The results are averages
from 50 independent trials.

on Evolutionary Computation, Vancouver, BC, Canada,
pp. 2061–2068.

Kuncheva, L. I. and Whitaker, C. J. (2003). Measures of diver-
sity in classifier ensembles, Machine Learning 51(2): 181–
207.

Llorà, X. and Sastry, K. (2006). Fast rule matching for learn-
ing classifier systems via vector instructions, GECCO ’06:
Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, Seattle, WA, USA, pp. 1513–
1520.

Meyer-Nieberg, S. and Beyer, H.-G. (2007). Self-adaptation in
evolutionary algorithms, in F. G. Lobo, C. F. Lima and
Z. Michalewicz (Eds), Parameter Setting in Evolutionary
Algorithms, Springer, Berlin.

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An
empirical study, Journal of Artificial Intelligence Research
11: 169–198.

Opitz, D. W., Shavlik, J. W. and Shavlik, O. (1996). Actively
searching for an effective neural-network ensemble, Con-
nection Science 8(3–4): 337–353.

174 M. Troć and O. Unold

Orriols-Puig, A., Bernado-Mansilla, E., Goldberg, D. E., Sastry,
K. and Lanzi, P. L. (2009). Facetwise analysis of XCS
for problems with class imbalances, IEEE Transactions on
Evolutionary Computation 13(5): 1093–1119.

Spears, W. M. (1995). Adapting crossover in evolutionary algo-
rithms, in J. R. McDonnell, R. G. Reynolds and D. B. Fo-
gel (Eds), Proceedings of the Fourth Annual Conference on
Evolutionary Programming, San Diego, CA, USA, pp. 367–
384.

Stout, M., Bacardit, J., Hirst, J. and Krasnogor, N. (2008a). Pre-
diction of recursive convex hull class assignment for pro-
tein residues, Bioinformatics 24(7): 916–923.

Stout, M., Bacardit, J., Hirst, J. and Krasnogor, N. (2008b). Pre-
diction of topological contacts in proteins using learning
classifier systems, Journal of Soft Computing 13(3): 245–
258.

Sutton, R. S. (1991). Reinforcement learning architectures for
animats, in J. Meyer and S. W. Wilson (Eds), From Animals
to Animats: Proceedings of the First International Con-
ference on Simulation of Adaptive Behavior, MIT Press,
Cambridge, MA, pp. 288–296.

Takashima, E., Murata, Y., Shibata, N. and Ito, M. (2003). Self
adaptive island GA, Proceedings of the 2003 Congress on
Evolutionary Computation (CEC 2003), Newport Beach,
CA, USA, Vol. 2, pp. 1072–1079.

Tongchim, S. and Chongstitvatana, P. (2002). Parallel genetic
algorithm with parameter adaptation, Information Process-
ing Letters 82(1): 47–54.

Troć, M. and Unold, O. (2008). Self-adaptation of parame-
ters in a XCS-based ensemble machine, Proceedings of the
Eighth International Conference on Hybrid Intelligent Sys-
tems (HIS 2008), Barcelona, Spain, pp. 893–898.

Tsoumakas, G., Katakis, I. and Vlahavas, I. (2004). Effec-
tive voting of heterogeneous classifiers, Proceedings of
the 15th European Conference on Machine Learning, Lec-
ture Notes in Artificial Intelligence, Vol. 3201, Springer,
Berlin/Heidelberg, pp. 465–476.

Unold, O. and Tuszynski, K. (2008). Mining knowledge
from data using anticipatory classifier system, Knowledge-
Based Systems 21(5): 363–370.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits,
1960 IRE WESCON Convention Record, pp. 96–104.

Wilson, S. W. (1995). Classifier fitness based on accuracy, Evo-
lutionary Computation 3(2): 149–175.

Wilson, S. W. (2000). Get real! XCS with continuous-valued in-
puts, in P.L. Lanzi, W. Stolzmann, and S.W. Wilsin (Eds),
Learning Classifier Systems, From Foundations to Appli-
cations, Lecture Notes in Artificial Intelligence, Vol. 1813,
Springer-Verlag, Berlin/Heidelberg, pp. 209–219.

Maciej Troć received the M.Sc. degree in
computer science from the Wrocław University
of Technology in 2004. Presently he works on
his Ph.D. thesis concerning adaptation of pa-
rameters in learning classifier systems. His sci-
entific interests include self-adaptation in evo-
lutionary algorithms, genetic-based machine
learning, classifier ensembles, and evolutionary
art. Professionally, he is interested in software
engineering and system modeling.

Olgierd Unold is an assistant professor in the
Institute of Computer Engineering, Control and
Robotics of the Wrocław University of Tech-
nology. He received the M.Sc. degree in au-
tomation systems in 1989, the M.Sc. degree
in information science in 1991, and the Ph.D.
in computer science in 1994. His current re-
search interest is the development of adaptive
machine learning tools such as learning classi-
fier systems and fuzzy-immune rule-based sys-

tems for grammatical inference and bioinformatics.

Received: 19 December 2008
Revised: 1 September 2009

	Introduction
	Background and related work
	Extended classifier system
	Self-adaptation in learning classifier systems
	Classifier ensembles

	Self-adaptive XCS-based ensemble machine
	Component learning and calling the meta evolutionary algorithm
	Reproduction and mutation of a component

	Experiments
	Implementation and parameters of the system
	Binary classification problems
	Learning of binary problems
	Consequences of the meta evolutionary algorithm

	Summary and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

