
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 23–34
DOI: 10.2478/v10006-010-0002-x

LOCAL STABILITY CONDITIONS FOR DISCRETE–TIME CASCADE
LOCALLY RECURRENT NEURAL NETWORKS

KRZYSZTOF PATAN

Institute of Control and Computation Engineering
University of Zielona Góra, ul. Podgórna 50, 65–246 Zielona Góra, Poland

e-mail: k.patan@issi.uz.zgora.pl

The paper deals with a specific kind of discrete-time recurrent neural network designed with dynamic neuron models. Dy-
namics are reproduced within each single neuron, hence the network considered is a locally recurrent globally feedforward.
A crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The
paper formulates local stability conditions for the analysed class of neural networks using Lyapunov’s first method. More-
over, a stabilization problem is defined and solved as a constrained optimization task. In order to tackle this problem, a
gradient projection method is adopted. The efficiency and usefulness of the proposed approach are justified by using a
number of experiments.

Keywords: locally recurrent neural network, stability, stabilization, learning, constrained optimization.

Notation

u input vector
y output vector
x1 state vector of 1-st layer
x2 state vector of 2-nd layer
v1 state vector of autonomous system 1-st layer
v2 state vector of autonomous system 2-nd layer
Ai state matrix of i-th neuron
Aj state matrix of j-th layer
aj
1i, aj

2i first and second feedback filter parameters of
i-th neuron in j-th layer

W j weight matrix of j-th layer
W u weight matrix between input and 2-nd layer
B1 feedforward filter parameters matrix of 1-st

layer
b1
1i, b1

2i first and second feedforward filter parameters
of i-th neuron in 1-st layer

D1 transfer matrix of 1-st layer
g1

1 vector of biases of 1-st layer
G1

2 slope parameters matrix of 1-st layer
g1
2i slope parameter of i-th neuron in 1-th layer

σ(·) vector-valued activation function
C output matrix
v1, v2 neuron number in 1-st and 2-nd layer
r filter order

1. Introduction

In the last decade, a growing interest in locally recurrent
networks has been observed. This class of neural net-
works, due to their interesting properties, has been suc-
cessfully applied to solve problems from different scien-
tific and engineering areas. Cannas and co-workers (2001)
applied a locally recurrent network to train the attractors
of Chua’s circuit, as a paradigm for studying chaos. The
modelling of continuous polymerisation and neutralisa-
tion processes is reported in (Zhang et al., 1998). In turn,
a three-layer locally recurrent neural network was succes-
fully applied to the control of nonlinear systems in (Gupta
and Rao, 1993). In the framework of fault diagnosis,
the literature reports many applications, e.g., an observer
based fault detection and isolation system of a three-tank
laboratory system (Marcu et al., 1999), or model based
fault diagnosis of sensor and actuator faults in a sugar
evaporator (Patan and Parisini, 2005). Tsoi and Back
(1994) compared and applied different architectures of lo-
cally recurrent networks to the prediction of speech utter-
ance. Finally, Campolucci and Piazza (2000) elaborated
an intristic stability control method for a locally recurrent
network designed for signal processing.

Stability plays an important role in both control the-
ory and system identification. Furthermore, the stabil-
ity issue is of crucial importance in relation to training

k.patan@issi.uz.zgora.pl

24 K. Patan

algorithms adjusting the parameters of neural networks.
If the predictor is unstable for certain choices of neural
model parameters, serious numerical problems can occur
during training. Stability criteria should be universal, ap-
plicable to as broad a class of systems as possible and,
at the same time, computationally efficient. The major-
ity of well-known approaches are based on Lyapunov’s
method (Gupta et al., 2003; Ensari and Arik, 2005; Cao
et al., 2006; Forti et al., 2005).

Stability analysis for locally recurrent networks with
only one hidden layer is given in (Patan, 2007). Unfortu-
nately, approximation abilities of such networks are lim-
ited (Patan, 2008a). Therefore, there is a need to derive
stability criteria for more complex locally recurrent net-
works. Recently, global stability of the locally recurrent
network with two hidden layers based on Lyapunov’s sec-
ond method was investigated in (Patan, 2008c). Unfortu-
nately, theorems based on Lyapunov’s second method for-
mulate sufficient conditions for global asymptotical sta-
bility of the system, and they cannot be used as a starting
point to determine constraints on the network parameters.
This paper presents an approach, based on the first method
of Lyapunov, which allows us to elaborate a training pro-
cedure with constraints on the network parameters. Thus,
the training process can guarantee the stability of the neu-
ral model.

The paper is organized as follows: In Section 2, the
locally recurrent network and its representations in the
state-space are described. Stability analysis of the neu-
ral network considered as well as the stabilization proce-
dure are given in Section 3. Illustrative examples of sta-
ble training of the examined neural network are provided
in Section 4. Section 5 includes conlusions and final re-
marks.

2. Locally recurent networks

A biological neural cell not only contains a nonlinear map-
ping operation on a weighted sum of its inputs, but it
also has some dynamic properties such as state feedbacks,
time delays hysteresis or limit cycles. In order to cope
with such dynamic behaviour, a special kind of neuron
model has been proposed (Gori et al., 1989; Back and
Tsoi, 1991; Fasconi et al., 1992; Gupta and Rao, 1993).
Such neuron models constitute a basic building block for
designing a complex dynamic neural network.

The dynamic neuron unit systematized by Gupta and
co-workers in (Gupta et al., 2003) as the basic element of
neural networks of the dynamic type receives not only ex-
ternal inputs but also state feedback signals from itself and
other neurons in the network. The synaptic links in this
model contain a self-recurrent connection representing a
weighted feedback signal of its state and lateral connec-
tions which constitute state feedback from other neurons
of the network. The dynamic neuron unit is connected to

w1

w2

wn

+ σ(·)IIR

.
.
.

u1(k)

u2(k)

un(k)

y(k)z(k)ϕ(k)

Fig. 1. Neuron architecture with the IIR filter.

other (n − 1) models of the same type forming a neural
network. Neural networks composed of dynamic neuron
units have a recurrent structure with lateral links between
neurons.

A different approach providing dynamically driven
neural networks is used in the so-called Locally Recur-
rent Globally Feed-forward (LRGF) networks (Tsoi and
Back, 1994; Patan, 2008b). LRGF networks have an ar-
chitecture that is somewhere in-between a feedforward
and a globally recurrent one. The topology of such a kind
of neural network is analogous to the multi-layered feed-
forward one, and the dynamics are reproduced by the so-
called dynamic neuron models. Based on the well-known
McCulloch-Pitts neuron model, various dynamic neuron
models can be designed. In general, differences between
these depend on the localization of internal feedbacks.

One of the possible solutions is to use linear dynam-
ics in the structure of the neuron. The dynamics are intro-
duced to the neuron in such a way that neuron activation
depends on its internal states. This is done by introducing
an Infinite Impulse Response (IIR) filter into the neuron
structure. In this way, the neuron reproduces its own past
inputs and activations using two signals: the input ui(k),
for i = 1, 2, . . . , n, and the output y(k). The weights per-
form a similar role as in static feedforward networks. The
weights, together with the activation function, are respon-
sible for approximation properties of the model. Then this
calculated sum ϕ(k) is passed to the IIR filter. Here, the
filters under consideration are linear dynamic systems of
different orders, viz. the first or the second order. The fil-
ter consists of feedback and feedforward paths weighted
by suitable weights. Finally, based on the signal z(k) re-
ceived from the filter, the neuron generates its output using
a nonlinear activation function σ(·).

One of the main advantages of locally recurrent net-
works is that their structure is similar to that of static feed-
forward ones. The dynamic neurons replace the standard
static neurons. This network structure does not have any
global feedbacks, which complicate the architecture of the
network and the training algorithm. In general, the dy-
namic network can include one or more hiddent layers
containing dynamic neuron models. The number of hid-
den layers directly influences approximation abilities of
the network model. In the work of Patan (2008a), it was
proved that a locally recurent network consisting of two
hidden layers of neurons with IIR filters is able to approx-

Local stability conditions for discrete-time cascade locally recurrent neural networks 25

�IIR – neuron with the IIR filter

�FIR – neuron with the FIR filter

�L – static linear neuron

u(k)

y1(k)

ym(k)..
.

FIR

FIR

FIR

IIR

IIR

L

L

Fig. 2. Cascade structure of the locally recurrent neural net-
work.

imate a state-space trajectory produced by any Lipschitz
continuous function with arbitrary accuracy. Moreover, in
that paper a new, less complex, neural structure was pro-
posed. In the following section, details about a cascade
neural network and its representation in the state-space are
portrayed.

2.1. Cascade network. Let us consider a discrete-time
neural network with n inputs and m outputs. The cascade
locally recurrent network is composed of two processing
layers consisting of v1 and v2 neurons, respectively. Neu-
rons of the second layer receive excitation not only from
the neurons of the previous layer but also from external
inputs (Fig. 2) (Patan et al., 2008). In this case, the sec-
ond layer of the network is not a hidden one, contrary to
the original structure of locally recurrent networks (Patan
and Parisini, 2005).

The first layer includes neurons with IIR filters while
the second one consists of neurons with Finite Impulse
Response (FIR) filters. Each neuron consists of a filter of
order r. The state-space representation block schemes of
both kind of neurons are presented in Figs. 3 and 4.

Neuron with the IIR filter. The states of the i-th neuron
can be described by the following state equation:

x(k + 1) = Aix(k) + W iu(k), (1)

where x(k) ∈ R
r is the state vector, W i = 1wT

i is the
weight matrix (wi ∈ R

n, 1 ∈ R
r is the vector with one

Ai

b0i

biz−1wi 1 σ(·)
y(k)u(k) x(k)x(k+1)

++

Fig. 3. State-space form of the i-th neuron with the IIR filter.

Ai

ciz−1wi 1
y(k)u(k)

+

x(k)x(k+1)

1

Fig. 4. State-space form of the i-th neuron with the FIR filter.

in the first place and zeros elsewhere), u(k) ∈ R
n is the

input vector, n is the number of inputs, and the state matrix
Ai has the form

Ai =

⎡
⎢⎢⎢⎢⎢⎣

−a1i −a2i . . . −ar−1i −ari

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

. (2)

Finally, the neuron output is described by

y(k) = σ
(
g2i(bT

i x(k) + dT
i u(k) − g1i)

)
, (3)

where σ(·) is a nonlinear activation function, bi =
[b1i, . . . , bri]T is the vector of feedforward filter param-
eters, di = [b0iw1i, . . . , b0iwni]T , g1i and g2i are the bias
and slope of the activation function, respectively.

Neuron with the FIR filter. The states of the i-th neu-
ron with the FIR filter are represented by (1), which is
the same as for the neuron with IIR filter. The difference
is in the representation of the observation equation. The
neuron output is described as follows:

y(k) = cT
i x(k), (4)

where ci ∈ R
r is the output vector.

2.2. State-space representation of the cascade locally
recurrent network. The state of the cascade network is
represented as follows:

x1(k + 1) = A1x1(k) + W 1u(k), (5a)

x2(k + 1) = A2x2(k) + W 2σ
(
G1

2(B
1x1(k)

+D1u(k) − g1
1)

)
+ W uu(k), (5b)

where x1(k) ∈ R
N1 (N1 = v1 × r) represents the states

of the first layer, and x2(k) ∈ R
N2 (N2 = v2 × r) rep-

resents the states of the second layer, A1 ∈ R
N1×N1 and

A1 ∈ R
N2×N2 are the block diagonal state matrices of

the first and second layers, respectively, W 1 ∈ R
N1×n is

the input weight matrix, W 2 ∈ R
N2×v1 is the weight ma-

trix between the first and second layers, W u ∈ R
N2×n is

the weight matrix between the input and the second layer,
B1 ∈ R

v1×N1 is the block diagonal matrix of feedfor-
ward filter parameters of the first layer, D1 ∈ R

v1×n is

26 K. Patan

the transfer matrix, g1
1 ∈ R

v1 denotes the vector of biases
of the first layer, G1

2 ∈ R
v1×v1 is the diagonal matrix of

slope parameters of the first layer, and σ : R
v1 → R

v1 is
the nonlinear vector-valued function.

The presented cascade neural network possesses
prety good approximation abbilities. In the work of Patan
(2008b), it was proved that the cascade network (5) with
a suitably large number of neurons with IIR filters in the
first layer and a suitably large number of neurons with
FIR filters in the second layer is able to approximate a
state-space trajectory produced by any Lipschitz continu-
ous function with arbitrary accuracy.

The network structure (5) is not a strict feedforward
one as it has a cascade structure. The introduction of an
additional weight matrix W u renders it possible to obtain
a system equivalent to the classical locally recurrent net-
work with two hidden layers (Patan and Parisini, 2005),
but the main advantage of this representation is that the
whole state vector is available from the neurons of the
second layer of the network. This fact is of crucial im-
portance, taking into account the training of the neural
network. If the output y(k) is

y(k) = x2(k), (6)

then weight matrices can be determined using a training
process, which minimizes the error between the network
output and measurable states of the process. Usually, in
engineering practice, not all process states are directly
available (measurable). In such cases, the dimension of
the output vector is rather lower than that of the state vec-
tor, and the network output can be produced in the follow-
ing way:

y(k) = Cx2(k). (7)

In such cases, the cascade neural network contains an ad-
ditional layer of static linear neurons playing the role of
the output layer (Fig. 2).

2.3. Model transformation. In order to derive sta-
bility conditions for the network considered, some nec-
essary model transformations are required. Consider the
neural model represented by the state equation (5). Let
Ψ = G1

2B
1 and s1(k) = G1

2D
1u(k) − G1

2g
1
1, where

s1(k) can be treated as a threshold or a fixed input. Then
(5b) takes the form

x2(k + 1) = A2x2(k) + W 2σ
(
Ψx1(k) + s1(k)

)

+ W uu(k).
(8)

Using the linear transformation v1(k) = Ψx1(k)+s1(k)
and v2(k) = x2(k), one obtains an equivalent system:

{
v1(k + 1) = ΨA1Ψ−v1 − ΨA1Ψ−s1 +s2(k),
v2(k + 1) = A2v2(k) + W 2σ

(
v1(k)

)
+s3(k),

(9)

where Ψ− is a pseudoinverse of the matrix Ψ, s2(k) =
ΨW 1u(k)+s1(k) and s3(k) = W uu(k) are thresholds
or fixed inputs.

Let v∗ = [v1∗ v2∗]T be an equilibrium point of
(9). Introducing an equivalent coordinate transformation
z(k) = v(k) − v∗(k), the system (9) can be transformed
to the following form:

{
z1(k + 1) = ΨA1Ψ−z1(k),
z2(k + 1) = A2z2(k) + W 2f(z1(k)),

(10)

where f(z1(k)) = σ(z1(k)+v1∗(k))−σ(v1∗(k)). Sub-
stituting z(k) = [z1(k) z2(k)]T , one finally obtains

z(k + 1) = Az(k) + Wf (z(k)), (11)

where

A =
[
ΨA1Ψ− 0

0 A2

]
, W =

[
0 0

W 2 0

]
. (12)

3. Stability analysis

Theorems based on Lyapunov’s second method formu-
late sufficient conditions for global asymptotical stabil-
ity of a system. In many cases, however, there is a need
to determine neccessary conditions. In such cases, Lya-
punov’s first method can be used. Moreover, stability
criteria developed using the second method of Lyapunov
cannot be used as a starting point to determime constraints
on the network parameters. Thus, the optimization prob-
lem with constraints cannot be determined. This section
presents an approach, based on the first method of Lya-
punov, which allows us to elaborate a training procedure
with constraints on the network parameters. Thus, the
training process can guarantee the stability of the neural
model.

Lemma 1. (Lyapunov’s first method) Let x∗ = 0 be an
equilibrium point of the system

x(k + 1) = f(x(k)), (13)

where f : D → R
n is a continuously differentiable func-

tion and D is a neighbourhood of the origin. Define the
Jacobian of (13) in the neigbourhood of the equilibrium
point x∗ = 0 as

J =
∂f

∂x

∣∣∣∣
x=0

. (14)

Then

1. The origin is locally asymptotically stable if all the
eigenvalues of J are inside the unit circle in the com-
plex plane.

2. The origin is unstable if one or more of the eigen-
values of J are outside the unit circle in the complex
plane.

Local stability conditions for discrete-time cascade locally recurrent neural networks 27

Theorem 1. The neural system (11) composed of neurons
with first order filters (r = 1) is locally asymptotically
stable if the following conditions are satisfied:

1. |aj
1i| < 1, ∀i = 1, . . . , v1, ∀j = 1, 2,

2. b1
1i �= 0, ∀i = 1, . . . , v1,

where aj
1i represents the only element of the state matrix

of the i-th neuron in the j-th layer, and b1
1i represents the

only element of the feedforward filter parameters vector
of the i-th neuron in the first layer.

Proof. The Jacobian of (11) is given by

J =
[

ΨA1Ψ− 0
W 2f ′(0) A2.

]
. (15)

The characteristic equation has the form

det(J − λI) = 0. (16)

The Jacobian is a block matrix, and then the determinant
of J − λI is given by

det(J − λI) = det(ΨA1Ψ− − λI) det(A2 − λI)
− det(W 2σ′(0))·0 (17)

= det(ΨA1Ψ− − λI) det(A2 − λI).

Finally, the characteristic equation takes the form

det(ΨA1Ψ− − λI) det(A2 − λI) = 0, (18)

and the system is stable if all eigenvalues of both matrices
ΨA1Ψ− and A2 are located in the unit circle. In our
case,

A1 = diag(−a1
11, . . . ,−a1

1v1
),

A2 = diag(−a2
11, . . . ,−a2

1v2
),

B1 = diag(b1
11, . . . , b

1
1v1

).

If Condition 2 is satisfied, then

Ψ = diag(g1
21b

1
11, . . . , g

1
2v1

b1
1v1

).

In this trivial case, a pseudoinverse of Ψ is given as
follows:

Ψ− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
g1
21b

1
11

. . . 0

...
. . .

...

0 . . .
1

g1
2v1

b1
1v1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)

and, finally, ΨA1Ψ− = A1. Then the system is sta-
ble if all eigenvalues of A1 and A2 are located in the
unit circle. Taking into account the reasoning presented

in (Patan, 2007; 2008a), one knows that all eigenvalues
of a block diagonal matrix are located in the unit circle if
the eigenvalues of each matrix on the diagonal are located
in the unit circle. According to this, |a1

1i| < 1, ∀i =
1, . . . , v1 and |a2

1i| < 1, ∀i = 1, . . . , v2, which com-
pletes the proof. �

Theorem 2. The neural system (11) composed of neurons
with second order filters (r = 2) is locally asymptotically
stable if the following conditions are satisfied:

1. For each entry of A1 and A2, the following set of
inequalities is satisfied:

⎧
⎪⎨
⎪⎩

1 − a1 + a2 > 0,

1 + a1 + a2 > 0,

1 − a2 > 0,

(20)

2. (b1
1i)

2 + (b1
2i)

2 �= 0, ∀i = 1, . . . , v1,

3. |b1
1i| < |b1

2i|, ∀i = 1, . . . , v1,

where b1
1i and b1

2i represent elements of the feedforward
filter parameters vector of the i-th neuron in the first layer.

Proof. From the proof of Theorem 1 one knows that
the system (11) is stable if the eigenvalues of ΨA1Ψ−

and A2 are located in the unit circle. Let us consider
the eigenvalues of A2 first. According to the reasoning
presented in (Patan, 2007), one knows that the eigenval-
ues of A2 are stable if, for each entry on the diagonal
a set of inequalities, (20) holds. Next, take into account
ΨA1Ψ−. This is a block diagonal matrix with the en-
tries ΨiA

1
i Ψ

−
i , i = 1, . . . , v1, where Ψi = g1

2ib
1
i . Using

Singular Value Decomposition (SVD), it is easy to verify
that

Ψ−
i =

(b1
i)

T

g1
2i‖b

1
i ‖2

2

, (21)

where ‖x‖2 is the Euclidean norm of the vector x. Using
(21), ΨiA

1
i Ψ

−
i can be represented as

ΨiA
1
i Ψ

−
i =

−a1
1i(b

1
1i)

2 + b1
1ib

1
2i(1 − a1

2i)
(b1

1i)2 + (b1
2i)2

. (22)

In order to obtain a stable system, the condition

∣∣∣∣
−a1

1i(b
1
1i)

2 + b1
1ib

1
2i(1 − a1

2i)
(b1

1i)2 + (b1
2i)2

∣∣∣∣ < 1, ∀i = 1, . . . , v1,

(23)
should be satisfied. To clarify the presentation in the fol-
lowing deliberations, the index i is omitted. Let us rewrite
(23) as follows:

−(b1
1)

2 − (b1
2)

2 − b1
1b

1
2 < f(a1

1, a
1
2)

< (b1
1)

2 + (b1
2)

2 − b1
1b

1
2,

(24)

28 K. Patan

where f(a1
1, a

1
2) = −a1

1(b
1
1)

2 − a1
2b

1
1b

1
2. To complete the

proof, it is necessary to show that

max f(a1
1, a

1
2) < (b1

1)
2 + (b1

2)
2 − b1

1b
1
2

and

min f(a1
1, a

1
2) > −(b1

1)
2 − (b1

2)
2 − b1

1b
1
2.

Therefore, it is required to solve two optimization prob-
lems:

max f(a1
1, a

1
2)

s.t. 1 − a1
1 + a1

2 � 0,

1 + a1
1 + a1

2 � 0,

1 − a1
2 � 0

(25a)

and

min f(a1
1, a

1
2),

s.t. 1 − a1
1 + a1

2 � 0, 1 + a1
1 + a1

2 � 0.

1 − a1
2 � 0

(25b)

The slope of the cost function f(a1
1, a

1
2) is given by

α = − (b1
1)

2

b1
1b

1
2

. (26)

Taking into account the shape of the feasible region, one
can consider the following cases:

Case 1. b1
1b

1
2 > 0 and | − α| > 1. Then (b1

1)
2 > b1

1b
1
2.

The course of the cost function is presented in Fig. 5. The
maximum is located at the point P1 = (−2, 1) and the
minimum at the point P2(2, 1).
Case 2. b1

1b
1
2 > 0 and |α| < 1. Then (b1

1)2 < b1
1b

1
2.

The course of the cost function is presented in Fig. 6. The
maximum is located at the point P3 = (0, 1) and the min-
imum at the point P2 = (2, 1). There is another posibility,
when b1

1b
1
2 > 0 and (b1

1)
2 = b1

1b
1
2 (|α| = 1), but in this

case |b1
1| = |b1

2| and Condition 3 is not satisfied.

a2

a1

-1 1

-1

1

m
in

f

m
ax

f

f(a
1,a

2)

P1 P2

Fig. 5. Graphical solution of the problems (25)—Case 1.

a2

a1

-1 1

1

m
in

f

m
ax f

f(a
1,a

2)P3

P2

Fig. 6. Graphical solution of the problems (25)—Case 2.

a2

a1-1 1

-1

1

m
in

f

m
a
x

f

f(
a
1,

a
2)

P1 P2

Fig. 7. Graphical solution of the problems (25)—Case 3.

Case 3. b1
1b

1
2 < 0 and |α| > 1. Then (b1

1)
2 > −b1

1b
1
2.

The course of the cost function is presented in Fig. 7. The
maximum is located at the point P1 = (−2, 1) and the
minimum at the point P2 = (2, 1).

Case 4. b1b2 < 0 and |α| < 1. Then (b1
1)

2 < −b1
1b

1
2.

The course of the cost function is presented in Fig. 8. The
maximum is located at the point P1 = (−2, 1) and the
minimum at the point P3 = (0,−1). There is another
posibility, when b1

1b
1
2 < 0 and (b1

1)2 = −b1
1b

1
2 (|α| = 1),

but in this case |b1
1| = |b1

2| and Condition 3 is not satisfied.

According to (24), one should check the following:

a2

a1-1

1

1

m
in

f

m
ax

f

f(a
1,
a2)

P1

P3

Fig. 8. Graphical solution of the problems (25)—Case 4.

Local stability conditions for discrete-time cascade locally recurrent neural networks 29

1. f(−2, 1) < (b1
1)

2 + (b1
2)

2 − b1
1b

1
2: In this case

2(b1
1)

2 − b1
1b

1
2 < (b1

1)
2 + (b1

2)
2 − b1

1b
1
2,

(b1
1)

2 < (b1
2)

2,

and Condition 3 is satisfied;

2. f(0,−1) < (b1
1)2 + (b1

2)2 − b1
1b

1
2: One obtains

b1
1b

1
2 < (b1

1)
2 + (b1

2)
2 − b1

1b
1
2,

0 < (b1
1 − b1

2)
2,

which is true for any b1 and b2;

3. f(2, 1) > −(b1
1)

2 − (b1
2)

2 − b1
1b

1
2: In this case

−2(b1
1)

2 − b1
1b

1
2 > −(b1

1)
2 − (b1

2)
2 − b1

1b
1
2,

(b1
1)

2 < (b1
2)

2,

and Condition 3 is satisfied;

4. f(0,−1) > −(b1
1)

2 − (b1
2)

2 − b1
1b

1
2: In this case

b1
1b

1
2 > −(b1

1)
2 − (b1

2)
2 − b1

1b
1
2,

0 > −(b1
1 + b1

2)
2,

which is true for any b1 and b2.

The problems (25) were solved for constraints in the
form of a compact set Ā, but Condition 1 defines an open
set of constraints A. Therefore, the operations of maxi-
mum and minimum over the compact set can be replaced
by the operations of supremum and infimum over the open
set as follows:

(b1
1)

2 + (b1
2)

2 − b1
1b

1
2 > max

Ā

f(a1
1, a

1
2) = sup

A

f(a1
1, a

1
2),

(27)
and

− (b1
1)

2 − (b1
2)

2 − b1
1b

1
2 < min

Ā

f(a1
1, a

1
2) = inf

A

f(a1
1, a

1
2),

(28)
which completes the proof. �

Remark 1. Contrary to the global asymptotical stabil-
ity theorems based on the second method of Lyapunov
(Patan, 2008b; 2008c), Theorems 1 and 2 formulate neces-
sary as well as sufficient conditions for local asymptotical
stability of a neural network and are able to judge between
the stability and instability of a neural model. Further-
more, based on the conditions formulated by them, a con-
strained training procedure can be derived, which guaran-
tees the stability of the neural network. An example of
such a training procedure for a neural network consisting
of second order filters is presented in Table 1.

4. Experiments

This section presents illustrative examples regarding sta-
ble training of the cascade neural network. All experi-
ments were carried out using real process data acquired
from the laboratory system AMIRA DR300.

Algorithm 1 Assuring the feasibility of the matrix B1.

Step 0. Initiation
Choose the initial network parameters, set ε to a
small value, e.g. ε = 10−5

Step 1. Parameters update
Update the network parameters using a training
algorithm

Step 2. Assure the feasibility of the matrices A1 and A2,
e.g., using gradient projection or minimum distance
projection, proposed in (Patan, 2007)

Step 3. Assure the feasibility of the matrix B1 using the
following procedure:

Require: v1, ε > 0 � e.g., ε = 10−5

1: for i = 1 to v1 do
2: if |b1

1i| > |b1
2i| then

3: if b1
1i > 0 then

4: if b1
2i > 0 then

5: b1
2i := b1

1i + ε
6: else
7: b1

2i := −b1
1i − ε

8: end if
9: else

10: if b1
2i > 0 then

11: b1
2i := −b1

1i + ε
12: else
13: b1

2i := b1
1i − ε

14: end if
15: end if
16: end if
17: end for

Step 4. Termination criteria
if (termination criterion satisfied) then STOP else go
to Step 1

4.1. System description. The system shown in Fig. 9
is used to control the rotational speed of a DC motor with
a changing load. The laboratory object considered con-

Fig. 9. Laboratory system with a DC motor.

30 K. Patan

sists of five main elements: a DC motor M1, a DC motor
M2, two digital increamental encoders and a clutch K. The
input signal of the engine M1 is an armature current and
the output one is the angular velocity. The available sen-
sors for the output are an analog tachometer on an optical
sensor, which generates impulses that correspond to the
rotations of the engine and a digital incremental encoder.
The shaft of the motor M1 is connected with the identical
motor M2 by the clutch K. The second motor M2 operates
in the generator mode and its input signal is an armature
current. The available measuremets of the plant are as fol-
lows:

• motor current Im—the motor current of the DC mo-
tor M1,

• generator current Ig—the motor current of the DC
motor M2,

• tachometer signal T ;

and control signals:

• motor control signal Cm—the input of the motor M1,

• generator control signal Cg—the input of the motor
M2.

The separately excited DC motor is governed by two
differential equations. The classical description of the
electrical subsystem is given by the equation

u(t) = Ri(t) + L
di(t)
dt

+ e(t), (29)

where u(t) is the motor armature voltage, R is the arma-
ture coil resistance, i(t) is the motor armature current, L
is the motor coil inductance, and e(t) is the induced elec-
tromotive force. The counter electromotive force is pro-
portional to the angular velocity of the motor:

e(t) = Keω(t), (30)

where Ke stands for the motor voltage constant and ω(t)
is the angular velocity of the motor. In turn, the mechani-
cal subsystem can be derived from a torque balance:

J
dω(t)

dt
= Tm(t) − Bmω(t) − Tl − Tf (ω(t)), (31)

where J is the motor moment of inertia, Tm is the motor
torque, Bm is the viscous friction torque coefficient, Tl is
the load torque, and Tf (ω(t)) is the friction torque.

The motor torque Tm(t) is proportional to the arma-
ture current:

Tm(t) = Kmi(t), (32)

where Km stands for the motor torque constant. The fric-
tion torque can be considered as a function of the angular
velocity and it is assumed to be the sum of the Stribeck,

Coulumb and viscous components. The viscous friction
torque opposes motion and it is proportional to the angu-
lar velocity. The Coulomb friction torque is constant at
any angular velocity. The Stribeck friction is a nonlinear
component occuring at low angular velocities.

Although the model (29)–(32) has a direct relation to
the motor physical parameters, the true relation between
them is nonlinear. There are many nonlinear factors in the
motor, e.g., the nonlinearity of the magnetization char-
acteristic of the material, the effect of material reaction,
the effect caused by an eddy current in the magnet, resid-
ual magnetism, the commutator characteristic, mechani-
cal frictions (Xiang-Qun and Zhang, 2000). These factors
are not shown in the model (29)–(32). Summarizing, the
DC motor is a nonlinear dynamic process, and nonlinear
modelling should be employed to model it suitably.

The motor described works in closed-loop control
with the PI controller. It is assumed that the load of the
motor is equal to zero. The objective of system control is
to keep the rotational speed at the constant value equal to
2000. Additionally, it is assumed that the reference value
is corrupted by additive white noise.

4.2. Motor modelling. A separately excited DC motor
was modelled by using the dynamic neural network (5).
The model of the motor was selected as follows:

T = f(Cm). (33)

The following input signal was used in the experiments:

Cm(k) =3 sin(2π1.7k) + 3 sin(2π1.1k − π/7)
+ 3 sin(2π0.3k + π/3).

(34)

The input signal (34) is persistantly exciting of order 6.
Using (34), a learning set containig 1000 samples was
formed. The objective of the experiment was to compare a
standard training procedure with the constrained one. The
investigated models were tested using two sets: data gen-
erated in the open loop control consisting of 1000 samples
(data set To) different from the training one, and data gen-
erated in the closed loop control consisting of 3500 sam-
ples (data set Tc). Results are reported in the following
sections.

4.3. Experiment 1. The neural network model (5) had
the following structure: one input, three IIR neurons with
second order filters and sigmoidal activation functions,
four FIR neurons with second order filters and linear acti-
vation functions, and one linear output neuron. In all cases
considered, the training process was carried out for 100
steps using the Adaptive Random Search (ARS) algorithm
with the initial variance v0 = 0.1. Firstly, ARS with gra-
dient projection was employed and the experiment was re-
peated using the simple ARS algorithm. Figure 10 shows

Local stability conditions for discrete-time cascade locally recurrent neural networks 31

Table 1. Feedforward filter parameters—neurons with IIR fil-
ters.

i 1 2 3
b1
1i −0.0699 0.8337 −0.8672

b1
2i 0.5863 1.4868 1.2921

the location of the feedback filter parameters in the stabil-
ity triangle for every single neuron as well as eigenvalues
arrangement of the matrix A1 (‘x’ symbols) and eigenval-
ues arrangement of the matrix ΨA1Ψ− (diamonds). To
keep neural networks stable, all eigenvalues of ΨA1Ψ−

should be stable. As one can observe in Figs. 10(b), (d)
and (f), in the case considered all neurons are stable. To
carry this out, the proposed constrained procedure keeps
eigenvaules of A1 stable (Figs. 10 (b), (d) and (f)) and
checks relations between feedforward filter parameters b1

i

(Condition 3 of Theorem 2). Table 1 shows the feed-
forward filter parameters values, which are correct. This
proves that neurons with IIR filters are stable.

(a) (b)

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a
2

a1
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Re(z)

I
m

(z
)

(c) (d)

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a1

a
2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Re(z)

I
m

(z
)

(e) (f)

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a1

a
2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Re(z)

I
m

(z
)

Fig. 10. Stabilization results—neurons with IIR filters. Param-
eters location: neuron 1 (a), neuron 2 (c), neuron 3 (e);
Pole placement: neuron 1 (b), neuron 2 (d), neuron 3
(f).

(a) (b)

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a1

a
2

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a
2

a1

(c) (d)

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a1
a
2

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

a1

a
2

Fig. 11. Stabilization results—neurons with FIR filters. Param-
eters location: neuron 1 (a), neuron 2 (b), neuron 3 (c),
neuron 4 (d).

In turn, in Fig. 11 one can see the location of the
feedback filter parameters of the neurons with FIR fil-
ters (represented by the matrix A2) in the stability tri-
angle. Parametres of each neuron are feasible. Accord-
ing to Theorem 2, the overall neural model is stable. The
stabilization of the dynamic neural network based on con-
strained optimization and gradient projection works pretty
well. After training, the neural model was tested check-
ing modelling quality. The outputs of the neural model
(dashed line) and the separately excited motor (solid line)
generated for another 1000 testing samples are depicted
in Fig. 12. The efficiency of the neural model was also
checked during the work of the motor in closed-loop con-
trol. The results are presented in Fig. 13. For clarity of
presentation of the modelling results, the outputs of the
process and the neural model for about 250 time steps are
only illustrated.

As one can see there, the output of the model tracks
the changes of the process but the model output vari-
ance is significant. This could indicate that the neural
model is too complex to model the system properly. Ta-
ble 3 includes the quality measures in the form of the
Sum of Squared Errors (SSE) and Mean Squared Errors
(MSE) for both testing sets To (open-loop control) and
Tc (closed-loop control). The experiment was repeated
using the simple ARS algorithm. Unfortunately, in this
case the neural model quickly lost stability and the er-
ror called the floating point overflow was gen-
erated. Summarizing, serious numerical problems were
observed when the network was trained without stability
considerations.

32 K. Patan

100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time

pr
oc

es
s

(s
ol

id
)

an
d

ne
tw

or
k

(d
as

he
d)

 o
ut

pu
ts

Fig. 12. Responses of the motor (solid) and the neural model
(dashed)—open-loop control.

2050 2100 2150 2200 2250

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525

time

pr
oc

es
s

(s
ol

id
)

an
d

ne
tw

or
k

(d
ot

te
d)

 o
ut

pu
ts

Fig. 13. Responses of the motor (solid) and the neural model
(dashed)—closed-loop control.

4.4. Experiment 2. The neural network model (5)
had the following structure: one input, five IIR neurons
with first order filters and sigmoidal activation functions,
four FIR neurons with first order filters and linear activa-
tion functions, and one linear output neuron. In all cases
considered, the training process was carried out for 100
steps using the ARS algorithm with the initial variance
v0 = 0.1. Firstly, ARS with gradient projection was em-
ployed and then experiment was repeated using the simple
ARS algorithm. According to Theorem 1, to guarantee the
stability of the neural model it is enough to keep the abso-
lute value of feedback filter parameters less than one. As
one can see in Table 2, the training procedure keeps all

Table 2. Feedback filter parameters.
i 1 2 3 4 5
a1
1i 0.4191 −0.2098 0.4328 −0.1536 −0.3965

a2
1i −0.3993 −0.9819 0.1342 −0.3116 –

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

pr
oc

es
s

(s
ol

id
)

an
d

ne
tw

or
k

(d
as

he
d)

 o
ut

pu
ts

Fig. 14. Responses of the motor (solid) and the neural model
(dashed)—open-loop control.

1000 1200 1400 1600 1800 2000
0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

time

pr
oc

es
s

(s
ol

id
)

an
d

ne
tw

or
k

(d
as

he
d)

 o
ut

pu
ts

Fig. 15. Responses of the motor (solid) and the neural model
(dashed)—close-loop control.

feedback filter parameters inside the interval (−1, 1) and
the model is stable. Once again, the stabilization of the
dynamic neural network based on constrained optimiza-
tion and gradient projection works pretty well.

After training, the neural model was tested check-
ing modelling quality. The outputs of the neural model
(dashed line) and the separately excited motor (solid line)
generated for another 1000 testing samples are depicted
in Fig. 14. This time the model is simpler but modelling
accuracy is slightly better than in the previously discussed
case (Table 3). The efficiency of the neural model was
also checked during the work of the motor in the closed-
loop control. The results are presented in Fig. 15. For the
clarity of presentation of the modelling results, the out-
puts of the process and the neural model for 1000 time
steps are only illustrated. It is observed that the variance
of the model output is much lower than in the previous
case, but the bias is bigger. This could indicate that the
neural model is too simple to model the system properly.

Local stability conditions for discrete-time cascade locally recurrent neural networks 33

Table 3. Modelling quality indices.
Experiment 1 Experiment 2

set To set Tc set To set Tc

SSE 6.9875 0.1893 6.2659 0.5649
MSE 0.007 6.310−5 0.0063 1.910−4

The bias–variance trade-off is strongly related to the prob-
lem of model selection, but this issue is out of the scope
of this paper.

5. Conclusions

The purpose of this paper was to propose a method for
stability analysis of the cascade locally recurrent neural
model. To tackle this problem, Lyapunov’s first method
was applied. Using this method, local stability conditions
were derived. The stability conditions rendered it possible
to define feasible regions for the network parameters and
then, using the gradient projection, a stable training algo-
rithm. The method was checked using a number of exper-
iments, showing its usefulness and efficiency. It should be
pointed out that the methods are very simple and numer-
ically uncomplicated, and they can be easily introduced
into the learning procedure. The example of the identifi-
cation of a real process confirms the effectiveness of the
proposed learning with stabilization.

Acknowledgment

This work was supported in part by the Ministry of
Science and Higher Education in Poland under Grant
No. N514 1219 33.

References
Back, A. D. and Tsoi, A. C. (1991). FIR and IIR synapses, A

new neural network architecture for time series modelling,
Neural Computation 3(3): 375–385.

Campolucci, P. and Piazza, F. (2000). Intrinsic stability-control
method for recursive filters and neural networks, IEEE
Transactions on Circuit and Systems—II: Analog and Dig-
ital Signal Processing 47(8): 797–802.

Cannas, B., Cincotti, S., Marchesi, M. and Pilo, F.
(2001). Learnig of Chua’s circuit attractors by lo-
cally recurrent neural networks, Chaos Solitons & Fractals
12(11): 2109–2115.

Cao, J., Yuan, K. and Li, H. (2006). Global asymptotical sta-
bility of recurrent neural networks with multiple discrete
delays and distributed delays, IEEE Transactions on Neu-
ral Networks 17(6): 1646–1651.

Ensari, T. and Arik, S. (2005). Global stability analysis of neural
networks with multiple time varying delays, IEEE Trans-
actions on Automatic Control 50(11): 1781–1785.

Fasconi, P., Gori, M. and Soda, G. (1992). Local feedback mul-
tilayered networks, Neural Computation 4(1): 120–130.

Forti, M., Nistri, P. and Papini, D. (2005). Global exponential
stability and global convergence in finite time of delayed
neural networks with infinite gain, IEEE Transactions on
Neural Networks 16(6): 1449–1463.

Gori, M., Bengio, Y. and Mori, R. D. (1989). BPS: A learn-
ing algorithm for capturing the dynamic nature of speech,
International Joint Conference on Neural Networks, Wash-
ington DC, USA, Vol. II, pp. 417–423.

Gupta, M. M., Jin, L. and Homma, N. (2003). Static and Dy-
namic Neural Networks. From Fundamentals to Advanced
Theory, John Wiley & Sons, Hoboken, NJ.

Gupta, M. M. and Rao, D. H. (1993). Dynamic neural units with
application to the control of unknown nonlinear systems,
Journal of Intelligent and Fuzzy Systems 1(1): 73–92.

Marcu, T., Mirea, L. and Frank, P. M. (1999). Develop-
ment of dynamical neural networks with application to ob-
server based fault detection and isolation, International
Journal of Applied Mathematics and Computer Science
9(3): 547–570.

Patan, K. (2007). Stability analysis and the stabilization of
a class of discrete-time dynamic neural network, IEEE
Transactions on Neural Networks 18(3): 660–673.

Patan, K. (2008a). Aproximation of state-space trajectories by
locally recurrent globally feed-forward neural networks,
Neural Networks 21(1): 59–64.

Patan, K. (2008b). Artificial Neural Networks for the Modelling
and Fault Diagnosis of Technical Processes, Lecture Notes
in Control and Information Sciences, Vol. 377, Springer–
Verlag, Berlin.

Patan, K. (2008c). Stability criteria for three-layer locally re-
current networks, Proceedings of the 17th IFAC World
Congress on Automatic Control, Seoul, Korea, (on CD-
ROM).

Patan, K. and Parisini, T. (2005). Identification of neural dy-
namic models for fault detection and isolation: The case of
a real sugar evaporation process, Journal of Process Con-
trol 15(1): 67–79.

Patan, K., Witczak, M. and Korbicz, J. (2008). Towards ro-
bustness in neural network based fault diagnosis, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 18(4): 443–454, DOI: 10.2478/v10006-008-0039-2.

Tsoi, A. C. and Back, A. D. (1994). Locally recurrent globally
feedforward networks: A critical review of architectures,
IEEE Transactions on Neural Networks 5(2): 229–239.

Xiang-Qun, L. and Zhang, H. Y. (2000). Fault detection and di-
agnosis of permanent-magnet DC motor based on param-
eter estimation and neural network, IEEE Transactions on
Industrial Electronics 47(5): 1021–1030.

Zhang, J., Morris, A. J. and Martin, E. B. (1998). Long term
prediction models based on mixed order locally recur-
rent neural networks, Computers Chemical Engineering
22(7–8): 1051–1063.

34 K. Patan

Krzysztof Patan was born in 1971 in Zielona
Góra, Poland. He received the M.Sc. degree in
electrical engineering from the Technical Uni-
versity of Zielona Góra, Poland, in 1996, the
Ph.D. degree in machine design and exploita-
tion from the Warsaw University of Technol-
ogy, Poland, in 2000, and the D.Sc. degree in
electrical engineering from the University of
Zielona Góra, Poland, in 2009. Currently, he
is an assistant professor at the Institute of Con-

trol and Computation Engineering, University of Zielona Góra. His re-
search interests include artificial neural networks and their application
to modelling and identification of nonlinear systems, fault detection and
diagnosis, fault tolerant control systems, and optimization techniques.

Received: 4 February 2009
Revised: 14 October 2009

	Introduction
	Locally recurent networks
	Cascade network
	State-space representation of the cascade locally recurrent network
	Model transformation

	Stability analysis
	Experiments
	System description
	Motor modelling
	Experiment 1
	Experiment 2

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

