
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 69–84
DOI: 10.2478/v10006-010-0005-7

A BIOLOGICALLY INSPIRED APPROACH TO FEASIBLE GAIT LEARNING
FOR A HEXAPOD ROBOT

DOMINIK BELTER, PIOTR SKRZYPCZYŃSKI

Institute of Control and Information Engineering
Poznań University of Technology, ul. Piotrowo 3A, 60–965, Poznań, Poland

e-mail: {dominik.belter,piotr.skrzypczynski}@put.poznan.pl

The objective of this paper is to develop feasible gait patterns that could be used to control a real hexapod walking robot.
These gaits should enable the fastest movement that is possible with the given robot’s mechanics and drives on a flat
terrain. Biological inspirations are commonly used in the design of walking robots and their control algorithms. However,
legged robots differ significantly from their biological counterparts. Hence we believe that gait patterns should be learned
using the robot or its simulation model rather than copied from insect behaviour. However, as we have found tahula rasa
learning ineffective in this case due to the large and complicated search space, we adopt a different strategy: in a series
of simulations we show how a progressive reduction of the permissible search space for the leg movements leads to the
evolution of effective gait patterns. This strategy enables the evolutionary algorithm to discover proper leg co-ordination
rules for a hexapod robot, using only simple dependencies between the states of the legs and a simple fitness function. The
dependencies used are inspired by typical insect behaviour, although we show that all the introduced rules emerge also
naturally in the evolved gait patterns. Finally, the gaits evolved in simulations are shown to be effective in experiments on
a real walking robot.

Keywords: evolutionary learning, legged robots, gait generation, model identification, reality gap.

1. Introduction

The generation of gaits—the patterns of moving legs in
walking or running—is a fundamental problem for every
walking robot. For multi-legged robots, developing walk-
ing patterns is a challenging task, because there are a large
number of degrees of freedom and therefore the solution
must be found in a large, multidimensional search/state
space, where useful states are sparsely distributed.

The issues of gait generation have been studied for
many years, and there are various approaches to this prob-
lem known from the literature (Ridderström, 1999). Al-
though the generation of adaptive gait patterns has already
been demonstrated in simulated (Kumar and Waldron,
1989; Yang, 2009) and real (Fukuoka et al., 2003; Parker
and Mills, 1999) environments, many walking robot con-
trollers use gaits programmed by hand. In most cases
(particularly for six- and eight-legged walking machines)
these gaits are statically stable, i.e., the gait longitudinal
stability margin is positive (Song and Waldron, 1989).

Typically, the synthesis of simple, static gaits is
based on a kinematic model of the robot, and the de-
signer’s inspiration is taken from biology (Figliolini et al.,

Fig. 1. Hexapod robot Ragno.

2007). Studies on insect walking are an obvious source
of gait templates for hexapod robots (Beer et al., 1997).
This is the easiest method to obtain feasible movement
of a walking robot. In spite of its implementational sim-
plicity, this method does not guarantee the best use of

{dominik.belter,piotr.skrzypczynski}@put.poznan.pl

70 D. Belter and P. Skrzypczyński

the robot kinematic and dynamic capabilities. When leg
co-ordination patterns known from nature are used, some
other gaits are excluded by design, only because they have
not been observed in living creatures. Despite the fact
that these walking patterns are not used in nature, it is
worth verifying whether they are applicable to walking
machines. Even though insects are simple animals, they
are much more complex than the existing walking robots.
An example may be leg specialization found in both in-
sects and vertebrates, which is largely ignored in the de-
sign of walking robots due to technological and control
issues (Ritzmann et al., 2004). Thus, as it seems to be im-
possible to copy even the simplest insect into a robotic de-
sign, also movement strategies, including gaits, may dif-
fer. We believe that gaits optimized or learned using an
actual robot can perform better than their counterparts di-
rectly modelled on biological patterns due to their adjust-
ment to the specific robot hardware.

To find gait patterns for a walking robot from scratch,
the multidimensional space of all possible leg states
should be examined. The hexapod robot Ragno (Fig. 1)
used in this research has 18 degrees of freedom, so in a
general case 18 reference values for all the active joints
have to be determined in every control cycle. A variety of
methods exist for solving such a problem, but an evolu-
tionary algorithm seems to be appropriate to perform this
difficult task, due to its ability to provide an approach to
the global solution better than gradient-based analytical
algorithms, its good explorative properties, and insensi-
tivity to the initial parameters.

However, even with an evolutionary technique learn-
ing one big task by the robot at once may be hard. A rea-
sonable solution to this problem is the supervised learn-
ing procedure: a human supervisor defines the whole con-
trol framework and evaluates the progress of the learn-
ing robot. Such an approach is often called ‘shaping’
(Dorigo and Colombetti, 1997). This paradigm was
used successfully in our previous research on GA-based
learning of fuzzy reactive behaviour for a wheeled robot
(Skrzypczyński, 2004b).

This work approaches the problem of learning gait
patterns for a hexapod robot using shaping-type learning,
by means of an evolutionary algorithm. Our main idea
is to let the system learn a gait starting from as mini-
mal a priori knowledge as possible. The leg movement
sequences (defined by the reference values for particular
joints) are evolved in a realistic simulation (Fig. 2), then
transferred to the real mobile robot Ragno for testing. The
objective is to develop gaits that enable the robot to move
as fast as possible on a flat terrain with the given kine-
matic and dynamic constraints of its hardware. We do
not define the particular gait type that is sought; however,
we are looking for gaits that are applicable to the physi-
cal robot, therefore they cannot be chaotic, overstress the
robot’s structure or actuators, or cause the robot to fall

Fig. 2. Simulated hexapod robot.

down.
We show in a series of evolutionary simulations how

the implementation of a few, general leg co-ordination
rules observed in insects leads to a dramatic reduction
of the permissible search space defined by the leg move-
ments. This strategy enables fast and convergent evolution
of gaits appropriate for a real hexapod, including patterns
significantly different from gaits designed by hand on the
basis of their biological counterparts.

2. Related work

Learning-based approaches to gait generation have been
broadly studied in the literature. In order to place our work
in the context of what has already been done, we study
some of the related papers and point out the differences
and similarities with regard to our approach.

We try to develop gaits without explicit application of
walking patterns observed in animals, because the kine-
matics and dynamics of hexapod robots are quite differ-
ent from the respective properties of living creatures. We
do not assume that any particular gait type will evolve.
Therefore, we evolve whole leg co-ordination patterns in-
stead of just evolutionary optimization of known gait pa-
rameters, which is the case in some other works (Hornby
et al., 2005; Zagal et al., 2004).

However, staying away from biological inspirations
and starting the search for walking patterns from scratch
leads to gaits that are often chaotic and unstable, so they
cannot be used to control a physical robot. Busch et al.
(2002) observed some gaits that cannot found their coun-
terparts in the nature; however, these gaits were slow and
not useful for a real robot. This problem is mostly related
to a complex state space, in which the search for a solu-
tion may be sub-optimal. One of the main questions in
this research was how much of the knowledge gained by
the observation of animals (insects in particular) should be
encoded in the gait controller. We wanted to find a balance
between two contradicting aims: enabling the evolution of
gaits that are optimal for the specific robot hardware and
the chosen fitness function, and avoiding the evolution of
unfeasible gaits resulting from convergence with the lo-
cal optima of a very large search space. A reduction of

A biologically inspired approach to feasible gait learning for a hexapod robot 71

this space comes from excluding a priori some unwanted
solutions (Belter et al., 2008). Niching could be addition-
ally incorporated in order to avoid premature convergence
(Kowalczuk and Białaszewski, 2006). While it is not op-
timal to use copied insect gaits with a robot, and it is nei-
ther possible nor feasible to copy the Darwinian evolu-
tion (Albiez and Berns, 2004), when trying to reduce the
search space, it is interesting to take advantage of the rules
and/or constraints that proved to lead to a proper solution
in natural evolution.

We use an evolutionary algorithm to effectively
search for optimal gaits. The term ‘evolutionary algo-
rithms’ summarizes a family of machine learning and
optimization methods inspired by biological evolution
(Holland, 1975) that include (among others) genetic al-
gorithms (GAs), genetic programming (GP), and evo-
lution strategies (ESs) (Arabas, 2001). Evolving con-
trol systems by using genetic algorithms has become
quite popular in the field of robotics (see (Walker et
al., 2003) for a survey). Learning and tuning behaviour by
means of GA was found useful in developing behaviour-
based control systems of wheeled mobile robots (e.g.,
(Skrzypczyński, 2004a; 2004b).

In the walking machines domain, GA-based meth-
ods have been used to evolve gaits for a number of legged
robots, including hexapods (Barfoot et al., 2006; Gal-
lagher et al., 1996; Lewis et al., 1994) and octopods
(Jakobi, 1998; Luk et al., 2001). An evolutionary algo-
rithm has also been successfully applied in the process of
developing dynamic gaits for four-legged Sony entertain-
ment robots (Hornby et al., 2005). Also other learning al-
gorithms have already been applied to the gait generation
problem, most notably different variants of the reinforce-
ment learning (RL) paradigm. For example, six-legged
Genghis learned to co-ordinate a simple behaviour set re-
sulting in a tripod gait (Maes and Brooks, 1990).

In (Kirchner, 1998), Q-learning was used to develop
swing and stance movements for legs of a hexapod robot.
Also Kimura et al. (2001) and Svinin et al. (2001) used
RL to develop motion patterns for a quadruped and an
octopod, respectively. We prefer to use an evolutionary
algorithm rather than RL, because problems with large
state spaces are known to be hard to solve with foun-
dational RL algorithms. While it is possible to decom-
pose a priori the search space by enumerating the stati-
cally stable robot configurations and eliminating the un-
stable ones, an explicit description of the stable configu-
rations is not always general and precise enough (Svinin
et al., 2001). In the system under study such a decomposi-
tion might lead to an unnecessary reduction of the admis-
sible search space, and it might impact the ability to learn
optimal gaits. Therefore, we prefer to explore the non-
decomposed search space, and we require an appropriate
learning algorithm to accomplish this. Although several
researchers have successfully applied special RL variants

to various robot learning problems involving large state
spaces (Tuyls et al., 2003), we have chosen evolution-
ary algorithms instead, which can handle complex, non-
differentiable search spaces (Goldberg, 1989).

The motivation for using a simulator for learning
robot gaits stems primarily from the fact that try-and-error
learning using a real robot may be dangerous for the hard-
ware. Also, significant effort (recharging of batteries, re-
pairs) may be necessary to maintain the real robot dur-
ing continuous testing (Maes and Brooks, 1990). Because
of these problems, real-world experiments can impose a
prohibitive time overhead. The number of simulated runs
performed in a given amount of time can be much higher
than that of real experiments. However, any simplifica-
tion made in a simulator may be exploited by the learning
algorithm, resulting in a gait pattern, which cannot be re-
produced in the real robot. The problem of transferring
the results from a simulation to a real robot has been rec-
ognized in the literature (Mataric and Cliff, 1996; Walker
et al., 2003). The system described here crosses the so-
called ‘reality gap’ (Jakobi et al., 1995) by using a simu-
lator that models the physical characteristics of the robot,
including its dynamics, and the way a real robot interacts
with the environment.

Although there are known results on gait learning
using physical robots, we prefer learning in simulation
due to reasons related to the aim of this research and the
chosen learning method. As stated before, the aim is to
evolve gaits that are optimal for the given task and robot
hardware. Hence, we try to learn walking patterns from
scratch, and we would also like to explore the dynamic
states of the robot, beyond the static stability area. When-
ever basic motion patterns are acquired through interac-
tion with the environment, the possibility of critical fail-
ures increases. The issues of safety during gait learning
using an actual robot are considered by Huber and Gru-
pen (1997). One of their safety constraints requires that
the walking robot should always remain statically stable.
Introducing such a constraint eliminates a large, ‘unsafe’
portion of the search space but also any possibility to ob-
tain gaits that include dynamic states, which is clearly
against our aims. On the other hand, whenever dynamic
states are allowed, it is difficult to provide a set of con-
straints which will ensure robot safety. Such problems
obviously do not exist in the simulator, where every colli-
sion and every excessive force in a joint is detected by the
software.

One can argue that using the actual robot to obtain
the reinforcement feedback from the environment should
completely remove the reality gap problem. However, in
most of the works that use physical robots in gait learning
these robots are equipped with special hardware to col-
lect the reinforcement signals (Kimura et al., 2001; Maes
and Brooks, 1990) or are placed in a completely artificial
environment like the treadmill setup designed by Barfoot

72 D. Belter and P. Skrzypczyński

et al. (2006) to evolve walking gaits. Hence, robots are
not confronted with the real world as it is, because the
additional equipment may cause errors or bias in the rein-
forcement signal (e.g., due to wheel slippage) or even in-
troduce factors that are not present in the natural environ-
ment (Barfoot et al., 2006). Therefore, real robot-based
gait learning systems are not completely free from the re-
ality gap problem. However, in the real world, there are
situations that cannot be foreseen, and it is not possible
to program or learn an appropriate set of reactions for it in
advance. As was observed by Kirchner (1998), such prob-
lems should be solved by the robot itself during interaction
with the environment, and that is where learning using a
real machine should be used. Real robot learning may be
also used for the adaptation of an existing control system
to particular properties of the environment. An example of
such a learning system is shown by Chernova and Veloso
(2004), where quadruped robots used for robotic soccer
adapt to a new walking surface.

A well-established paradigm in the evolutionary
robotics literature is the minimal simulation. The minimal
simulation principle was proposed by Jakobi (1995), who
applied it to different robots, including an eight-legged
walking machine (Jakobi, 1998). The same approach is
also used by Svinin et al. (2001), where the minimal
simulation model of an octopod is explained in detail. In
contrast, we use a simulator based on the exact dynamic
model of the Ragno robot. Researchers using the minimal
simulation approach argue that a learning procedure based
on a model of a robot’s dynamics can be prohibitively
slow (Jakobi et al., 1995). However, recent advances
in computer speed and the availability of fast, optimized
software ‘engines’ implementing the simulation of real-
world physics made such simulators a viable solution for
evolutionary robotics. While a minimal simulation may be
enough to provide a reinforcement for a wheeled mobile
robot performing a simple navigation task, legged robots
should explore their dynamics to achieve effective gaits.

The minimal octopod robot model developed in
(Svinin et al., 2001) excludes any dynamical effects re-
lated to the balancing motions of the body and assumes
that the proper control commands lead to stable configu-
rations. Whenever the robot comes into an unstable con-
figuration, the command that led to this configuration im-
mediately gets a negative reinforcement. Obviously, such
an approach does not permit the evolution of gaits that in-
clude dynamic states. As pointed out by Gallagher et al.
(1996), who use a simple simulation to evolve gaits for a
hexapod robot, an important difference between the simu-
lated and the real robot is that the oversimplified simulated
robot falls down as soon as static stability is lost, while
the real robot needs time to fall. Observing our results
(cf. Fig. 17), one can see that the more elaborated, non-
minimal simulator enables the learning system to explore
this fact, and to evolve a fast gait that does not preserve

(a) (b)

Fig. 3. Robot co-ordinate system and leg numbering (a). Neu-
tral position of a leg (b).

the static stability all the time.

3. Experimental setup

3.1. Hexapod robot. The walking robot Ragno (cf.
Fig. 1), which was developed in-house, is used in this
research. It has six legs. Each leg has three joints that
are driven by integrated servomotors. Figure 3(a) shows
a general view of this robot’s mechanics, its local co-
ordinate frame and the leg numbering convention used.
The robot is 33 cm long and 30 cm wide and weights
2.15 kg (without batteries).

The control architecture of the robot is divided into
four layers (Walas et al., 2008). The first one is placed
off-board. It has sufficient resources to compute the ap-
propriate control signal for all joints of each leg. The off-
board layer sends control commands to the robot. The
commands include 18 reference values for the leg joints.
These reference values are determined as a difference be-
tween the desired joint positions and the neutral ones. The
neutral position for a leg is shown in Fig. 3(b) and is de-
fined by the vector of the joint angles: [90◦, 45◦,−117◦]T .
To change the leg position, the difference between the ref-
erence and the neutral position has to be sent to the leg
joint controllers. Sending the zero vector for a given leg
means setting this leg to its neutral position.

The second, on-board control layer interprets these
commands and sends them to the appropriate leg con-
trollers. There are six leg controllers that work simulta-
neously. They produce control inputs for the integrated
servomechanisms of the joints. Each joint has a feedback
from its angle position. Additionally, the robot has a dou-
ble axis accelerometer and a gyroscope to measure trunk
orientation in a 3D space. The on-board and off-board
parts of the control system communicate by means of a
Bluetooth connection.

The robot has been programmed by hand to walk
with two statically stable gaits: a simple crawl and a
tripod-like gait. The crawl is used at slow speeds—at most
one leg is transferred at a time. In the tripod gait two sets
of three legs each are moved repeatedly. This is the fastest
statically stable gait for a hexapod, and according to Wil-
son (1966) it is one of the standard gaits of insects. The

A biologically inspired approach to feasible gait learning for a hexapod robot 73

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0 mm

10 mm

LEG 1

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

LEG 2

LEG 3

LEG 4

LEG 5

0 mm

10 mm

LEG 6

R
IG

H
T

L
E

G
S

L
E

F
T

L
E

G
S

1 2 3 4 5 6 7 8 T
p

Fig. 4. Tripod-like gait designed by hand.

robot has always at least three legs placed on the ground,
and its centre of gravity is located within the support poly-
gon. This is visible on the gait diagram (Fig. 4), where
the consecutive columns represent the reference configu-
rations of the robot legs which are issued every time step
(leg states are numbered on the right side of each diagram
row). The Tp value corresponds to the sampling period of
the control signal. The black circles denote legs in the sup-
port phase, while the light grey circles denote legs in the
transfer phase. To make visual gait analysis easier, a solid
line on each part of the diagram shows the height above
the ground at which the tip of a particular foot is raised
at a given moment in time (the scale is given on the left
side of the diagram). With a single step length (the dis-
tance between two consecutive footholds of one leg) set
to Ls=50 mm, the maximal walking speed of the Ragno
robot while using this gait and moving straight forward is
0.09 m/s.

3.2. Robot simulator. To carry on gait synthesis ex-
periments and test new control algorithms, a simulator for
the Ragno robot has been built. It includes a robot dy-
namics simulation based on the Open Dynamics Engine
(ODE) (Smith, 2007). The ODE provides tools for simu-
lation of rigid body dynamics and complex structures with
defined joints. It also provides an engine to detect colli-
sions and simulate friction between bodies. Each robot
link is represented by a cube with the appropriate dimen-
sions and mass. For the sake of simulation speed the ge-
ometry of the simulated robot’s body and limbs is much
simplified. The simulator provides virtual measurements
of all the kinematic variables of the robot, as well as the
forces/moments in all the joints. The 3D-pose [x y z]T

of the robot’s local co-ordinates (Fig. 3(a)) is computed at
every time step of the simulation with regard to the global
co-ordinate system, which is equal to the initial position
of the robot. Simple visualization of the robot model (cf.
Fig. 2) is implemented by using OpenGL routines. The
controller code used in the simulator can be directly ap-
plied to the real robot. Every actuator is modeled as a

proportional controller, with the output y defined as

y = k · (α0 − α), (1)

where α0 is the desired joint position, α is the real joint
position, and k is the controller gain. Controller gain
values are determined experimentally in such a way that
a speed similar to that of the real robot servomotors is
achieved. Maximal torque value is limited to 0.9 Nm, as
in the actual servomotors.

4. Evolutionary learning system

4.1. Evolutionary algorithm. For the problem of
walking robot gait generation, an evolutionary algorithm
offers the possibility to select useful gaits by means of
reinforcement, and to discover new gaits by means of ge-
netic operators. There are several different approaches ex-
ploiting the evolutionary paradigm (GA, GP, ES), which
differ with respect to the encoding of the problem as
the population of individuals, and with respect to the ge-
netic operators used. To choose the appropriate learning
method for the problem of hexapod gait generation, we
have to take into account the properties of the problem
itself, and parameters of the simulation system we use:

• As the reference values for all the leg joints have to
be determined, a large space of possible solutions
must be explored.

• We are looking for an optimal sequence of steps (leg
movements) over a given time period, which makes
the search space even larger.

• There are no heuristics available which could help to
define the required population size, number of gener-
ations or the particular genetic operators.

• The joint reference angles are real values.

• Most of the simulation time is consumed by the com-
putation of the robot dynamics.

Classic GAs use individuals represented as binary-
encoded genotypes and require a mapping from the geno-
type to the real-valued problem representation. If the
problem representation requires many real-valued param-
eters, as is the case for the gait generation problem, the
binary encoded genetic representation can be very long.
Therefore, we prefer an evolutionary algorithm that en-
ables direct real-valued representation of the genes. An-
other issue related to classic GAs is parametrization. Al-
though the GA has proven to be a robust heuristic search
technique in many applications (Goldberg, 1989), it is not
clear how it should be parametrised and configured to fit a
particular problem (Bäck et al., 1991). It would be a non-
trivial task to make a proper choice of a selection strat-
egy, a recombination (crossover) operator, and the proba-
bility of mutation for the GA-based gait learning system.

74 D. Belter and P. Skrzypczyński

INITIALIZATION

fitness evaluation
for every
individual

randomly select
two individuals

meeting

mutation -
new individual

created

stop
condition

reproduction

competition -
worse is removed

fitness
evaluation

reproduction -
two new

individuals created

STOP

NO

YES

YESNO

NO YES

Fig. 5. Block diagram of the evolutionary algorithm.

This could require many simulations to be run and may
take a long time, and if poor settings are used, the per-
formance of the evolutionary system can be severely im-
pacted. Therefore, an algorithm that is able to self-adapt
its own parameters during the search, as is accomplished
in evolution strategies (Bäck et al., 1991), is an interesting
choice for the problem considered here.

Such a self-adaptive, population level-based evolu-
tionary algorithm for optimization problems is proposed
by Annuziato and Pizzuti (2000). The main idea under-
lying this algorithm is to move the evolutionary metaphor
from the genetic level towards that of artificial evolution
of societies. The traditional concept of selection in GAs
is replaced with a direct competition among individuals,
while crossover and mutation are viewed as two different
ways of reproduction in a population (Fig. 5).

Each probable solution for the given problem is rep-
resented as an individual, which can be encoded directly
using real-valued genes. At the start of the algorithm,
a population of individuals is randomly generated. The
initial size of the population is also a random number,
smaller than the maximum population size Mp. The max-
imum population size is the only user-defined parameter
in this algorithm, and it represents the limited resources
of the environment. In our case this limit is set with refer-
ence to the limited capacities of the simulator. The actual
population size is determined by the balance of reproduc-
tion and competition among individuals, and the adapta-
tion rules of the genetic operators are driven by the popu-
lation density.

The selection strategy controls the character of the
search and has to balance between the contradicting aims
of finding the global optimum and converging quickly

(Bäck et al., 1991). In the population level-based evolu-
tionary algorithm, the selection is replaced by the meeting
concept. In each iteration, two individuals are randomly
selected from the population. The probability of a meeting
between these two individuals is defined as the population
density:

Pm =
Cp

Mp
, (2)

where Cp is the actual population size. The denser the
population, the higher the probability of meeting another
individual. When two individuals meet together, then they
can generate offspring (sexual reproduction) or compete
(the stronger kills the weaker), otherwise the current indi-
vidual is mutated.

In the population level-based approach, the typical
crossover is replaced by sexual reproduction. The deci-
sion whether the individuals that have met will mate de-
pends on the probability of reproduction:

Pr = 1 − Cp

Mp
. (3)

If the population density is low, then the reproduction
probability is high, because the individuals do not need
to compete for resources. When two individuals meet
and mate, they exchange their genes according to a given
crossover scheme, but the resulting offsprings, do not re-
place their parents, and they are added to the population.
If two individuals meet but do not mate, then they are
compared in order to choose the one with the better fitness
value (a metaphor of fight). The worse one is removed and
the population size decreases.

In the adopted evolutionary algorithm, mutation is re-
placed by non-destructive reproduction. It occurs with the
probability 1 − Pm, when the chosen individual does not
meet another one. At first the individual is cloned and the
copy is added to the population, and then the original is
mutated.

According to Annuziato and Pizzuti (2000), the al-
gorithm ends when the maximum number of iterations is
reached. In our implementation, an additional stop crite-
rion is introduced—the algorithm ends when the best indi-
vidual fitness does not improve for a number of iterations.

4.2. Problem representation. In our approach, each
individual is represented by a genotype that defines the
reference values for all the robot’s legs over a given
amount of time. Genotype length n is defined as

n = ceil
(

Ts

Tp

)
, (4)

where Ts is the simulation time, and Tp is the sampling pe-
riod of the control signal (both in seconds). The value of
Tp=0.1s is derived from the maximal control speed—the

A biologically inspired approach to feasible gait learning for a hexapod robot 75

(a)

(b)

Fig. 6. Alternative structures of the genotype.

robot allows 10 orders and feedback frames to be trans-
mitted per second, while the simulation time is defined by
the user. Because the simulation step size is set to 1 ms,
each genotype column encodes the reference values for all
the legs for 100 simulation steps.

During the simulations presented later in the paper,
we used two different methods to set the leg reference
values, therefore the structure of the genotype changed ac-
cordingly. When we define separate reference values for
particular joints of the legs, the genotype represents the
reference angle (control input) for each of the 18 servo-
motors as a discrete function of time, and thus it consists
of 18 chromosomes (Fig. 6(a)). Genes store the real angle
values αj

i , (i = 1, . . . , 18; j = 1, . . . , n) interpreted as an
angular difference from the neutral joint position. These
values are bounded by the maximal range of servomotors
movement in the real robot.

The alternative problem-encoding scheme is based
upon a definition of discrete states for each robot leg. Be-
cause individual legs move cyclically during walking, to
facilitate gait analysis, two phases are distinguished in the
movement of a leg:

• support phase, when a leg supports and propels the
robot,

• transfer phase, when a leg moves from one foothold
to the next one.

Then, three particular positions of a leg relatively to the
robot body can be defined:

• neutral position,

• anterior extreme position, when a leg reaches the
foremost point,

0 0 1

0 1

234

0 1

23

0 1

234

5

0 1

2

Fig. 7. Possible states of a leg.

• posterior extreme position, when a leg reaches the
backmost point.

Using these definitions, six configurations of a leg (Fig. 7,
arrows indicate the motion direction) can be defined:

0 : support phase, neutral position: the tip of the leg on
the ground,

1 : support phase, posterior extreme position: the tip of
the leg on the ground,

2 : transfer phase, posterior extreme position: the tip of
the leg above the ground,

3 : transfer phase, neutral position: the tip of the leg
above the ground,

4 : transfer phase, anterior extreme position: the tip of the
leg above the ground,

5 : support phase, anterior extreme position: the tip of the
leg on the ground.

The joint reference values for the above-defined po-
sitions of robot legs were computed by using forward and
inverse kinematic equations for the leg, resulting in a step
length Ls=50 mm. All the positions of the feet lie on the
same plane. A discrete state of a leg is recognized by its
number and it unambiguously defines all the joint refer-
ence angles. Therefore, encoding the individual reference
values for each leg joint in the genotype is no longer re-
quired. In this case, the genotype consists of six chromo-
somes, each of them representing the state of a given leg
as a discrete function of time (Fig. 6(b)). The genes are
encoded as integer values lji , (i = 1, . . . , 6; j = 1, . . . , n)
bounded to represent the allowed states of a leg, i.e., they
can be numbers from 0 to 5.

Regardless of the particular structure of the genotype
employed, in all the simulations presented the sexual re-
production uses a two-point crossover to form two new
individuals from two parents—we expected it to be more

76 D. Belter and P. Skrzypczyński

effective on long chromosomes than the one-point ver-
sion. The crossover operator uses a whole column of the
proposed genotype as a gene while the mutation opera-
tor changes only one gene. In most evolutionary systems,
a genotype is defined as a string of genes, with particular
chromosomes being just parts of this string. We use a two-
dimensional genotype, where a chromosome (a row of the
genotype) defines the reference states for a given leg over
time. On the other hand, a column of the genotype may be
considered a definition of a particular ‘control step’ of the
robot, as it represents the reference configuration of all the
legs, which is sent to the robot’s on-board controller every
0.1 s time step. Therefore, the crossover operation per-
formed on the entire columns is an exchange of control
steps between two individuals representing two different
gaits. This definition of the crossover operator preserves
the already developed control steps from being partitioned
and promotes the development of new sequences of con-
trol steps, possibly leading to more effective gaits. The
mutation operator changes only a single gene at once, thus
it affects only the state of one leg in a particular control
step. This is the mechanism of discovering new control
steps that may be useful in the whole gait.

4.3. Gait learning strategy. The simulations reported
in this section show evolutionary learning results while
the space of possible solutions is gradually reduced. Sim-
ulations start from scratch. Next, the solution space is re-
duced by implementing selected leg co-ordination rules
known from the observations of insects. These rules are
applied separately rather than as a complete, biologically
inspired walking pattern, in order to allow also the gaits
that are not observed in insects to evolve. As a conse-
quence, the genotype size is also reduced gradually, due
to the implementation of the knowledge which has been
tested and accepted so far. According to the robot shaping
concept, the multi-stage learning is supervised by a human
coach, who picks up the best solutions and applies them in
the next simulations. In research on animal walking, three
important rules have been observed:

• Most animals use periodic locomotion patterns when
they walk on a flat terrain, in such a gait a short se-
quence of leg movements is repeated periodically.

• In insect gaits the legs on one side of the body have
a phase difference with regard to their contralateral
legs, i.e., both laterally paired legs are never raised
from the ground at the same time.

• In insect gaits a leg has a phase difference with re-
gard to its anterior leg, i.e., two neighboring legs on
the same side are never raised from the ground at the
same time.

Using these biological inspirations, and taking into ac-
count the already introduced definitions of the genotypes,

the following strategy for evolutionary simulations has
been proposed:

1. learning from scratch with the search space defined
by separate joint angles;

2. learning from scratch with the search space defined
by the six discrete configurations for each leg;

3. learning in the discrete search space with the periodic
gait property imposed;

4. learning in the discrete search space with the phase
difference between contralateral legs imposed;

5. learning in the discrete search space with the phase
difference between neighboring legs on the same side
imposed;

6. learning in the discrete search space without the pe-
riodic gait property imposed, but both rules tested in
Simulations 4 and 5 are used;

The fitness function used aims to maximize the for-
ward velocity of the robot and depends only on the for-
ward distance traveled during the time period of the simu-
lation:

F =
y(Ts)
Ts

, (5)

where y(Ts) is the robot trunk position along the global
y axis at the end of simulation. Simulation time Ts is
set to 1.6 s, which is sufficient to calculate a few steps
of the robot. Individuals which reach a longer distance
are considered to be better adapted to the environment.
All the simulations presented were carried out with the
same fitness function and the maximal population size set
to Mp=500 to examine how the biologically inspired con-
straints imposed on the search space influence the results.

5. Evolutionary learning in simulation

5.1. Simulation 1. First, we attempted to evolve a
hexapod gait with the genotype with the form like that
shown in Fig. 6(a). After the first simulation, the best
evolved individuals were able to make only an unsystem-
atic movement. There were no cycles observed in this
movement. Every leg of the simulated robot worked in-
dependently, and the simulated robot used small jumps
to move. Some of the legs cooperated to transport the
robot trunk in the direction of the movement. Although
the robot’s average speed was 0.125 m/s, the evolved gait
is not applicable to the real robot because it is very chaotic
and can overstress the servos.

A biologically inspired approach to feasible gait learning for a hexapod robot 77

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0 mm

10 mm

LEG 1

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

LEG 2

LEG 3

LEG 4

LEG 5

0 mm

10 mm

LEG 6

R
IG

H
T

L
E

G
S

L
E

F
T

L
E

G
S

1 2 3 4 5 6 7 8 9 T
p10 11 12 13 14 15

Fig. 8. Irregular gait obtained in the second simulation.

5.2. Simulation 2. Because evolution in the continu-
ous state space had turned out to be ineffective, we ap-
proached the problem differently, by allowing for only
six discrete states for each robot leg and, thus, by reduc-
ing substantially the dimensionality of the search space.
However, the resulting number of states, 66 = 46656, is
still rather large. The genotype has the form shown in
Fig. 6(b).

The gaits obtained in the second simulation were also
irregular. No cycles in the movement of the legs were
found. Every leg changes its role in walking. Some of the
legs have phase difference in relation to the others, as in
the tripod gait, but after a while they change their phase,
and then, for example, contralateral legs work without a
phase difference. The movement of some legs is only the
result of the movement of the robot’s body, as these legs
work to preserve the stability of the trunk, but do not gen-
erate movement in the direction of walking. The average
speed achieved in simulation with this way of walking was
0.073 m/s, and this gait was still not applicable to the
real robot. This is visible on the gait diagram (Fig. 8),
which shows some control steps (denoted with a slanted
background), where fewer than three legs are placed on
the ground, which made this gait statically unstable and
caused the robot to fall down.

5.3. Simulation 3. In the next experiment, we retained
the discrete state space of the leg movements, but addi-
tionally we applied the periodic property of an insect-like
gait. The information about the cycle length lc was added
to the genotype as an additional chromosome with only
one gene. Now, only the beginning part of each chromo-
some, with the lc-genes length, is used to evolve the gait.
This sequence is repeated periodically.

Although in this simulation cyclic gaits are produced,
a fast and stable gait was not obtained. Most of the result-
ing gaits were based on small jumps involving a number
of various leg combinations. When the periodic property
was used, the evolutionary algorithm converged to a solu-
tion very quickly. Although the obtained gaits were regu-
lar, the covered distance was usually quite short. An ex-

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

R
IG

H
T

L
E

G
S

L
E

F
T

L
E

G
S

0 mm

10 mm

LEG 1

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

LEG 2

LEG 3

LEG 4

LEG 5

0 mm

10 mm

LEG 6

1 2 3 4 5 6 7 8 9 T
p10 11 12 13 14 15

Fig. 9. Periodic gait obtained in the third simulation.

Fig. 10. Real robot using the gait from the third simulation.

ample of an evolved gait is presented in Fig. 9. This gait
is appropriate for use with a real robot. The leg move-
ment sequence of the Ragno robot during one gait cycle is
shown in Fig. 10. The grey dots indicate those legs, whose
tips were placed on the ground in due time. The average
speed in this simulation was 0.08 m/s.

5.4. Simulation 4. In research on insect walking it was
found that contralateral legs of an insect have 180◦ phase
difference (Wilson, 1966). In a cyclic gait, the 180◦ phase
difference is defined as a state shifted by half of a whole
leg movement cycle. Using the previously defined six leg
states, this phase difference is defined as follows: if a leg
is in state 0, a 180◦ phase shifted leg is in state 3; if a leg
is in state 1, a shifted leg is in state 4; if a leg is in state 2,
a shifted leg is in state 5, etc., which can be written as

l+180◦
k =

{
li + 3, for li ≤ 2,
li − 3, for li > 2,

(6)

where li is the state of the i-th leg, and l+180◦
k is the state

of the k-th leg that has the 180◦ phase difference to the
i-th leg.

78 D. Belter and P. Skrzypczyński

......

......

......

5

......

......

......

0 14 4 0 1 4 0 14 4 0 1 4 0 1

5 14 4 5 1 4 14 4 1 4 1

0 14 4 0 1 4 0 14 4 0 1 4 0 1

1 3 4 1 3 4 1 3 4

1 3 4 1 3 4 1 3 4

1 2 4 1 2 4 1 2 4

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

1 2 3 4 5 6 7 8 9

0 mm

10 mm

LEG 1

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

LEG 2

LEG 3

LEG 4

LEG 5

0 mm

10 mm

LEG 6

R
IG

H
T

L
E

G
S

L
E

F
T

L
E

G
S

1 2 3 4 5 6 7 8 9 n

3

T
p

e
v

o
lv

e
d

g
e

n
o

ty
p

e

l
c

Fig. 11. Genotype and gait resulting from the fourth simulation.

In accordance with that observation, in the next sim-
ulation the first three chromosomes were rewritten to the
next three by using the following rules: when a right leg
is in state 0, a left leg is in state 3; when a right leg is in
state 1, a left leg is in state 4, etc. These rules limited even
more the search space in the evolutionary learning system
(only chromosomes for the legs 1, 2, and 3 are evolved).

The simulation results are shown in Fig. 11. As is
visible from the gait diagram, the evolved walking pattern
is a tripod, and it is applicable to a real robot. The aver-
age robot speed in this simulation was 0.093 m/s, and the
single cycle length which evolved was 3 Tp (0.3 s). All
reference values for the left side legs are determined from
the imposed insect gait rule. In the genotype (Fig. 11), the
reference values that come out from the imposed rule are
shown on a grey background, while the genes that result
from the periodic property of the movement have a slanted
background.

The most interesting outcome of this simulation is
the observation that the reference values for the first three
legs depend on each other. The evolved reference values
for the second leg have a 180◦ phase difference to the first
leg, and most of the evolved states of the third leg again
have a 180◦ phase difference to the second leg. This pat-
tern of leg states closely resembles the insect walking rule
we plan to use in the next simulation: the phase difference
between neighboring legs on the same side of the robot.
However, these dependencies are not a result of an im-
posed rule, but they evolved in the simulation, so there are
some ‘inaccuracies’ in the pattern. According to the rule,
the third chromosome should be equal to the first one, but
there is a value of 5, where it should be 0. This is caused
by the nature of the evolutionary algorithm, which very
often finds only a near-optimal solution (in our representa-

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

1 2 3 4 5 6 7 8 9

R
IG

H
T

L
E

G
S

L
E

F
T

L
E

G
S

0 mm

10 mm

LEG 1

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

LEG 2

LEG 3

LEG 4

LEG 5

0 mm

10 mm

LEG 6

......

......

......

......

......

......

4 4 1 1 4 4 1 11

4 1 1 4 4 1 1 4 4

4 4 1 1 4 4 1 11

4 1 1 4 4 1 1 4 4

4 5 1 1 4 5 1 11

5 1 1 4 5 1 1 4 5
1 2 3 4 5 6 7 8 9 n

4

T
p

e
v

o
lv

e
d

g
e

n
o

ty
p

e

l
c

Fig. 12. Genotype and gait resulting from the fifth simulation.

tion of the problem the reference values 5 and 0 are in the
vicinity). In many applications of genetic learning this is
not a problem, but here, because of the discrete and cyclic
leg movements, the sub-optimal chromosome causes an
incorrect leg position in the support phase of the gait. As
a result, the robot does not walk straight forward.

5.5. Simulation 5. The next experiment was under-
taken in order to verify how the inter-leg dependencies
observed in the Simulation 4 work as a rule. The cyclic
property of the gait was also imposed. In this step the
legs on the right side of the robot had a 180◦ phase dif-
ference with regard to their anterior legs. Thus, on the
right side, only the chromosome for the leg 1 was evolved.
Chromosomes for the left-side legs were evolved with-
out additional rules, taking into account only the cyclic
gait property. The walking pattern, shown in Fig. 12,
was similar to a tripod; however, in some control steps
more than three legs were placed on the ground simulta-
neously, which makes this gait less effective than the pre-
vious one—the average robot speed achieved during the
simulation was 0.086 m/s. The single cycle length which
evolved was 4 Tp.

What is particularly interesting is that in the gait dia-
gram (Fig. 12) the rule used in Simulation 4 can be seen
as a result of the evolution. The reference values for right-
side legs are in opposition to those of left-side legs.

5.6. Simulation 6. Simulations 4 and 5 showed that
the application of only one, very simple, biologically in-
spired rule reduces the search space enough to enable fast
evolution of gaits that are feasible for a real robot. How-
ever, these results were obtained with the cyclic gait prop-
erty being imposed. Therefore, the next simulation was

A biologically inspired approach to feasible gait learning for a hexapod robot 79

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

1 2 3 4 5 6 7 8 9

0 mm

10 mm

LEG 1

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

LEG 2

LEG 3

LEG 4

LEG 5

0 mm

10 mm

LEG 6

R
IG

H
T

L
E

G
S

L
E

F
T

L
E

G
S

......

......

......

......

......

......

4 54 1 1 4 4 54 2

1 1 2 4 4 5 1 1 2

4 54 1 1 4 4 54 2

4 54 1 1 4 4 54 2

1 1 2 4 4 5 1 1 2

1 1 2 4 4 5 1 1 2

1 2 3 4 5 6 7 8 9 n

T
p

e
v

o
lv

e
d

g
e

n
o

ty
p

e

Fig. 13. Genotype and gait resulting from the sixth simulation.

conceived in order to verify the assertion on the cyclic, re-
peated control steps. In this simulation both rules tested
previously were used, apart from the periodic gait con-
dition. Only the chromosome representing the first leg
evolved. The third and fifth chromosomes were kept equal
to the first one, while the chromosomes for the second,
fourth and sixth leg had a 180◦ phase difference with re-
gard to the first leg.

As a result, a smooth, cyclic tripod gait was obtained
very quickly (Fig. 13). As can be observed in the geno-
type, the single cycle length is 6 Tp. However, there is no
separate gene responsible for the evolution of the cyclic
property—it emerged naturally as a result of the imposed
leg co-ordination rules. The learning system repeats some
chromosome parts and achieves a cyclic tripod gait as the
best one to perform the task defined by the proposed fit-
ness function. The best individual was able to reach an av-
erage speed of 0.098 m/s. This result makes this evolved
gait faster (in simulation) than the kinematic tripod-like
gait designed by hand.

Having achieved a regular, fast tripod gait in the evo-
lutionary simulations with the discrete search space of the
leg movements, we became interested in obtaining a sim-
ilar result with the search space described by the joint an-
gles, where the evolved reference signals for the servomo-
tors take real values. To achieve this, the genotype struc-
ture shown in Fig. 6(a) was used again. The general idea
of gait evolution was the same as the one tested before in
Simulation 6 with the discrete state space. The evolution-
ary algorithm made a slower progress than in the previous
simulation. The gait obtained was periodic, but not regu-
lar. However, the robot achieved a speed of 0.099 m/s.

0 1 2 3 4 5 6 7 8 9 x 10

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

generation

b
e
s
t
fi
tn

e
s
s

[m
/s

]

0.10

0.11

0.01

SIMULATION 1

SIMULATION 2

SIMULATION 3

SIMULATION 4

SIMULATION 5

SIMULATION 6

CONTINUOUS
SEARCH SPACE

DISCRETE
SEARCH SPACE

DISCRETE
SEARCH SPACE

DISCRETE
SEARCH SPACE

DISCRETE
SEARCH SPACE

DISCRETE
SEARCH SPACE

Fig. 14. Learning speed in the simulations.

5.7. Performance of the evolutionary algorithm.
Solving high dimensional problems by using an evolu-
tionary algorithm takes a long time. The reduction of the
search space helps to find a solution faster. This becomes
evident from Fig. 14, where the fitness evolution of the
best individual in the population for an average of 10 runs
is depicted as a function of the number of iterations for
the simulations described in Section 5. When the search
space is reduced, the appropriate gait is determined much
faster (Simulations 4, 5 and 6). In all simulations the ac-
tual population size Cp stabilizes at 75% of Mp.

6. Evolutionary identification of the
simulation model

6.1. Reality gap problem in gait learning. Down-
loading the results from simulation to the robot controller
showed that there are still some problems due to the real-
ity gap. The main reasons are the differences between the
simulation model dynamics and the real robot, as well as
those between the environmental parameters (like the sur-
face friction coefficient) assumed in the simulator and the
real-world parameters. This is not a major problem when-
ever a statically stable walking pattern (e.g., the tripod-
like kinematic gait) is used. However, some of the evolved
gaits caused the robot to use the dynamic properties of its
body to move, dynamically switching the support poly-
gons without much of a static stability margin. In such a
case, even small discrepancies between the model and the
real robot may cause unwanted robot fall-downs.

To make the results evolved in the simulation easy
to be used with a walking robot, the reality gap problem
has to be solved completely. This may be accomplished
using the evolutionary optimization of parameters of the
simulation model (Zagal et al., 2004). As a result, the
simulated robot should react to the control signals much
like the real robot does. An interesting aspect of this
approach is that the same evolutionary algorithm which
is used for gait learning can also be re-used to identify
the simulated robot parameters, making the whole method

80 D. Belter and P. Skrzypczyński

more effective from the point of view of the programming
effort required to cross the reality gap. Although there
are many system identification techniques used in robotics
(Kozlowski, 1998), which are based on exact mathemat-
ical models of robots, such a model of a multi-legged
walking machine, even if identified successfully, would
be infeasible for our purposes. We are searching for a set
of parameters that enable the much simplified simulated
model to mimic the real robot behaviour within the cho-
sen class and range of control signals. Thus, we are facing
a search/optimization problem rather than a typical iden-
tification problem. Evolutionary and other soft comput-
ing techniques are known for being well suited to solve
problems belonging to this class, which motivated our
choice. In parallel we performed the same robot parameter
optimization with a different soft computing technique—
particle swarm optimization, which is covered elsewhere
(Belter and Skrzypczyński, 2009).

6.2. Parameter identification system. The structure
of the Ragno robot simulation model is described by four
parameters: the trunk mass, and the masses of the tibia,
femur and coxa links constituting a leg (all legs have the
same parameters). Two additional parameters are related
to the servomotors. One describes the gain of the con-
troller in every joint, and the other defines maximal angu-
lar speed of joint movement.

For the identification task, the population level-based
evolutionary algorithm described in Section 4.1 was ap-
plied, but with different problem encoding and parame-
ters. This time the genotype is one-dimensional, and con-
sists of a single chromosome with six genes directly repre-
senting the real-valued model parameters. The maximum
size of the population was set to 100 individuals.

The general idea of identification is to find a set of
parameters that jointly minimize the discrepancy between
the trajectories of some characteristic points of the robot
observed in simulation and in the real Ragno walking ma-
chine. However, for this task the choice of such points
and their trajectories is not straightforward, because the
parameter values we search for manifest themselves most
prominently in different types of movement, which are of-
ten dynamic and hard to track in a physical robot.

Taking this into account, we propose to use a set of
reference trajectories registered during eight independent
and relatively simple experiments with the physical robot.
These experiments were conceived in such a way that in
each of them the results depend only on few parameters
of the model. These experiments provide sufficient refer-
ence data to produce a model of the robot which is gen-
eral enough for the task under investigation. However, if
the number of input trajectories is too small, the obtained
robot model will only work properly for exactly the same
experiments which were used to obtain the reference data.
The following experiments (Fig. 15) were performed, and

Fig. 15. Robot model identification experiments.

appropriate results were registered:

1. The reference angle in the first joint of a single leg
was changed from 0◦ to −45◦. The trajectory of the
foot was registered.

2. The reference angle in the second joint of a single leg
was changed from 24◦ to 55◦. The trajectory of the
foot was registered.

3. The reference angle in the third joint of a single leg
was changed from −114◦ to 0◦. The trajectory of the
foot was registered.

4. The robot executed an order to move its trunk up, and
after reaching the desired position it moved the trunk
down. The trajectory of the center point of the robot
trunk was registered.

5–8. The robot executed four dynamically stable gaits.
They are periodic, but differ in cycle length and av-
erage speed. The distance covered was compared to
simulation results.

To keep the identification experiments simple, we
decided not to include the ground friction coefficient in
the optimization procedure. In real robot tests, all of the
obtained gaits were tested in a lab, on a surface that al-
most eliminates leg skidding. To compensate for this, the
ground has a high friction coefficient also in the simulator.
Therefore, the results of the experiments were determined
mostly by the dynamic properties of the robot’s body.

A biologically inspired approach to feasible gait learning for a hexapod robot 81

Fig. 16. Test trajectories for the different robot models.

For Experiments 1–4 the fitness function Fj is de-
fined as a sum:

Fj =
N∑

i=1

∣∣pref
ji − psim

ji

∣∣ . (7)

where j is the number of the experiment, N is the number
of points of the trajectory, and pref

ji and psim
ji are the corre-

sponding points of the reference trajectory (from the real
robot) and the trajectory obtained in the simulation, re-
spectively. The fitness function in the remaining four ex-
periments is simpler; it is defined as the distance between
the end position of the real robot and the end position of
the simulated one. With the above definitions, the various
parts of the fitness function may take quite different val-
ues. Therefore, to make all experiments equally important
for fitness assessment, the final fitness F is weighted:

F =
8∑

j=1

cj · Fj , (8)

where Fj is the fitness value in the j-th experiment, and
cj is the weighting coefficient set to 1 for experiments j =
1, . . . , 4 and to 6 for experiments j = 5, . . . , 8.

The identification of the robot model parameters was
performed in a multi-stage manner. Again, the search
space was reduced gradually. However, for the model pa-
rameters there are no rules or constraints that we could use
to reduce the search space as in the way we used the in-
sect walking rules for the main gait learning task. Because
of this, the search space reduction method proposed by
Perry et al. (2006) was employed. This strategy reduces
the search space for parameters which converge quickly.
It allows us to save time otherwise wasted on testing so-
lutions, which are far from the optimum. First, the search

space was limited to values that guarantee stable opera-
tion of the simulator. Next, three identification simula-
tions were run. After considering the obtained results, we
set new limits to the search space.

Some parameters, such as the maximal velocity and
the servomotor gain, converge quickly. Thus, for the
main simulations the search range of these parameters was
substantially reduced. For the remaining parameters the
search space was only slightly reduced. When the search
space had been reduced, the main identification experi-
ment was conducted. The reference trajectories obtained
with the Ragno robot and used in Experiments 1–4 are
compared in Fig. 16 to their counterparts obtained in sim-
ulation, before and after model parameter optimization.

The optimization results show that the simulated
robot with the parameters set by hand was slower than
the real one. This can bee seen in Fig. 16, where the
foot trajectories generated with the simulated robot pa-
rameters set by hand differ significantly from the refer-
ence trajectories of the real robot. The trajectories ob-
tained in a simulation with the best evolved parameters
are considerably more similar to the reference trajectories.
Also the forward motion speed of the simulated robot with
hand-tuned parameters was much lower than the average
speed achieved by the real robot. After the optimization of
the model parameters, this discrepancy was much smaller,
which is shown in Table 1. This table contains also results
of two experiments conducted in order to verify the results
on gaits that differ significantly from the gaits included in
the optimization procedure. These gaits are not regular
tripods and they have increased step length. As can be
seen, for the movements/maneuvers that more radically
differ from the movements included in the ‘training set’,
the improvement in performance is smaller, but it is still
at least 20%. The results shown in Table 1 are averaged
over 10 simulations or real robot experiments. The small
standard deviation values σv suggest that these results are
repeatable.

7. Validation experiments

The gaits resulting from the evolutionary learning pro-
cedures described here as Simulations 3–6 were imple-
mented and tested on the real Ragno robot in both indoor
and outdoor settings1. To take practical advantage of this
research, we wanted to include the best evolved gait as a
part of the standard control software of our robot. The two
gaits obtained with the sixth simulation procedure were
the fastest. Although the simulated robot was marginally
faster with the gait evolved in the continuous state space,
in practice there was a problem with this walking pat-
tern. The pace length was not constant, thus the robot
moved with a non-uniform speed. Finally, the sixth gait

1A video clip is available at
http://lrm.cie.put.poznan.pl/ragno.avi.

http://lrm.cie.put.poznan.pl/ragno.avi.

82 D. Belter and P. Skrzypczyński

Table 1. Optimization results—average speed vm and its standard deviation σv .
forward motion speed exp. 5 exp. 6 exp. 7 exp. 8 verification 1 verification 2

real vm [m/s] 0.134 0.141 0.125 0.133 0.146 0.171
robot σv [m/s] 0.003 0.003 0.003 0.004 0.004 0.005
simulator vm [m/s] 0.090 0.089 0.097 0.089 0.077 0.083
before σv [m/s] 0.005 0.003 0.002 0.004 0.003 0.005
optimization error [%] 32.8 36.9 22.4 33 47.2 51.8
simulator vm [m/s] 0.129 0.142 0.107 0.139 0.177 0.220
after σv [m/s] 0.004 0.003 0.002 0.003 0.005 0.002
optimization error [%] 3.7 0.7 14.4 4.5 21.1 29.5

evolved with the discrete search space was selected for
permanent use with the real robot. It is compared to the
gait designed by hand upon the kinematic description of
the robot. The obtained movement is shown in Fig. 17(a),
while Fig. 17(b) shows the comparable gait designed by
hand.

The kinematic gait transports the robot’s trunk at the
same height over the ground. In contrast, the gait through
evolution generates a movement which maximizes the av-
erage speed of the robot. When the robot uses this pat-
tern, its body height over the ground varies. The states
shown in Fig. 17(b) (frames 3B and 7B) that are neces-
sary only to preserve robot body height over the terrain
are not present at all in the evolved gait. The evolved
solution excluded a situation where the even legs wait
until the odd legs are put on the ground and vice versa.
This difference becomes evident by comparing the gait
diagrams of the hand-designed walking pattern and the
evolved gait (Figs. 4 and 13, respectively). The evolved
gait is a strict tripod, with the movement of two sets of
three legs each repeated periodically, while in the standard
tripod-like gait of Ragno, designed by hand, there are con-
trol steps (shown with a slanted background in Fig. 4) at
which all six legs are placed on the ground, which makes
this gait more cautious, but slower.

After identifying the simulation model, as described
in Section 6, the validation experiments were repeated.
The sixth simulation was conducted again, with the dis-
crete search space and the same rules, but this time with
the optimized model parameters. The obtained gait was
again a cyclic, fast tripod, but this time the cycle of the
obtained gait consisted of two leg states only—the gait re-
peated states 1 and 4 continuously. The evolution of such
a gait was possible because the optimized model exhibits
more dynamic behaviour than the old one. The simulated
robot achieved the speed of 0.144 m/s. When the same
gait was downloaded to the real robot’s control program,
it was able to walk with the speed of 0.137 m/s. This
way, we achieved our goals: a gait that is considerably
(52 %) faster than the best tripod-like gait we were able to
program by hand, and a small discrepancy in performance
between the simulation and the real robot.

8. Conclusions

The aim of this research was to develop a system that
would learn in the course of simulation gaits optimal for
the assumed robot model and fitness function, but feasi-
ble for the physical robot. The paper makes the following
contributions:

• It demonstrates how the use of a very few, biolog-
ically inspired rules enables a genetic search tech-
nique to evolve more specific leg co-ordination pat-
terns and leads to an effective gait.

• It shows in the simulations that the inter-leg
dependencies—phase difference between contralat-
eral legs, phase difference between neighboring legs,
and periodic gait property, closely resembling the in-
sect walking rules—emerge automatically in the pro-
posed gait controller.

• It demonstrates that a dynamics-based walking robot
simulator provides an opportunity to evolve dynamic
gaits, which cannot emerge in a minimal simulation.

• It proposes a walking robot simulator with integrated
robot model identification capabilities and an evolu-
tionary identification procedure for this model.

The proposed approach proved to be effective, as was
shown in the simulations, where a stable, cyclic, and fast
gait was ultimately obtained. Given these results, we con-
sider this approach a promising one for the evolution of
complicated robot behaviour that requires handling large
search spaces. As the next step, we will validate this ap-
proach using our new, larger and more autonomous hexa-
pod robot Messor.

Acknowledgment

This research was supported by the Polish Ministry of Sci-
ence and Higher Education under Grant No. N514 294635
for the years 2008–2010, which is gratefully acknowl-
edged. The authors extend their thanks to the anonymous
reviewers for their constructive criticism that improved the
presentation of this paper.

A biologically inspired approach to feasible gait learning for a hexapod robot 83

Fig. 17. Obtained evolutionary pattern (a) and gait designed by hand (b).

References
Albiez, J. and Berns, K. (2004). Biological inspired walking—

How much nature do we need?, in M. A. Armada
and P. de González Santos (Eds), Climbing and Walking
Robots. Proceedings of the 7th International Conference
CLAWAR 2004, Springer, Berlin, pp. 357–364.

Annunziato, M. and Pizzuti, S. (2000). Adaptive parameteri-
zation of evolutionary algorithms driven by reproduction
and competition, Proceedings of the European Symposium
on Intelligent Techniques (ESIT 2000), Aachen, Germany,
pp. 31–35.

Arabas, J. (2001). Lectures on Evolutionary Algorithms, WNT,
Warsaw, (in Polish).

Bäck, T., Hoffmeister, F. and H.-P. Schwefel (1991). A survey
of evolution strategies, in R. K. Belew and L. B. Booker
(Eds), Proceedings of the 4th International Conference on
Genetic Algorithms, Morgan Kaufmann, San Francisco,
CA, pp. 2–9.

Barfoot, T. D., Earon, E. J. P. and D’Eleuterio, G. M. T. (2006).
Experiments in learning distributed control for a hexapod
robot, Robotics and Autonomous Systems 54(10): 864–872.

Beer, R. D., Quinn, R. D., Chiel, H. J. and Ritzmann, R. E.
(1997). Biologically inspired approaches to robotics: What
can we learn from insects?, Communications of the ACM
40(3): 31–38.

Belter, D., Kasiński, A. and Skrzypczyński, P. (2008). Evolving
feasible gaits for a hexapod robot by reducing the space of
possible solutions, Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Nice,
France, pp. 2673–2678.

Belter, D. and Skrzypczyński, P. (2009). Population based meth-
ods for identification and optimization of a walking robot
model, in K. Kozlowski (Ed.), Robot Motion and Control
2009, Lecture Notes in Control and Information Sciences,
Vol. 396, Springer, Berlin, pp. 185–195.

Busch, J., Ziegler, J., Aue, C., Ross, A., Sawitzki, D. and
Banzhaf, W. (2002). Automatic generation of control pro-
grams for walking robots using genetic programming, in
J. Foster, E. Lutton, J. Miller, C. Ryan and A. Tettamanzi
(Eds), Genetic Programming, Proceedings of the 5th Eu-
ropean Conference EuroGP 2002, Lecture Notes in Com-
puter Science, Vol. 2278, Springer, Berlin, pp. 258–267.

Chernova, S. and Veloso, M. (2004). An evolutionary approach
to gait learning for four-legged robots, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, New Orleans, LA, USA, pp. 2562–2567.

Dorigo, M. and Colombetti, M. (1997). Robot Shaping: An Ex-
periment in Behavior Engineering, MIT Press, Cambridge,
MA.

Figliolini, G., Stan, S.-D. and Rea, P. (2007). Motion analysis
of the leg tip of a six-legged walking robot, Proceedings of
the 12th IFToMM World Congress, Besançon, France, (on
CD-ROM).

Fukuoka, Y., Kimura, H. and Cohen, A. H. (2003). Adaptive
dynamic walking of a quadruped robot on irregular ter-
rain based on biological concepts, International Journal on
Robotics Research 22(4): 187–202.

Gallagher, J., Beer, D. R., Espenschied, K. and Quinn, R. D.
(1996). Application of evolved locomotion controllers
to a hexapod robot, Robotics and Autonomous Systems
19(1): 95–103.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley, Reading,
MA.

Holland, J. (1975). Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI.

Hornby, G., Takamura, S., Yamamoto, T. and Fujita, M.
(2005). Autonomous evolution of dynamic gaits with
two quadruped robots, IEEE Transactions on Robotics
21(3): 402–410.

Huber, M. and Grupen, R. A. (1997). A feedback control struc-
ture for on-line learning tasks, Robotics and Autonomous
Systems 22(3–4): 303–315.

Jakobi, N. (1998). Running across the reality gap: Octopod lo-
comotion evolved in a minimal simulation, in P. Husbands
and J.-A. Meyer (Eds), Evolutionary Robotics. Proceed-
ings of the First European Workshop EvoRobot98, Lecture
Notes in Computer Science, Vol. 1468, Springer, Berlin,
pp. 39–58.

Jakobi, N., Husbands, P. and Harvey, I. (1995). Noise and the
reality gap: The use of simulation in evolutionary robotics,
Proceedings of the 3rd European Conference on Articial
Life (ECAL’95), Granada, Spain, pp. 704–720.

Kimura, H., Yamashita, T. and Kobayashi, S. (2001). Rein-
forcement learning of walking behavior for a four-legged
robot, Proceedings of the IEEE Conference on Decisions
and Control, Orlando, FL, USA, pp. 411–416.

Kirchner, F. (1998). Q-learning of complex behaviours on a six-
legged walking machine, Robotics and Autonomous Sys-
tems 25(3–4): 256–263.

84 D. Belter and P. Skrzypczyński

Kowalczuk, Z. and Białaszewski, T. (2006). Niching
mechanisms in evolutionary computations, International
Journal of Applied Mathematics and Computer Science
16(1): 59–84.

Kozlowski, K. (1998). Modelling and Identification in Robotics,
Springer, Berlin.

Kumar, V. R. and Waldron, K. J. (1989). Adaptive gait
control for a walking robot, Journal of Robotic Systems
6(1): 49–76.

Lewis, M., Fagg, A. and Bekey, G. (1994). Genetic algorithms
for gait synthesis in a hexapod robot, in Y. Zheng (Ed.), Re-
cent Trends in Mobile Robots, World Scientific, Singapore,
pp. 317–331.

Luk, B. L., Galt, S. and Chen, S. (2001). Using genetic al-
gorithms to establish efficient walking gaits for an eight-
legged robot, International Journal of Systems Science
32(6): 703–713.

Maes, P. and Brooks, R. A. (1990). Learning to coordinate
behaviors, Proceedings of the 8th National Conference
on Artificial Intelligence (AAAI 1990), Boston, MA, USA,
pp. 796–802.

Mataric, M. and Cliff, D. (1996). Challenges in evolving con-
trollers for physical robots, Robotics and Autonomous Sys-
tems 19(1): 67–83.

Parker, G. B. and Mills, J. W. (1999). Adaptive hexapod gait con-
trol using anytime learning with fitness biasing, Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence, Orlando, FL, USA, pp. 519–524.

Perry, M. J., Koh, C. G. and Choo, Y. S. (2006). Modified genetic
algorithm strategy for structural identification, Automatica
84(8–9): 529–540.

Ridderström, C. (1999). Legged locomotion control—A litera-
ture survey, Technical Report TRITA-MMK 1999:27, Royal
Institute of Technology, Stockholm.

Ritzmann, R. E., Quinn, R. D. and Fischer, M. C. (2004). Con-
vergent evolution and locomotion through complex terrain
by insects, vertebrates and robots, Arthropod Structure &
Development 33(3): 361–379.

Skrzypczyński, P. (2004a). Experimental validation of the fuzzy
reactive behaviours evolved in simulation, in F. Groen,
N. Amato, A. Bonarini, E. Yoshida and B. Kröse (Eds),
Intelligent Autonomous Systems 8, IOS Press, Amsterdam,
pp. 464–471.

Skrzypczyński, P. (2004b). Shaping in a realistic simulation:
An approach to learn reactive fuzzy rules, Preprints of the
5th IFAC/EURON Symposium on Intelligent Autonomous
Vehicles, Lisbon, Portugal, (on CD-ROM).

Smith, R. (2007). Open dynamics engine,
http://www.ode.org.

Song, S.-M. and Waldron, K. J. (1989). Machines that Walk:
The Adaptive Suspension Vehicle, MIT Press, Cambridge,
MA.

Svinin, M. M., Yamada, K. and Ueda, K. (2001). Emergent syn-
thesis of motion patterns for locomotion robots, Artificial
Intelligence in Engineering 15(4): 353–363.

Tuyls, K., Maes, S. and Manderick, B. (2003). Reinforcement
learning in large state spaces: Simulated robotic soccer as
a testbed, RoboCup 2002: Robot Soccer World Cup VI,
Lecture Notes in Computer Science, Vol. 2752, Springer,
Berlin, pp. 319–326.

Walas, K., Belter, D. and Kasiński, A. (2008). Control and en-
vironment sensing system for a six-legged robot, Journal
of Automation, Mobile Robotics and Intelligent Systems
2(3): 26–31.

Walker, J., Garrett, S. and Wilson, M. (2003). Evolving con-
trollers for real robots: A survey of the literature, Adaptive
Behavior 11(3): 179–203.

Wilson, D. M. (1966). Insect walking, Annaul Reiew of Ento-
mology 11(1): 103–122.

Yang, J.-M. (2009). Fault-tolerant gait planning for a hexapod
robot walking over rough terrain, Journal of Intelligent and
Robotic Systems 54(4): 613–627.

Zagal, J. C., Ruiz-del-Solar, J. and Vallejos, P. (2004). Back to
reality: Crossing the reality gap in evolutionary robotics,
Preprints of the 5th IFAC/EURON Symposium on Intel-
ligent Autonomous Vehicles, Lisbon, Portugal, (on CD-
ROM).

Dominik Belter received the M.Sc. degree
in control engineering and robotics from the
Poznań University of Technology in 2007.
Since then he has been pursuing his Ph.D. in
robotics, working as a research assistant at the
Institute of Control and Information Engineer-
ing, Poznań University of Technology. His re-
search interests include the control of walking
robots, machine learning, and soft computing.

.

Piotr Skrzypczyński graduated from the
Poznań University of Technology (1993). He
received the Ph.D. and D.Sc. degrees in
robotics from the same University in 1997 and
2007, respectively. Since 1998 he has been
an assistant professor at the Institute of Con-
trol and Information Engineering (ICIE) of the
Poznań University of Technology, and the head
of the Mobile Robotics Laboratory of the ICIE.
Dr. Skrzypczyński is the author or co-author of

over 90 technical papers in the fields of robotics and computer science.
His current research interests include autonomous mobile robots, naviga-
tion, multisensor fusion, distributed robotic systems, and computational
intelligence methods in robotics.

Received: 16 January 2009
Revised: 20 July 2009

http://www.ode.org.

	Introduction
	Related work
	Experimental setup
	Hexapod robot
	Robot simulator

	Evolutionary learning system
	Evolutionary algorithm
	Problem representation
	Gait learning strategy

	Evolutionary learning in simulation
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Simulation 5
	Simulation 6
	Performance of the evolutionary algorithm

	Evolutionary identification of the simulation model
	Reality gap problem in gait learning
	Parameter identification system

	Validation experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

