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POSITIVITY AND STABILIZATION OF FRACTIONAL 2D LINEAR SYSTEMS
DESCRIBED BY THE ROESSER MODEL
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A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to
each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical
Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient
conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A
procedure for the computation of a gain matrix is proposed and illustrated by a numerical example.
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1. Introduction

The most popular models of two-dimensional (2D) lin-
ear systems are the ones introduced by Roesser (1975),
Fornasini-Marchesini (1976; 1978) and Kurek (1985).
These models were extended to positive systems in
(Valcher, 1997; Kaczorek, 1996; 2001; 2005). An
overview of 2D linear systems theory is given in (Bose,
1982; 1985; Kaczorek, 1985; Galkowski, 2001), and some
recent results in positive systems can be found in the
monographs (Farina and Rinaldi, 2000; Kaczorek, 2001).
Asymptotic stability of positive 2D linear systems was
investigated in (Twardy, 2007; Kaczorek, 2008a; 2008b;
2009a). The problem of the positivity and stabilization
of 2D linear systems by state feedback was considered in
(Kaczorek, 2009c).

Mathematical fundamentals of fractional calculus are
given in the monographs (Oldham and Spanier, 1974;
Nashimoto, 1984; Miller and Ross, 1993; Podlubny,
1999). The notion of fractional 2D linear systems was
introduced in (Kaczorek, 2008¢) and extended in (Kac-
zorek, 2008d; 2009b). The problem of the positivity and
stabilization of 1D fractional systems by state feedback
was considered in (Kaczorek, 2009d).

In this paper a new 2D fractional Roesser type model
will be introduced and it will be shown that the problem
of finding a gain matrix of the state-feedback such that the
closed-loop system is positive and asymptotically stable
can be reduced to a suitable linear programming problem.

The paper is organized as follows: In Section 2] frac-
tional 2D state equations of the Roesser model are pro-
posed and their solution are derived. The classical Cayley-
Hamilton theorem is extended to fractional 2D systems in
Section B In Section [] necessary and sufficient condi-
tions for the positivity of 2D fractional systems are estab-
lished. In Section [ the problem of finding a gain matrix
of the state-feedback such that the closed-loop 2D system
is positive and asymptotically stable is solved. The proce-
dure for the computation of the gain matrix is given and
illustrated by a numerical example. Concluding remarks
are given in Section[6]

2. Fractional 2D state-space equations and
their solutions

Let R7™ be the set of n x m matrices with all nonneg-
ative elements and R"} := Rﬂ;“. The set of nonnegative
integers will be denoted by Z . and the n x n identity ma-
trix will be denoted by I,,.

We introduce the following two notions of horizontal
and vertical fractional differences of a 2D function.

Definition 1. The «-order horizontal fractional differ-
ence of a 2D function z;;, 4, j € Z, is defined by

AZJ?U = an(k)xi_kd, (13.)
k=0
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whereaeR,n—1<a<n€N={1,2,...}and

1 for k=0,
Ca(k):{ (-Dka(a_l)”].g!(a_k—’—l) for k > 0.
(1b)

Definition 2. The (-order vertical fractional difference
of a 2D function x;;, ©,j € Z4, is defined by

J
Agxij = Z C/g(l):[’i’j,l, (23)
=0

where € Ryn—1< (3 <né€ Nand

1 forl =0,
ca(l)={ B0 B4 p, g
' .

il (2b)

Lemma 1. (Kaczorek, 2007) If 0 <a <1 (0 < 8 < 1),
then
ca(k) <0 (cs(k) <0) fork=1,2.... (3)

Consider a fractional 2D linear system described by
the state equations

Aty | _ [ A Aw ay n B,
Agx;’JH A21 A22 T B2 R

ij
(4a)
h
Yij = [ C1 Cs ] [ i%,’{ :| +Duij 1,7 € Zy, (4b)
2,7

where a:?j e R™, x;’j € R™2 represent a horizontal and
a vertical state vector at the point (i, j), respectively, u;; €
R™ is an input vector, 3;; € RP is an output vector at the
point (7,7), and A;; € R™M*™ Ay € R™M*"2 Ay €
RnQan’ A22 c R™ ><n2’ B1 c R™m ><m, 32 c R™ ><m,
Cy € RP*™ Oy € RPX™2 D € RPX™,

Using Definitions[I]and 2 we may write (4a)) as

x?+17j _ All 412 xfj + B Wis
ijH A21 A22 z? B2 *

0,J
i+1
h
Z ca(k)Ti_ji1,j
_ | k=2
i+l ’

> es)at i
=2
)

where All = A1+ Oéﬂnl and /_122 = Agy + ﬂHnQ'

From (3) it follows that fractional 2D systems
are 2D systems with delays increasing with ¢ and j. From
(D) and @B) it follows that the coefficients c, (k) and
cs(l) in @) strongly decrease when k and [ increase.

Therefore, in practical problems we may assume that k
and [ are bounded by some natural numbers L; and L.
In this case, Eqn. (3)) takes the form

Ay _ A A al; n By "
{E;}’jJrl Agl A22 {E;}j B2 *
Li+1

Z Ca(k)ﬂfﬁikﬂ,j

k=2
Lo+1

Z cg(D)ai ;i1
1=2

(6)

The boundary conditions for Eqns. #a), (3) and (@)
are given in the form

xgj forjeZy, xjforiecZ.,. @)

Theorem 1. The solution to Eqn. (&) with the boundary
conditions ([Q) is given by

: 0 4 zl
= T - T i Oq
2t | g, | 27| ]
p=0 q=0

i J
+ Z Z (Ti—P—LJ’—quo + Ti—pd—q—lBOl) Upgq,

p=0 q=0
(8a)
where
B 0
10 _ 1 01 _
B_{O],B_[BQ} (8b)
and the transition matrices Ty, € R"*™ are defined by
L, forp=10,q=0,
Tpg = Tpq forp+q>0(p,q€Zy),
0 (zero matrix) for p < 0 and/or q < 0,
(8c)
where
P
ca(k),, O
Tpg = Tr0Tp-1,4 — Z { (0) ! 0 ] Tp—kyq
k=2
~T0 0
+ TorTp-1 — ; [ 0 cs(D)ln, } Tpat
(8d)
and
[ A A | o 0
Ty = [ 0 R Tor = Ay Agy |- (8e)

Proof. Let X (z1, 22) be the 2D Z-transform of z;; de-
fined by

X(21,22) = Z [wij] = szijzfiZ;j. 9)

i=0 j=0
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Using (@), we obtain (Kaczorek, 1985)
Z [x?_HJ] =2 [Xh(zl, 29) — Xh(O,zg)} ., (10a)

where

O z2) ZxOJZQ ,
Z[2]j41] = 2 {XU(Zh z2) — X (21, 0)}7 (10b)

Zlﬂ szozl 9
i+1 i+1
212 cal®)riiny| = 2 calk)s

k=2

;k+1Xh(Zl, 22)

(10c)
since
h
Z [xsz,j} = Z le*kd'zl %2
i=0 j=0
(o ] o0
i _ (10d)
- E: E:xgzl 2%
i=—k j=0
=27 XM (21, 29)
Similarly,

j+1 1
z Zcﬁ(l)x;),jl+l‘| :Zcﬁ(l)zilﬂXv(ZhZz)
=2

1=2

(10e)
since
oo oo
v _ v
2 [27;-] —Zme_lzl 2

i=0 j=0

oo oo
S gt 000

= ij71 *2
i=0 j=—

Taking into account (I0), we obtain the 2D Z-
transform of the state-space equation (3),

{le (21, 22) — 21 X™(0, 23 )]
20X "(21,22) — 20X "(21,0)

- z‘_hl 412 (21,22) By
N [ A1 Az } { XV(21, 22) * By Utz 22)
i+1

an(kj)z

Jj+1 ’

205 > XV (21, 22)

1_k+1Xh(Z1, 22)

(1)

where U(Zl, ZQ) = Z(’U,w)

Premultiplying (1)) by the matrix

blockdiag [Hnl zl_l, I, zg_l} ,

we obtain
Xh(zl,z'g)
X"(z1,22)
_ B
=G 1(21,2’2){ |: zlle; :| U(Zl,ZQ) (12)
2
Xh(O,ZQ)
- [ X0(21,0) | f°
where
G111 —z7 A }
G(z, = _ , 13
(z1,22) [ —2y " Ay Ga2 (130

Gu=I, — 27 'An+ ) ca(k)z; L, (13b)
k=2

J
Goa =T, — 25 Ao + Y _cp(1)25 'L, (130)
=2

Let

(21, 22) ZZquzl P2yl (14)

p=0¢=0

Write . ,
T T1
qu = [ T?l TZ% } (15)

where Tzfql have the same sizes as the matrices Ay, for
k,l=1,2
From

Gil(zl, ZQ)G(Zl, 22) = G(Zl, ZQ)G7

1(2:1; 22) = ]Inv

using (I4) and (13, it follows that

{ Gt —ZflAlz ]
—zy P Ay Ga2

Tll T12
(ZZ [ Tqu TQ% ]21 22 q)
p=0 ¢g=0
:[Hgl HS } (16)

Comparing the coefficients at the same powers of z; and
29 yields (8d).

Taking into account the expansion (I4) and using
the inverse 2D Z-transform of (I2) we obtain the for-

mula (8a). [ ]
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3. Extension of the Cayley-Hamilton
theorem

From (I3), for the system (&) we have

— Gll —Z_1A12
G(z1, = _ L , 17
(Zl 22) |: _2:2 1A21 GQQ ( a)
— L1
Gu =T, — 2 'An + > ca(k)zy "I, (17b)
k=2
Lo
Gaz =1, — Z;lAQQ + Z 05(1)251Hn2. (17¢)
=2
Let
N1 Nso
detG(z1, 22) ZZGNI CpNa—g?1 P25 %, (18)
p=0 ¢q=0

where N1, No € Z, are determined by the numbers L,
and L in (6).

Theorem 2. Let (I8) be the characteristic polynomial of
the system (6). Then the matrices Ty satisfy

N1 N2

3> apgTpg =0. (19)

p=04¢=0

Proof. From the definition of the inverse matrix, as well

as (I4) and (18], we have

N1 Nj
AdJG (21,22) <ZZGN1 —p.Na—q?1 22 )

p=0 ¢=0

X <ZZTkl31kzzl> ,

k=0 1=0

(20)

where AdjG(z1, 22) is the adjoint matrix of G(z1, zo).
Comparing the coeffiecients at the same power z; M Zg Nz
of the equality (20) yields (I9) since AdjG/(z1, z2) has
degrees greater than — N7 and — N», respectively. [ ]

Theorem [2| is an extension of the well-known clas-
sical Cayley-Hamilton theorem to 2D fractional systems
described by the Roesser model (3).

4. Positivity of fractional 2D systems
described by the Roesser model

Definition 3. The system () is called the (inter-
nally) positive fractional 2D system if and only if x?j S
R, oy, € RY? and y;; € R, i,j € Z for any bound-
ary conditions xgj eRY, jeZiandx, € RY?, i€
7 and all input sequences u;; € R, 7,7 € Z .

Theorem 3.  The fractional 2D system Q) for o, 3 €
R, 0 < a <1, 0< g <1is positive if and only if

/_111 A12 nxn Bl nxm
- eR , eR ,
[ Ay Ap ] - By " @1

[ C1 CQ } ER{)FX”, D ERﬁxm.

Proof. (Necessity) Let us assume that the system (@) is
positive and u;; = 0 fori,j € Zy, xj, =0, i € Z; and
b = eﬁlf, where eﬁl’? is the k-th column of II,,, . In this
case, from (B) we obtain 2, = Ay 2f, = AR ¢ R™,
where flﬁ) denotes the k-th column of the matrix Aj;.
For k = 1,2,...,n; this implies A;; € R}'. Assum-
ing x(; = 0 forj € Zy, uj; = 0fori,j € Z; and
iy = egz), where e%kg) is the k-th column of I,,,, we ob-
tain 2§, = A2z}, = A§’§>, where A§’§> is the k-th column
of A1, and this implies A12 € R’ "2, In a similar way,
it can be shown that Ay € R'}?*" and A,y € R72*"2.

Now, let us assume that boundary conditions are zero
xo; =0forj € Zy, xjy = 0fori € Zy and ug; = ey
( %) is the k-th column of ]Im). Then we have xf; =
Biugy = Bik) € R:”_l, where Bik) is the k-th column of
the matrix B;. This implies B; € ]RT X" In a similar
way, we may show that B, € R2*™, Cy € RE*™, C; €
RE*™and D € RE™.
(Sufficiency) By Lemmal[ll ¢, (k) < 0 fork = 1,2,...
and0 < a < 1 (cp(l) <Oforl=1,2,...and 0 < 8 <
1). From (T3) it follows that, if the conditions of Theorem
Blare met, then T, € R*" for p,q € Z,. Taking this
into account for zg; € R} (j € Zy), zjy € R}? (
i E Z.) and u;; € R (z je Z+) from (8a) we have
x ; € R} and 7 €R fori,j € Z,.

From (713 we have yi; € RY fori,j € Z4 since
zf € RY, o € RY?, uyy € ]RT for i,j € Zy and
C1 e RE*™, Cy e RE™, D e RE™. |

5. Stabilization of the Roesser model by
state feedback

The following theorem will be used in the proof of the
main result of this section.

Theorem 4. (Kaczorek, 2008b) The positive Roesser

model
Ly _ | An A ), 22)
{E;}’jJrl A21 A22 {E;}j
is asymptotically stable if and only if one of the following
equivalent conditions is satisfied:
1. The positive 1D system

All A12 :| (23)

S [ Ao Ags
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is asymptotically stable.

2. There exists a strictly positive vector A € R} (n =
ny + ng) such that

Ay =1, Aia 0
[ » A22_Hn2])\<{ol (24)

Lemma 2. Ifn—1<a<nEN(n—1<6<n), then

Z ca(k)=0 <resp. ZC@(’C) = O) . (25)
k=0 k=0

Proof. 1Tt is easy to verify that the Taylor series expansion
of the function (1 — z)* yields

(1-2)" = i(—l)’“ (Z) 2k, (26)

k=0

Sustituting z = 1 into (28) we obtain

> (-1 (k> = calk)=0.
k=0 k=0
|
Consider the positive fractional Roesser model (3)
with the state-feedback
zh
u; = [ K Kz][ ?}7 (27)
where K = [ K, K, ] e R K; e Rm™*M, j =
1,2 is a gain matrix.
We are looking for a gain matrix K such that the
closed-loop system

[ x?—i—l,j ] _ { A+ BiK,

v

A1z + B1 K> } {»Tf} ]

Ty i Ag1 + Bo Ky Ao + B Ko z};
i1
ca(k)zh -
o i—k+1,5
| k=2
j+1

> o)t
1=2
(28)
is positive and asymptotically stable.

Theorem 5. The positive fractional closed-loop system
28 is positive and asymptotically stable if and only if
there exist a block diagonal matrix

A = blockdiag [A1, As],

Ak = diag [)\kl,...,)\]mk], (29)
)\kj > 0,

k=1,2, 5 =1,...,ng, and a real matrix

DZ[Dl Do ], DkERmxnk, k:1,2 (30)

satisfying the conditions

A12Ao + B1Ds

Ay Ay + BiDy
AzaAo + B2 Dy

nxn
Ao\ + BaDy } Ry GD

and

{ A1A + B1Dy

Ai9Ay + B1 Dy 1,,
Ag1A1 + Ba D,y

Asga Ay + BaDo 1,,

<{8} (32)

where 1,, = [ 1 1}T€Rik, k=1,2 (T de-
notes the transpose). The gain matrix is given by

K=[K Ky |=[DiA7" DA ]. (33)

Proof.  First, we shall show that the closed-loop system
is positive if and only if the condition (ZI) is satisified.

Using [28) and (33), we obtain
Ay + BiDiAT! Az + BiDoAS!
Aoi + BaDiATY Agy + BaDoAG!

[ A+ BDy
| AoiA + ByoDy

ATt oo
0 AT
From (34) and 2I) it follows that the closed-loop
system (28)) is positive if and only if the condition (3I)) is

satisfied. Taking into account that ¢, (0) = ¢g(0) = 1 and
ca(l) = —a, cg(1) = =, from (23) we have

A2 + B1 Do
AgzMg + BaDo } (34)

an(k) =a—1 and Zcﬂk) =p—-1. (35
k=2 k=2

It is well known (Bustowicz, 2008; Bustowicz and
Kaczorek, 2009) that asymptotic stability of the positive
discrete-time linear system with delays is independent of
the number and values of the delays and it depends only
on the sum of the state matrices. Therefore, the positive
closed-loop system (28) is asymptotically stable if and
only if the positive 1D system with the matrix

A+ B1Ky A+ BiK,
Ag1 + BoKy A + B Ko

_ki[]lmcg(k) : C%(k)] (36)

n2

is asymptotically stable. -
Using (33) as well as A3 = Ay1 + 1, and Agy =
Asg + T, 8, we may write the matrix (38)) in the form

Ao+ B1 Ko

A+ 1L, + BiKy 37)
Agg + 1, + Bo Ky |°

A1 + Bo K,

aamcs
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By Theorem] the positive closed-loop system (28))
is asymptotically stable if and only if there exists a strictly

iy T
positive vector A = [)xlT, )\ﬂ € R such that

[A11+B1K1 A12+B1K2]{)\1]<[0}
Aoy + BaKy A+ B Ko A2 0]
(38)
Taking into account that A\, = Aplg, k = 1,2, and
using (33) and (38) we obtain
[ A+ BiKi1 A+ BiK» ] [ A1 ]
Az + BoKi Ago + Ba Ko A2

_ Ay + BiDiATY Ay + BiDoAG!
Agy + BaDiAT' Agg + BaDoAy?

A 0 1T 1,
<15 ] )
_ | Audi+BiDy A19Ay + B1 Dy
AoiA1 + BaD1 AgaAo + BoDoy

1,, 0
< l<le]
Therefore, the positive closed-loop system is asymptoti-

cally stable if and only if the condition (32) is met. [ |

If the conditions of Theorem[3] are satisfied, then the
gain matrix can be computed by the use of the following
procedure.

Procedure

Step 1. Choose a block diagonal matrix (29) and a real
matrix (30) satisfying the conditions (31)) and (32).

Step 2. Using the formula (33), compute the gain ma-
trix K.

Theorem 6. The positive fractional Roesser model is
unstable if at least one diagonal entry of the matrix

Apr Ag
40
[ A2 Az (40)
is positive.
Proof. From (B1) for K; = 0 and Ky = 0, for the

positive fractional Roesser model we have

Ay + 1, Aia
. 41
[ A Ago + 1, ] “h

If at least one diagonal entry of the matrix (4Q) is posi-
tive, then at least one diagonal entry of the matrix (£1)) is
greater than 1 and this implies that the positive fractional
Roesser model is unstable. [ ]

Example 1. Given the fractional Roesser model with
a=0.4,3=0.5and

[ 0.5 —0.1 [ 0.1 —0.1
An = .01 001 } Arz = 02 01 }

[ —03 —0.1 [ -1 0.1
Am:_ 0.2 0.1}’ A22:_0.4 0.1]’

[ —0.2 [ —0.3
Bl__ 0.1}’ Bz = 0.2] “2)

We wish to find a gain matrix K = [K71, K2, K, € R*2,
p = 1,2 such that the closed-loop system is positive and
asymptotically stable.

The fractional Roesser model (3) with (2) is not pos-
itive since the matrix

-0.1 -0.1 -0.1 -0.1
Ay A B 0.1 0.41 0.2 0.1
[ Ay Ag ] | =03 =01 —-0.5 -0.1
0.2 0.1 0.4 0.6
(43)
and the matrices B, Bs have negative entries, and it is
unstable since the matrix

-0.5 —-0.1 -0.1 -0.1
A A | 0.1 0.01 0.2 0.1
Ay Ass | | =03 —0.1 -1 -0.1
0.2 0.1 0.4 0.1
(44)
has two positive diagonal entries.
Using our Procedure, we obtain what follows.

Step 1. We choose
A = blockdiag[Ay, A,

A1:{0'4 0}7 A2:[0.2 o] (45)

0 04 0 0.3
and
D=1[Dy,Ds], Dy=Dy=[—-04 —02], (46)
which satisfy the conditions (3I)) and (32) since
- [ 0.04 0
AuniM+Bi1Dy = 0 0144 } )
[ 0.06 0.01
AiaNo + B1Dy = 0 001 } )
[0 0.02
AoiA1 + BoDy = 0 0 }7
- [ 0.02 0.03
A22A2 +B2D2 - I O 014 :|

and

[ AniM+ B1Dy

Ai12A2 + B1 Dy
Ao Ay + Ba Dy

Ago Aoy + BaDo
—0.05

L1 ]| 0006
1., | = | —0.03
—0.01
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Step 2. From (33) we obtain the gain matrix K =
(K1, K],

Ki=]-04 —0.2]{2'(5) 2.2}:[—1 —0.5 |,

5 0

Ko=] —04 —0.2][0 .

]:[—2 —0.67 |.

The closed-loop system is positive since the matrices

Ay + BiK; = - O.(l) 0.32 } )
v 0 298]
Ao + B Ky = _ 8 0'08 ] ;
o[ M) 1]

have all nonnegative entries.
The closed-loop system is asymptotically stable
since its characteristic polynomial

det
¢ —(A21 + B2K7) Loz — (A22 + BoK3)

=244 0.7732% + 0.1732% + 0.01z + 0.0002

Lz — (A + B1Ky) —(A12 + B1K>) }

has positive coefficients.

6. Concluding remarks

A new class of 2D fractional linear systems was intro-
duced. Fractional 2D state equations of linear systems
were given and their solutions were derived using the 2D
Z-transform. The classical Cayley-Hamilton theorem
was extended to 2D fractional systems described by the
Roesser model. Necessary and sufficient conditions for
the positivity and stabilization by state feedback of frac-
tional 2D linear systems were established. A procedure
for the computation of the gain matrix was proposed and
illustrated by a numerical example.

These deliberations can be easily extended to frac-
tional 2D linear systems with delays described by the
Roesser model. An extension of this study to fractional
2D continuous-time systems is an open problem.
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