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In this paper we present a method for evaluating the importance of GO terms which compose multi-attribute rules. The
rules are generated for the purpose of biological interpretation of gene groups. Each multi-attribute rule is a combination
of GO terms and, based on relationships among them, one can obtain a functional description of gene groups. We present
a method which allows evaluating the influence of a given GO term on the quality of a rule and the quality of a whole set
of rules. For each GO term, we compute how big its influence on the quality of generated set of rules and therefore the
quality of the obtained description is. Based on the computed quality of GO terms, we propose a new algorithm of rule
induction in order to obtain a more synthetic and more accurate description of gene groups than the description obtained by
initially determined rules. The obtained GO terms ranking and newly obtained rules provide additional information about
the biological function of genes that compose the analyzed group of genes.
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1. Introduction

In the last decade, DNA microarray chips have proved to
be a powerful tool used in biological and medical labo-
ratories in genome scale experiments (Baldi and Hatfield,
2002). The analysis of data obtained in a DNA microar-
ray experiment usually consists of four main steps: data
normalization, the identification of differentially expres-
sed genes, the application of algorithms grouping (clu-
stering) together genes with similar expression patterns,
and the interpretation of biological functions of genes co-
expressed together.

Biological interpretation of the obtained gene groups
is a very important part of the whole experiment and this
aspect of data analysis is often carried out by an expert
in the field of experimental design, frequently manually
(which is time consuming for large data sets). However,
to support such analysis, specialized systems are designed
to store, organize and extract information on genes, their
functions and products. The most popular and widely used
are gene ontology (GO) terms (Ashburner et al., 2000)

that are sources of information about biological processes
and genes involved in these processes. The GO databa-
se is organized into three disjoint directed-acyclic graphs
(DAGs) describing the biological process (BP), the mole-
cular function (MF) and the cellular component (CC). The
dependences among GO terms are hierarchical—nodes
close to the root describe general concepts and, as the
DAG is traversed from the root into its leaves, the descrip-
tion is more and more specific. Figure 1 presents a part of
the GO directed-acyclic graph structure.

The popularity of the GO database results in develo-
ping the number of GO processing tools based on the idea
of annotating the analyzed group of genes with GO terms
and then performing a statistical test to extract over- or
underrepresented GO terms in the analyzed set of genes
(Maere et al., 2005; Al-Shahrour et al., 2005; Khatri and
Drăghici, 2005).

Recently, research on rules induction which combi-
nes gene expression data and biological information has
been performed (Hvidsten et al., 2003; Midelfart, 2005a;
2005b). In the paper by Hvidstein et al. (2003), conditio-
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Fig. 1. Part of the gene ontology graph. Regular symbols deno-
te gene annotations that were assigned to particular GO
terms by curators. Gene assignments resulting from the
hierarchy of the ontology graph are represented in bold.

nal rules of the form “IF conjunction of conditions descri-
bing time series of gene expression profile THEN ontolo-
gical term” were proposed. The authors wanted to assign
genes with specified expression profiles to a specific gene
ontology term. Conclusions of rules with the same condi-
tional parts are joined, and thus rules describing a group
of genes with similar expression profiles are obtained. In
rule conclusions, a set of gene ontology terms describing
the group is included.

To discover the co-appearance of some ontology
terms, algorithms of association rule induction have be-
en applied so far. The method proposed by Carmona-Saez
et al. (2006) combines expression data and biological in-
formation. In the paper Carmona-Saez et al. (2007), the
Genecodis web-based tool for integrated analysis of anno-
tations from different sources was introduced. The method
uses the Apriori algorithm (Agrawal and Srikant, 1994) to
discover sets of annotations that frequently co-occur in the
analyzed group of genes. A similar tool that enables fin-
ding combinations of annotations in many different fields
such as functional categories, gene regulation, sequence
properties, evolution, conservation, etc., was presented by
Hackenberg and Matthiesen (2008).

Rule induction techniques mentioned above have
drawbacks which can make the obtained rules difficult or
even impossible to interpret. Firstly, known rules induc-
tion methods do not take into consideration the hierarchy
of GO terms, which may result in replacing a conjunction
of attributes with one GO term being the lowest in the hie-
rarchy. Secondly, all the methods mentioned above lead to
the generation of a huge number of rules without provi-
ding more advanced (apart from the p-value and the rule
coverage) methods of rules evaluation and selection.

In order to avoid the above inconveniences, a method
of rule induction that considers the location of GO terms

in the ontology graph was presented by Gruca and Siko-
ra (2009). An interpretation of determined rules is as fol-
lows:

If a gene is described by a conjunction of gene
ontology terms appearing in a rule premise,

then it belongs to a specific group of genes.
(1)

The method of their induction guarantees that terms lying
on the same path in the ontology graph do not appear in a
rule premise.

Having induced a set of the rules that create a de-
scription of a gene group, one can be interested in evalu-
ating the importance of each single GO term appearing in
the rules. In this paper we present a method for evaluating
the importance of GO terms that compose the obtained set
of rules. Based on the induced rules set, we can determine
which GO terms occurring in rule premises are characte-
rized by the highest significance. We do not consider sta-
tistical significance but the influence of a given GO term
on the quality of rules that include this term only.

The problem of evaluating the importance of condi-
tions appearing in rules premises was considered by Greco
et al. (2007), who applied indexes used in game theory for
the evaluation of coalition quality. In conducted research,
the Banzhaf index (Banzhaf, 1965) and a modified version
of the approach presented by Greco et al. (2007) were ap-
plied to evaluate the importance of GO terms occurring in
rule premises. An algorithm of rule induction that consi-
ders the obtained GO terms ranking is also presented in
this paper. The algorithm determines rules which describe
gene groups in even a more synthetic way.

The paper is organized as follows. In the next section,
results obtained so far by the authors in the field of rule
induction used for gene group description are presented
briefly; especially methods of rules induction, their eva-
luation and filtration are described. In Section 3 a propo-
sition of the assessment of the importance of GO terms
appearing in the obtained rule premises is presented. Mo-
reover, a new algorithm of rule induction which considers
the obtained GO terms ranking is introduced. Section 4
contains results of performed experiments. Summary and
directions of further research are given Section 5.

2. Description of gene groups by
multiattribute logical rules

2.1. Data and rules representation. Consider a set of
genes G and a set of descriptions of genes and gene pro-
ducts A. Formally, gene ontology is a directed acyclic
graphGO = (A,≤), whereA is a set of GO terms descri-
bing genes and its products and ≤ is a binary relation onA
such that the genes described by GO term aj are a subset
of the genes described by GO term ai, denoted by aj ≤ ai,
if and only if there is a path (ai, ai+1, . . . , aj−1, aj) such
that am ≤ am−1 for m = i + 1, i+ 2, . . . , j − 1, j. The
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relation ≤ is an order relation (i.e., it is reflexive, antisym-
metric and transitive).

The root of the DAG is the largest element and we
assume that the root is at a zero level in the ontology.
Each node from the DAG is represented by a single GO
term from the set A. Each level of the graph is defined
in the following way: the i-th level of the graph is for-
med by all GO terms a ∈ A for which there is a path
(root , a1, . . . , ai−1, ai) such that a1 ≤ root , am ≤ am−1

form = 2, 3, . . . , i−1 and ai ≤ ai−1. GO terms at higher
levels (closer to the root) describe a more general function
or process while terms at lower levels are more specific.
Each annotation is an association between a gene and a
GO term describing it. Thus, for simplicity, we can assu-
me that each node of gene ontology is also annotated by
genes from the set G. A gene can be annotated to zero
or more nodes for each ontology, at any level within each
ontology. All GO terms that exist in the DAG must follow
the true path rule: “the pathway from a child term all the
way up to its top-level parent(s) must always be true”. A
consequence of such an approach is that annotating a gene
to a GO term implies annotation to all its parents via any
path.

It stems from the above definitions that each gene
annotated with a GO term aj ∈ A is also annotated with a
GO term ai ∈ A such that aj ≤ ai. Assuming that Ga is
a set of genes annotated with a GO term corresponding to
the node a, for each node ai such that a ≤ ai, Ga ⊆ Gai
is satisfied. In other words, the higher level of a GO term,
the more genes are annotated to that term.

To preserve the clarity of the ontology, annotation fi-
les that are available at the Gene Ontology Consortium
website include only “original” annotations, that is, an-
notations that were assigned to a particular GO terms by
curators. In Fig. 1, regular symbols of genes denote “ori-
ginal” genes assigned to a given GO term, whereas ge-
ne assignments resulting from a hierarchy of the ontology
graph are represented in bold. Various datasets are obta-
ined depending on whether relationships among terms are
taken into consideration or not. In our research we assign
to each node not only genes that were directly extracted
from the gene ontology annotation database but also genes
that are annotated to all descendant terms of that node. We
call such a graph “GO-Inc” (Inclusive Analysis).

To summarize, there is a set G of genes, a set
A of GO terms that create the GO-Inc ontology graph
and n gene groups with similar expression profiles
{G(1), G(2), . . . , G(n)}. It is possible to create a deci-
sion table DT-Inc= (G,A ∪ d), where for all a ∈ A,
a : G → {0, 1}, and d(g) ∈ {G(1), G(2), . . . , G(n)}
for all g ∈ G. Thus, rows in the table DT-Inc contain de-
scriptions of single genes belonging to the set G created
by means of GO terms from A. The notation a(g) = 1 (in
short, a(g)) denotes that a gene g is assigned to the term
a in the GO-Inc graph. The value a(g) = 0 (in short, not

a(g)) means that a gene g is not assigned to the term a.
Each gene is also characterized by membership to a spe-
cific group of genes (value d(g)). An example of DT-Inc
formed based on Fig. 1 is presented in Table 1.

Table 1. Example of the DT-Inc decision table formed based on
Fig.1.

annot. bp cp mp r cc gt rp ccp p
/gene

G1 1 1 1 1 1 1 1 1 0
G2 1 1 1 0 0 0 0 0 0
G3 1 1 1 1 1 0 1 1 1
G4 1 1 1 1 1 1 1 1 1
G5 1 0 1 0 0 1 0 0 0
G6 1 0 1 0 0 0 0 0 0
G7 1 0 0 1 0 0 1 0 0

For simplification, a column informing about gene
assignment to a group was omitted. Moreover, abbrevia-
tions of GO term names were used in the columns’ titles.
Annotations following from the hierarchy are in bold, in a
simple DT, which does not consider the hierarchy, in the-
se places 0 is set. In the table DT-Inc we try to find all
statistically significant rules of the form (2):

IF ai1 and ai2 and . . . and aik

THEN d = G(l), (2)

where

{ai1, ai2, . . . , aik} ⊆ A,

G(l) ∈ {G(1), G(2), . . . , G(n)}.
The interpretation of the rule (2) is consistent with the
expression (1). We denote by RULG(l) a set of rules with
identical conclusions and call the description of the gene
group G(l).

2.2. Rule induction, evaluation and filtration. The
induction of decision rules can be classification-or
discovery-oriented. The purpose of classification-oriented
induction is to find, on the basis of a set of learning exam-
ples, a set of decision rules that will be used to classi-
fy new unknown examples (Michalski et al., 1998; Fürn-
kranz, 1999; Grzymała-Busse and Ziarko, 2003). The pur-
pose of discovery-oriented induction is to discover ru-
les which are interesting and useful for different kinds of
users (Fayyad et al., 1996).

Our aim is to find rules describing gene groups by
means of co-occurred GO terms. We are not interested in
the classification of unknown objects because the selec-
tion of all genes that create gene groups was already done
during the formation of groups. This means that the con-
cept of test object has no application in our case, and thus
we will not use these rules for classification.
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For description purposes, all rules satisfying some re-
quirements are usually determined. This approach is im-
plemented, among others, in the Apriori association rule
induction algorithm (Agrawal and Srikant, 1994), and the
Explore decision rule induction algorithm (Stefanowski
and Vanderpooten, 2001). Another possibility is to induce
all rules and then filter them to find the most interesting
ones (Brzezinska et al., 2007; Sikora, 2010).

We generate rules with p-values less than or equal to
a threshold established by the user. Therefore, to describe
a given gene group, we must determine all possible com-
binations of all possible subsets of GO terms. Since we
consider only premises with descriptors a(g) = 1 (at the
current stage of the analysis we are not interested in de-
scriptors a(g) = 0), in a pessimistic case we would have

to determine
∑|A|

k=1

(|A|
k

)
= 2|A|−1 rules, which is impos-

sible in the case of a big number of GO terms considered.
A modified version of the Explore algorithm which

enables generating iteratively (from one-condition rules)
all possible conjunctions of GO terms for each gene group
(Stefanowski and Vanderpooten, 2001) was used for rules
induction.

For our purpose, the Explore algorithm was modi-
fied. The main part of the algorithm generates premises
with increasing size, beginning from premises containing
one GO term. When a rule created satisfies a p-value cri-
terion established by the user, it is added to an output ru-
le set and a conjunction is extended (assuming that other
statistically significant rules can be determined from the
conjunction). If all GO terms for a premise being curren-
tly created were already considered, then a new GO term
is selected (not chosen yet) and a new rule creation begins.
In order to limit the search space and shorten the algori-
thm operating time, during rule induction no terms lying
on any path (from the ontology leaf to the root) that leads
to a term a are added to the premise since the conjunction
of such terms will always be reduced to a term lying lower
in the ontology graph (Gruca and Sikora, 2009). However,
even after applying the above modifications to the Explo-
re algorithm, the number of rules determined can be huge
and then difficult to interpret. Hence we need to provide
a method of rule quality evaluation and mutual similarity
assessment.

Rules of the form (2) are a special case of the so-
called decision rules, and several measures that reflect a
quality of a decision rule can be computed (An and Cer-
cone, 2001; Sikora, 2006; Fürnkranz and Flach, 2005; Gu-
illet and Hamilton, 2007).

If the rule r is shortly written as ϕ → ψ, then nϕ =
nϕψ+nϕ¬ψ = |Gϕ| is the number of genes that recognize
the rule ϕ → ψ; n¬ϕ = n¬ϕψ + n¬ϕ¬ψ = |G¬ϕ| is the
number of genes that do not recognize the rule ϕ → ψ;
nψ = nϕψ + n¬ϕψ = |Gψ | is the number of genes that
belong to the gene group described by the rule ϕ → ψ;
n¬ψ = nϕ¬ψ + n¬ϕ¬ψ = |G¬ψ | is the number of genes

that do not belong to the gene group described by the rule
ϕ → ψ; nϕψ = |Gϕ ∩ Gψ| is the number of genes that
support the rule ϕ→ ψ; n¬ϕ¬ψ= |(G−Gϕ)∩(G−Gψ)| is
the number of genes that do not belong to the gene group
described by the rule ϕ → ψ and do not recognize it.
Values nϕ¬ψ, n¬ϕψ are calculated similarly as nϕψ and
n¬ϕ¬ψ.

It can be noticed that for any rule ϕ → ψ the inequ-
alities 1 ≤ nϕψ ≤ |Gψ |, 0 ≤ nϕ¬ψ ≤ |G¬ψ| hold. Hence,
a quality measure is a function of two variables nϕψ and
nϕ¬ψ, q(ϕ→ ψ) : {1, . . . , |Gψ|} × {0, . . . , |G¬ψ|} → R

(Sikora, 2006). Two basic quality measures are accuracy
acc(r) = nϕψ/nϕ and coverage cov(r) = nϕψ/nψ.

For knowledge discovery purposes we search for ru-
les characterized simultaneously by high accuracy and
high coverage. Unfortunately, a trade-off between the va-
lues of the measures exists, and therefore there are at-
tempts to define quality measures (attractiveness or in-
terestingness measures) that combine, among others, ru-
le accuracy and coverage. The most important feature of
created rules in biological and medical applications is the-
ir statistical significance. A p-value of a rule is calcula-
ted based on a suitably chosen statistical test and specifies
how much the accuracy of a determined rule differs from
the accuracy resulting from example distribution in ana-
lyzed data (the so-called a priori distribution), while rule
coverage is fixed. The probability of obtaining a specific
configuration of the number of examples recognized and
covered by a rule is described by the hypergeometric di-
stribution (3) (Agresti, 2002).

For the assessment of a statistical significance of a
rule we consider the following null hypothesis: the assi-
gnment of examples recognized by the rule to the decision
class indicated by the rule is equivalent to random assi-
gnment of the examples to the class.

A one-side (right-side) test is used to verify the hy-
pothesis, because we are only interested in rules which
assign examples to the class considered better than the te-
sted rule. A p-value of the test is calculated by summing
probabilities obtained for all possible rules recognizing as
many examples as the analyzed rule but characterized by
higher accuracy (3):

p(nϕψ, nϕ¬ψ) =

(
nϕψ+nϕ¬ψ

nϕψ

)(
n−nϕψ−nϕ¬ψ
nψ−nϕψ

)

(
n
nψ

) , (3)

pval(nϕψ, nϕ¬ψ)

=
min{nψ−nϕψ ,nϕ¬ψ}∑

k=0

p(nϕψ + k, nϕ¬ψ − k). (4)

The formula (4) is a cost criterion which means that ru-
les with lower pval values are considered better than rules
with higher pval values. The pval criterion gives us objec-
tive assessment of the determined rule quality, thus sorting
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rules increasingly with respect to the value pval we can ob-
tain a ranking reflecting the rule quality. As we induce ma-
ny rules and all of them need to be tested against the null
hypothesis, this creates a multiple-testing problem. Thus,
for each rule, we compute its corrected p-value using the
standard FDR (false discovery rate) Benjamini and Hoch-
berg correction method (Benjamini and Hochberg, 1995).
The corrected p-value is computed only for informational
purposes and can be further used as an additional indicator
of the rule quality.

Apart from the objective criterion, subjective ones
which reflect specific user preferences are also applied for
rule interestingness assessment. The first subjective crite-
rion of rules attractiveness is the number of GO terms inc-
luded in a rule premise. We assume that the larger number
of terms in a rule premise, the more information represen-
ted by the rule (we recall that terms occurring in a premise
do not lie on a common path in the ontology graph). The
second subjective criterion of rule evaluation is the level
of GO terms occurring in the rule premise (5). As far as a
description is concerned, we should prefer rules with pre-
mises including terms from as low a level of the GO graph
as possible. The criterion

depth(r) =

NoGOterms(r)∑

i=1

level (ai)

NoGOterms(r)∑

i=1

max _path(ai)

(5)

enables verifying how much specific knowledge, from the
genes biological functions description point of view, the
evaluated rule presents.

In the formula (5) level(ai) is the level of a GO term
ai that occurs in the rule premise, max _path(ai) is the
longest path leading form the root to a leaf of GO-Inc that
passes trough the node ai.

The subjective measures are normalized (they take
values from the interval (0, 1]) and monotone (adding a
new GO term to a rule premise or moving a GO term
to a lowest level of the ontology increases the values of
both measures). Finally, the measure that incorporates all
aspects (objective and subjective measures) of rule quali-
ty evaluation presented above is the product of all compo-
nent measures:

Q(r) =
1

pval(r)
length(r)depth(r). (6)

The rules ranking established by the Q measure is
the basis for selecting the most interesting rules from the
determined rules set. We are interested in the best rules
that cover as many genes from the described gene group
as possible. Additionally, if a given subgroup of genes is
described by a rule with a better quality, then we are not
interested in rules with a lower quality covering the same

genes. This leads to the filtration algorithm, which signifi-
cantly limits the number of rules. The filtration algorithm
creates a coverage of gene groups. Rules are added to a
result (filtered) set of rules starting from the best rules de-
scribing each group. After adding a rule to a result set of
rules, all genes that cover the rule are removed from the
group. The filtration is performed until all genes covered
by the unfiltered set of rules are covered by the filtered
set of rules. However, if the rule rr covers (supports) the
same objects as the reference rule but contains other bio-
logical knowledge (it is built of GO terms different from
the GO terms included in the reference rule), then the rule
rr is not removed but remains in the result set of rules.
Dissimilarity of rules is determined by

diss(ri, rj)

= 1 − uGOterms(ri, rj) + uGOterms(rj , ri)
NoGOterms(ri) + NoGOterms(rj)

. (7)

If rules ri and rj are dissimilar to a degree greater than
the threshold ε defined by the user, both of them remain in
the final set of determined rules. Here uGOterms(ri, rj)
is the number of unique GO terms occurring in the rule
ri and not occurring in the rule rj ; a GO term a from the
rule ri is unique if it does not occur directly in the rule
rj and there is no path in the GO-Inc graph that includes
both term a and any other term from the rule rj premise;
NoGOterms(r) is the number of GO terms in the rule r
premise.

3. Evaluation of the importance of GO terms
appearing in induced rule and
renewed rules induction

Let us consider a given rule r of the form (2). A set of GO
terms occurring in the rule premise is denoted by W , that
is, W = {t1, t2, . . . , tn}. In the standard form presented
by Greco et al. (2007), the Banzhaf measure that evalu-
ates the contribution of elementary condition (a single GO
term ti here) to rule r accuracy is calculated according to

φB(ti, r)

=
1

2n−1

∑

Y⊆W\{ti}

[
acc(Y ∪ {ti}, r) − acc(Y, r)

]
(8)

where acc(Y, r) denotes the accuracy of r in the premise
part of which only GO terms included in the set Y occur;
acc(∅, r) = 0; acc(W, r) = acc(r).

To evaluate the importance of a GO term in whole set
RULG, it is necessary to compute its importance in each
rule from the description (in each rule that includes the
GO term considered) and verify whether, by any chance,
the GO term also occurs in rules from other gene groups
descriptions. We can represent the above requirements as a
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formula which allows evaluating the GO term importance
for the description of a given gene group:

G(ti,RULG) =
∑

r∈RULG

φB(ti, r)cov (r)

−
∑

r/∈RULG

φB(ti, r)cov (r), (9)

where cov(r) is the coverage of the rule r, and RULG
is the set of rules that create the description of the gene
groupG.

In the described method of GO term importance eva-
luation, the contribution of each term to rule accuracy is
evaluated, while its contribution to rule coverage is not
(the coverage is considered for the whole rule only). For
the purpose of importance evaluation of GO terms descri-
bing a gene group, it would be better to evaluate the con-
tribution of the analyzed GO term to both accuracy and
coverage. The measure proposed in the paper is empiri-
cal and enables evaluating the accuracy and coverage of
a rule simultaneously, taking into consideration example
distribution among the decision class indicated by the rule
and the other decision classes. Making an analysis of the
formula

Rss(ϕ→ ψ) =
nϕψ

nϕψ + n¬ϕψ

+
n¬ϕ¬ψ

n¬ϕ¬ψ + nϕ¬ψ
− 1, (10)

it can be noticed that the measure proposes the method of
rule evaluation analogous to the method of classifier sensi-
tivity (the first component of the sum) and specificity (the
second component of the sum) evaluation (Bairagi and Su-
chindran, 1989; Grzymała-Busse et al., 2005; Fürnkranz
and Flach, 2005). The first component of the measure cha-
racterizes the conditional probability of an event in which
an example covering the rule r belongs to a group of genes
described by the rule. The second component specifies the
conditional probability of an event in which examples not
covering the rule r belong to gene groups different from
the one the rule r points at. The third component has a
normalization role and guarantees that the measure Rss
has the property of confirmation (Greco et al., 2004).

The measure takes values from the interval [−1, 1]
and values equal to zero are achieved while a rule has the
same accuracy as implied from the positive and negative
example distribution in the training set. Rules with values
greater than zero (the greater the value, the better the rule)
should be recognized as good ones.

Using the Rss measure in the formula (8) allows con-
sidering the contribution of the GO term to the accuracy
and coverage of all “subrules" which can be created from

the rule r:

φB(ti, r,Rss)

=
1

2n−1

∑

Y⊆W\{ti}

[
Rss(Y ∪ {ti}, r) − Rss(Y, r)

]
,

(11)

where Rss(Y, r) denotes the value of the Rss measure de-
termined for the rule r, in the premise part of which on-
ly GO terms included in the Y occur; Rss(∅, r) = −1;
Rss(W, r) = Rss(r). As a consequence of the introdu-
ced modification, the measureG that evaluates the quality
(importance) of a GO term in the whole set of rules de-
scribing the analyzed gene group (12) was also modified:

G(ti, RULG,Rss) =
∑

r∈ RULG

φB(ti, r,Rss(r))

−
∑

r/∈RULG

φB(ti, r,Rss(r))
(12)

Instead of the Rss measure, any rule quality evaluation
measure can be used.

It is worth mentioning that acc(Y, r) is a ,monoto-
nic measure which means that, if Y ⊆ X ⊆ W , then
acc(Y, r) ≤ acc(X, r). It can be proved easily that, in the
worst case, adding the next conjunction may not improve
rule accuracy. Moreover, it is also easy to prove that the
Rss measure is not monotonic, because removing the con-
dition from the premise, though can decrease the accuracy
of the rule, may also increase rule coverage, which can fi-
nally increase the value of the Rss measure. However, if
the measure Rss is treated as a function of two variables
nϕψ, nϕ¬ψ, then the measure is monotone with respect to
each variable (if the value of the second variable is fixed)
(Fig. 2). Moreover, sinceRss takes negative values (hence
from the mathematical point of view it is not a measure,
but we want to keep the convention used in the domain
literature), GO terms with negative assessment of the im-
portance can appear among GO terms composing the rule
premise. The negative value of (12) means that “subrules”
have, on average, a better quality without the GO term ti
than “subrules” with the term, since in such a case the term
ti should be considered unimportant (causing noise).

Based on the assessment of GO terms that occur in
premises of rules describing individual gene groups, for
each group we can obtain a ranking of GO terms which
reflects the importance of a given term in the context of
determined rules as well as in the context of a description
of a given gene group. Obviously, terms from the top of
the ranking will describe the biological function of genes
from a given gene group better (stronger) than terms from
the end of the ranking. In the rule induction algorithm pre-
sented in a previous section we searched for all rules with
pval less than a significance threshold fixed by the user.
The obtained rules were evaluated and filtrated.
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n
n

Fig. 2. Graph of the Rss measure for a classes distribution amo-
unting to 30 positive and 70 negative examples.

Below, we present an algorithm that enables obta-
ining a coverage of a group of genes using the greedy
search strategy for the creation of elementary conditions
included in the rule premise. GO terms are added to the ru-
le premise iteratively (Fürnkranz, 1999; Grzymała-Busse
and Ziarko, 2003). However, only terms appearing in pre-
mises of previously determined statistically significant ru-
les are used. Moreover, the procedure of rule creation also
considers the importance of GO terms for previously de-
termined rules. Including the expression the term does not
describe the given gene group (in short, not a(g)) in rule
premises is an additional unique feature of the presented
algorithm.

For biological description of groups of genes, we are
more interested in the information that genes from the gro-
up (or some part of them) have a specific biological func-
tion (they are annotated by a given GO term) than in the
information that they do not have the function (they are
not annotated by the term). However, if such a negative
component is useful for making the description more pre-
cise, especially for describing these groups which normal-
ly have inaccurate or incomplete description (a big num-
ber of genes from the given group is covered by no stati-
stically significant rules determined in a standard manner),
then adding negative components to the rule premise will
be purposeful. Moreover, for the sake of relations appe-
aring in the GO-Inc graph, a negative component disquali-
fies all GO terms lying at levels lower than this component
in GO-Inc.

Negative components of premises of determined ru-
les are created based on the assumption that the GO terms
important for the description of a particular gene group
should be unimportant for another gene group. Therefore,
it is worth trying to apply negations of terms describing
that particular group to the description of the other group.

The idea of rule induction presented in the paper can be
introduced by Algorithm 1.

Algorithm 1 Rules induction algorithm

Input: DT-Inc=(G, A∪{d}), RssDescj = {t1j , . . . , t
mj

j } ranking of
GO terms occurring in the description of gene group Gj established
by the evaluation measure Rss .

Output: RULout set of rules describing all gene groups

RULout = ∅
for each gene group Gj , j ∈ {1, . . . , n} do

Gg := Gj

while (Gg �= ∅ or any GO term from RssDescj covers any gene
belonging to Gg) do

r := ∅ {start from empty premise}
Rss(r → G) = −1 {put the minimal value of evaluation
measure}
for i = 1, . . . , mj do {add positive descriptors to the rule
premise}

if Rss(r ∧ tij → Gj) > Rss(r → Gj) then

r := r ∧ tij
end if

end for
for l = 1, . . . , n and l �= j do {add negative descriptors to the
rule premise}

for s = 1, . . . , ml do
if Rss(r ∧ ¬tsl → Gj) > Rss(r → Gj) then

r := r ∧ tsl
end if

end for
end for
Shorten(r → Gj)
RULout = RULout ∪ {r → Gj}
Gg := Gg − [r] {[r] is the set of genes from the group Gj

covered by r}
end while

end for

The function Shorten(r → Gj) is used to reduce the
number of GO terms contained in a premise of a deter-
mined rule, because considering all GO terms that create
a description of a given gene group and all negations of
terms creating descriptions of the rest of the groups results
in very long premises and specific rules.

During the shortening process, a hill climbing strate-
gy that consists in successive removing a single GO term
occurring in the premise and checking how it influences
the rule quality (the measure Rss value) is applied. After
removing all GO term trials, the one whose removal does
not decrease the rule quality (the reference quality is the
quality of a whole non-shortened rule) is removed perma-
nently. If removing a GO term from a rule premise results
in a rule quality increase, then this new (higher) quality
becomes the reference quality. GO terms are being remo-
ved until the rule quality starts decreasing.

Since positive elementary conditions occurring in a
rule premise are more desired, the algorithm tries to deter-
mine a rule from GO terms contained in rules describing
a given gene group first and then tries to include negative
elementary conditions in the premise in order to improve
the rule quality by making it more accurate.
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A comparison of the efficiency of the discussed algo-
rithms is presented in the next section.

4. Data analysis

Experiments were conducted on two freely available da-
ta sets: YEAST and HUMAN, which can be treated as
benchmark sets designed for the comparison of genes an-
notation methods. The YEAST data set contains valu-
es of expression levels of budding yeast Saccharomyces
cerevisiae measured in several DNA microarray experi-
ments (Eisen et al., 1998). Our analyses were performed
on 274 genes from 10 top clusters presented by Eisen
et al.(1998). The HUMAN data set contains values of
expression levels of human fibroblasts in response to se-
rum (Iyer et al., 1999). In the paper by Iyer etal. (1999),
517 EST sequences were reported and divided into ten
clusters. After translating the sequences for unique gene
names and removing sequences that are duplicated or that
are currently considered to be invalid, we obtained a set
of 309 genes. Then, each gene from the YEAST and HU-
MAN data sets were described by GO terms from biolo-
gical process (BP) ontology.

Table 2. Number of genes and GO terms obtained for each de-
cision table.

Decision table No. of GO terms No. of genes

YEAST BP 249 274
HUMAN BP 390 309

We used GO terms from at least the second ontolo-
gy level, describing at least five genes from our data sets,
and we finally obtained four DT-Inc (the numbers of ge-
nes and GO terms for each decision table are presented in
Table 2). For each decision table we computed decision
rules with statistical significance lower than or equal to
0.05 and at most five GO terms in induced rules premises.

Based on the rules determined in such a manner, the
importance of GO terms occurring in these rules was as-
sessed, and then repeated rule induction using the obta-
ined GO terms ranking was executed. Since the algori-
thm considering terms importance creates the coverage of
a group of genes, a 100% coverage of each gene group
was obtained every time, althoug statistically unimportant
rules were among the determined ones. Thus, in the next
step, all statistically unimportant rules (pval > 0.05) we-
re removed from the determined set of rules. During the
first run of the algorithm, we did not consider GO terms
negations—this part of experiments is described in the co-
lumns Rules induction without negative GO terms. Nega-
tions of GO terms are considered in the second experiment
(Rules induction with negative GO terms).

A summary statement of the total coverage and the
number of rules obtained by various induction methods

are presented in the last rows of Tables 3 and 4.
The next comparison concerns the number of GO

terms occurring in the determined rules; summary state-
ments are presented in Tables 5 and 6. In the case of rules
including negations of GO terms, the number of terms that
had the form of negation is presented in parentheses.

The results presented in Tables 3 and 4 show that an
exhaustive strategy for generating all statistically signifi-
cant rules results in determining a huge number of rules,
although applying the compound rule quality measure and
the filtration algorithm enables limiting the description to
the most interesting rules. The number of rules describing
each of the analyzed gene groups is not big, and thus they
can be used for biological interpretation of the analyzed
groups. A set of rules describing an analyzed gene group
enables covering all or the majority of genes contained in
the group, which is also an important feature of the pre-
sented method.

Moreover, it is worth noticing that the coverage of
a gene group, the number of rules after filtration and the
quality of the rules strongly depend on the group analy-
zed. For example, it is commonly known that groups from
the YEAST dataset are better defined than groups from the
HUMAN dataset. This can be also observed in results pre-
sented in the paper, since the coverage of decision classes
and the quality of rules obtained are better for the YEAST
dataset than for HUMAN.

The application of the rule induction algorithm using
a ranking of GO terms importance enables reducing the
number of rules describing genes, simultaneously incre-
asing the number of genes covered by the rules. Rules wi-
thout negative condition terms occurring in premises do
not lie on the same path of the ontology graph, like rules
that are the basis of GO term ranking creation. Among ru-
les determined in such a way there are those belonging to
the input rules set (which is the basis of GO terms ran-
king creation) as well as those which are not contained in
the set. This means that the rules were previously removed
during filtration, because they did not satisfy the filtration
conditions given by the compound measureQ. The algori-
thm considering the importance of GO terms does not use
the measure Q. Moreover, it puts greater emphasis on the
conciseness of the obtained description. Thus such rules
can appear in the description now. Applying negative con-
ditions significantly increases the coverage of gene groups
descriptions but, unfortunately, makes the interpretation of
the obtained rules more difficult. From the definition of the
relation ≤ in the ontology graph it follows that if the gene
g is not annotated by the term t, then it is annotated by
no term s satisfying the relation s ≤ t, either. Therefore,
rules that include negative annotations can help in the in-
terpretation of biological information contained in a gene
group by excluding negatively annotated terms together
with all annotations placed below these terms in the on-
tology graph (at lower levels). For example, the rule pre-
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Table 3. Number of decision rules and gene group coverage obtained for the YEAST data set.
Significant rule induction Rules induction without Rules induction with

Gene Examples negative GO terms negative GO terms
group No of No of rules Coverage No of Coverage No of Coverage

rules after filtration rules rules

1 11 377 6 100% 3 100% 3 100%
2 27 1447 4 100% 1 100% 1 100%
3 14 4308 12 93% 3 93% 3 93%
4 17 43083 22 100% 3 100% 3 100%
5 22 307 4 41% 2 64% 2 77%
6 15 20225 11 93% 3 100% 3 93%
7 8 6645 12 100% 1 100% 1 100%
8 139 3842 12 100% 2 100% 1 99%
9 5 54426 12 100% 2 100% 1 80%

10 16 810 8 94% 5 100% 4 94%
∑

274 - 103 avg 94% 25 avg 97% 22 avg 96%

Table 4. Number of decision rules and gene group coverage obtained for the HUMAN data set.
Significant rule induction Rules induction without Rules induction with

Gene Examples negative GO terms negative GO terms
group No of No of rules Coverage No of Coverage No of Coverage

rules after filtration rules rules

1 62 5 5 27% 4 15% 5 100%
2 83 1253 15 53% 2 58% 5 90%
3 27 16 4 44% 4 48% 6 100%
4 31 2336 20 88% 6 84% 10 77%
5 5 7134 8 80% 3 80% 3 80%
6 21 37432 44 90% 9 71% 7 62%
7 11 841 10 46% 4 64% 4 45%
8 40 23 3 26% 5 35% 8 78%
9 14 147 6 43% 4 43% 4 50%

10 15 12988 30 81% 5 47% 5 47%
∑

309 - 145 avg 47% 46 avg 48% 57 avg 83%

sented below excludes from the description 3101 terms,
which makes up 17% of the whole ontology graph:

IF regulation of nitrogen
compound metabolic
process and (pval =0.00277)
gene expression and (pval =0.00143)

not (negative regulation
of metabolic process or (pval =0.62721)
cell division or (pval =0.05836)
behavior or (pval =0.13548)
multicellular organismal
homeostasis or (pval =0.13548)
wound healing or (pval =0.28381)
regulation of catalytic
activity or (pval =0.05172)
chromosome organization or (pval =0.22460)
cellular catabolic process) (pval =0.65636)

THEN gene group is 2
(pval = 3.35e − 07, FDR = 8.55e − 06).

(13)

Rules with negative annotations can be especially
useful for negative verification of hypotheses concerning
biological functions of genes that create a given group.

Irrespective of the induction algorithm applied, pre-
mises of rules are composed of statistically significant as
well as of insignificant GO terms. The following two rules
present this property:

IF aerobic respiration and (pval = 0.05496)
biopolymer metabolic
process and (pval = 0.26048)
cellular macromolecule
metabolic process (pval = 0.32327)

THEN gene group is 3
(pval = 0.00011, FDR = 0.00016),

(14)

IF generation of precursor
metabolites and energy and (pval =2.88e−11)
primary metabolic
process and (pval = 0.39566)

THEN gene group is 6
(pval = 9.69e − 12, FDR = 2.10e − 11).

(15)

In the case of the first rule, a conjunction of three
statistically insignificant GO terms gives as a result a sta-
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Table 5. Number of rules and descriptors obtained for descriptions of each gene group (YEAST dataset).
Gene Significant rules Rules induction without Rules induction with

group indiction negative GO terms negative GO terms

Rules GO rules Rules GO rules Rules GO rules

1 6 17 3 4 3 4 (0)

2 4 12 1 1 1 1 (1)

3 12 25 3 5 3 8 (3)

4 22 31 3 5 3 6 (1)

5 4 7 2 3 2 8 (6)

6 11 11 3 5 3 8 (6)

7 12 19 1 1 1 1 (0)

8 12 22 2 5 1 5 (3)

9 12 17 2 4 1 2 (0)

10 8 12 5 6 4 8 (3)

Table 6. Number of rules and descriptors obtained for descriptions of each gene group (HUMAN dataset).

Gene Significant rules Rules induction without Rules induction with

group indiction negative GO terms negative GO terms

Rules GO rules Rules GO rules Rules GO rules

1 6 11 4 9 5 11 (2)

2 15 20 2 2 5 55 (50)

3 11 21 4 7 6 47 (40)

4 26 40 6 9 10 19 (5)

5 8 18 3 5 3 5 (0)

6 42 63 9 16 7 15 (1)

7 8 18 4 8 4 11 (2)

8 4 8 5 8 8 42 (32)

9 6 19 4 6 4 8 (2)

10 31 56 5 12 5 12 (0)

tistically significant rule. In the case of the second rule,
adding a statistically insignificant term to a statistically si-
gnificant one allows obtaining a better rule.

Considering quantitative results of the conducted
experiments and the purpose of rule induction, the follo-
wing methodology of determining rules describing gene
groups can be proposed:

• Set an acceptable level of rule statistical significance,
set the maximal number of GO terms occurring in the
premises of rules determined by the significant rule
induction algorithm.

• Perform rule induction and apply the filtration algo-
rithm using the measure (6).

• If, for a given gene group, the number of rules is too
high or the coverage is too low, perform for these
groups rules induction using the algorithm that ap-
plies GO term importance (the option without nega-
tive annotations).

• If the obtained descriptions are still unsatisfactory,

apply the algorithm that evaluates GO term impor-
tance once more (the option with negative annota-
tions).

To improve the quality of the output description of a gene
group, descriptions obtained by means of particular algo-
rithms can be joined. For rules included in the joined sets
of rules, a measure evaluating the quality of rules can be
defined and the description of a gene group can be cre-
ated by means of a filtration algorithm similar to the one
presented in Section 2.2. Defining such a measure and a
filtration algorithm will be the subject of future research.

Decision rules are generated mainly for description
purposes to support drawing biological conclusions from
DNA microarray experiments. Thus, real verification of
the rule quality is its ability to provide biological inter-
pretation of the genes composing analyzed groups. Do the
determined rules and information about the reduced set
of GO terms have any interesting biological interpreta-
tion? Below we present an example decision rule from the
YEAST data set generated for the gene group No. 6:
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IF oxidation reduction and
oxidative phosphorylation and
hydrogen transport and
monovalent inorganic cation transport and
ion transmembrane transport

THEN gene group is 6
Accuracy: 1.0 Coverage: 0.6

(pval = 2.383e − 13, FDR = 3.93e − 13).
(16)

The group indicated in the conclusion of the above
rule was described as ATP synthesis in the original paper
of Eisen et al. (1998), and it is a group which includes ge-
nes related to ATP synthesis. The ATP synthase enzyme
is an enzyme which catalyses the reaction of ATP synthe-
sis in mitochondria using transmembrane electrochemical
proton potential difference which forces to move the pro-
tons from the inter-membrane space into the matrix in mi-
tochondria during oxidative phosphorylation. The diffe-
rence between the concentration of protons (H+) betwe-
en the matrix and the inter-membrane space drives a flux
of ions across the membrane down the proton gradient.
The structure of this enzyme is complex—in yeast orga-
nisms, the ATP synthase complex consists of the two di-
stinct multisubunit portions: F1 and FO. Group 6 includes
15 genes—among them there are nine genes that encode
components of the ATP synthase. The rule above is sup-
ported and recognized by nine genes (ATP1, AT2, ATP3,
ATP4, ATP5, ATP7, ATP14, ATP16, ATP17). This means
all of the genes from Group 6 that encode components of
ATP synthase.

Another exemple decision rule is the rule obtained
for the HUMAN dataset for the gene group No. 6:

IF organ development and
regulation of locomotion and
positive regulation of cell motion and
muscle cell proliferation

THEN gene group is 6
Accuracy: 0.75 Coverage: 0.14

(pval = 0.001, FDR = 0.05).

(17)

The above rule is supported by three genes which en-
code proteins involved in the process of angiogenesis—
the development of a vascular supply system which is a
fundamental requirement for organ development. VEGFA
is one of the most important proteins from the VEGF (va-
scular endothelial growth factor) subfamily of growth fac-
tors. VEGFA stimulates cellular responses by binding to
tyrosine kinase receptors Flt-1 and KDF/Flk-1. VEGFA
and the fibroblast growth factor 2 (FGF2) both are well-
investigated proangiogenic molecules (Kano et al., 2005).
There are evidences that VEGFA regulates the expres-
sion of FLT1 (Mata-Greenwood et al., 2003) and FGF2
(Seghezzi et al., 1998).

In Tables 7 and 8 we present the most and the least
important GO terms obtained for each gene group for both

datasets. In the tables we also included the description gi-
ven by the authors of the original papers. As can be seen
(in the case of the YEAST dataset) the most important GO
terms obtained for each gene group are consistent with the
description given by the authors of the original paper. For
example, in yeast organisms, the spindle pole body con-
trols the assembly of all microtubules in the cell, glycoly-
sis is a metabolic pathway that converts glucose (hexose
molecule) into pyruvate, and one of the functions of chro-
matin is to package DNA. In the case of the HUMAN da-
taset, we cannot find any similarity by comparing the most
important GO terms and the description given by the au-
thors of the paper. This is due to the fact that the authors
described only part of the genes composing the clusters,
for example, 24 genes from Cluster 1 were described as
signal transduction genes while 28 genes were described
as cell cycle and proliferation genes and 48 remaining ge-
nes were no function assigned. However, we would like to
stress that the description of the gene group is created by
all important GO terms obtained during the analysis, not
only by one, most important of them. The analysis of the
last columns of Tables 7 and 8 shows that some terms oc-
cur to be worst for several gene groups (i.e., biopolymer
biosynthetic process in Table 7 and response to stress in
Table 8). If these terms appear in rules describing other
gene groups, we can treat them as noise. We can also no-
tice that some of the terms that are worst for one of the
groups are best for other groups (i.e., biopolymer biosyn-
thetic process in Table 7 and protein complex assembly in
Table 8), which is consistent with the intuition.

The results presented in Tables 7 and 8 show that
terms which are most significant for the rule description
of a given gene group are also characterized by high stati-
stical significance. However, it does not mean that the term
with the best assessment of the importance is also statisti-
cally the most significant term describing the given gene
group. In the obtained data sets, many examples that con-
firm the above statement can be found, which means that
the GO terms assessment (hence the whole rules, too) ob-
tained using the measure Rss differs from the assessment
obtained by pval.

We also compared results of our analysis with tho-
se obtained from the Genecodis service (Carmona-Saez
et al., 2007). The results of the comparison for the YEAST
dataset are presented in Table 9.

The rule

IF transcription and
regulation of transcription, DNA dependent and
DNA replication and
protein complex assembly and
pre-replicative complex assembly and
DNA replication initiation and
S phase of mitotic cell cycle and
DNA strand elongation during DNA replication

THEN gene group is 9
(18)

is an example rule obtained from Genecodis. This rule
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Table 7. Results of the evaluation of GO terms significance for the YEAST dataset.
Gene Desription from the Best GO terms Worst GO term
group original paper Name (importance; pval) Name (importance)

1 spindle body assembly microtubule-based process modification-dependent
and function (0.48; 1.568112e-11) macromolecule catabolic

process (–1.17)
2 proteasome modification-dependent sexual reproduction

macromolecule catabolic (–0.07)
process (1.18;17 1.415534e-13)

3 mRNA splicing mRNA metabolic process mitochondrion organization
(0.33; 1.803550e-08) (–1.32)

4 glycolysis hexose catabolic process gene expression
(0.89; 5.160317e-13) (–0.51)

5 mitochondrial ribosome mitochondrion organization biopolymer biosynthetic
(1.32; 4.087841e-13) process (–0.49)

6 ATP synthesis ribonucleoside triphosphate cell death (–0.08)
biosynthetic process
(0.81; 3.449463e-13)

7 chromatin structure DNA packaging (1.66; 0) biopolymer biosynthetic
process (–0.54)

8 ribosome and translation biopolymer biosynthetic ribosome assembly (–0.24)
process (0.49; 1.040279e-13)

9 DNA replication DNA replication initiation negative regulation of
(1.60; 1.084954e-07) biosynthetic process (–0.52)

10 tricarboxylic acid cycle electron transport chain ion transport (–0.23)
and respiration (0.35; 3.504974e-13)

Table 8. Results of the evaluation of GO terms significance for the HUMAN dataset.
Gene Desription from the Best GO terms Worst GO term
group original paper – partially Name (importance; pval) Name (importance)

1 signal transduction / primary metabolic process cell communication (–0.15)
cell cycle and proliferation (0.04; 0.03889)

2 immediate-early cellular biopolymer metabolic regulation of RNA metabolic
transcription factors/ process (0.18; 0.00441) process (–0.12)

coagulation and hemostasis
3 other transcription factors/ lipid metabolic process adaptive immune response based

inflammation (0.07; 0.00073) on somatic recombination of
immune receptors built from

immunoglob. superfamily
domains (–0.40)

4 angiogenesis cell cycle checkpoint protein complex assembly
(0.40; 0.00004) (–0.22)

5 tissue remodeling response to toxin response to stress (–0.19)
(1.25; 0.00206)

6 cytoskeletal reorganization positive regulation of cell positive regulation of RNA
division (1.21; 0.00008) metabolic process (–0.39)

7 re-epithelialization protein complex assembly positive regulation of cellular
(0.22; 0.15404) biosynthetic process (–0.32)

8 unidentified role blood circulation cell communication (–0.12)
in wound healing (0.10; 0.00282)

9 cholesterol biosynthesis developmental growth regulation of angiogenesis
(0.36; 0.00234) (–0.41)

10 no description skeletal system development response to stress (–0.17)
(0.61; 0.01570)
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Table 9. Comparison of rules obtained from Genecodis and Explore for the YEAST dataset.
Gene group Method of analysis Coverage Number of rules

1 Genecodis 45% 4
Significant rules induction 100% 6

2 Genecodis 100% 6
Significant rules induction 100% 4

3 Genecodis 0% 0
Significant rules induction 93% 12

4 Genecodis 88% 23
Significant rules induction 100% 22

5 Genecodis 0% 0
Significant rules induction 41% 4

6 Genecodis 60% 3
Significant rules induction 93% 11

7 Genecodis 100% 5
Significant rules induction 100% 12

8 Genecodis 25% 2
Significant rules induction 100% 12

9 Genecodis 80% 4
Significant rules induction 100% 12

10 Genecodis 75% 12
Significant rules induction 94% 8

was generated for objects from the gene group No. 9, from
the YEAST dataset.

The analysis of the structure of the GO graph for BP
ontology revealed that there are the following relations
among GO terms composing the above rule:

regulation of transcription, DNA dependent ≤ transcription,

DNA replication initiation ≤ DNA replication,

DNA strand elongation during DNA replication ≤ DNA replication,

pre-replicative complex assembly ≤ DNA replication.

Genecodis does not perform any initial selection of
the attributes that are added to the premise of the created
rule—it simply generates all possible combinations of GO
terms. As a result of such an approach, one may obtain
rules that include redundant information in their premises,
i.e., GO terms that are in relation ≤ with other GO terms
composing the rule. With the Explore method, the rules
obtained include smaller number of GO terms, but each
term describes a different biological process.

Below we present the rule obtained by our version of
the Explore algorithm for the same gene group:

IF transcription, DNA dependent and
regulation of transcription and
protein-DNA complex assembly and
interphase of mitotic cell cycle and
DNA replication initiation

THEN gene group is 9.

(19)

The rule (19) covers exactly the same genes as the
previous rule (18). As can be easily noticed, the rule ob-
tained with the modified Explore method does not include
GO terms DNA replication and transcription, which are
parent terms to the terms: regulation of transcription, DNA

dependent and DNA replication initiation; pre-replicative
complex assembly; DNA strand elongation during DNA
replication, respectively. The term S phase of mitotic cell
cycle from the rule (18) is replaced by the term interphase
of mitotic cell cycle, which is the immediate parent of the
term S phase of mitotic cell cycle. Also the term regula-
tion of transcription, DNA dependent was replaced by its
two immediate parent terms: transcription, DNA depen-
dent and regulation of transcription. There is also a close
relation among the terms protein complex assembly and
the protein DNA complex assembly from the Genecodis
rule and the term protein-DNA complex assembly from the
Explore rule. The absence of the term DNA strand elonga-
tion during the DNA replication can be explained by the
fact that during the generation of the rules by our version
of the Explore algorithm we limited the number of rule
descriptors to five.

It is very difficult to compare the results obtained
with the use of both methods. Due to the number of possi-
ble combinations, similarities among different GO terms
describing the same biological processes and differences
between the two methods, the obtained descriptions differ
in many aspects. However, as can be easily noticed, the
rules obtained by our version of the Explore algorithm are
easier to interpret than Genecodis rules, since we do not
include terms lying on the common ontology path to a rule
premise.

5. Conclusion

Issues of the description of gene groups by means of GO
terms were presented in the paper. Logical rules were used
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as a language of description. Work related to gene gro-
ups description by means of rules with various represen-
tations was presented. A novel method of the induction,
evaluation and filtration of multiattribute rules describing
gene groups was outlined in the main part of the paper.
A method of importance evaluation of a single GO term
occurring in the premises of the obtained rules and an al-
gorithm of rule induction that considers the obtained GO
terms ranking were also introduced in the paper.

The proposed method of significant rule induction,
evaluation and filtration as algorithms that consider ran-
king of GO terms appeared to be very effective. We are
able to obtain small rule sets having better average stati-
stical significance than unfiltered rule sets.

The presented method of significant rules induction
guarantees that all statistically significant rules are deter-
mined. The proposed approach differs from other methods
in the following features: the method of the evaluation and
filtration of the rules and the fact that terms lying on the
same path in the gene ontology graph do not occur in the
rule premises simultaneously (like, for example, in Gene-
codis). Both objective factors (statistical significance of
rules) and subjective factors (premises composed of ma-
ny GO terms assigned to the lowest possible level in the
ontology graph) are involved in rule evaluation.

The analysis of the obtained results shows that esta-
blishing a ranking of GO terms that describe the given ge-
ne group provides additional knowledge about the group.
The analysis of the rules and the results presented in Ta-
bles 7 and 8 leads to the conclusion that the best GO terms
describing the given gene group usually occur in the best
rules describing the group and do not occur in rules de-
scribing other groups (even if they do, they are recognized
as the worst or almost the worst terms and are placed at
the bottom of the other group rankings). Among the worst
GO terms there are those that describe more than one gro-
up of genes—it could be interesting to verify the similarity
of the groups (or at least part of genes belonging to these
groups) which are described by the same, least significant,
GO terms. The least significant terms usually have nega-
tive values of the coefficient (12); this result is consistent
with intuition and can be justified by the fact that such
terms introduce noise in gene groups description.

The application of the rule induction algorithm using
a ranking of important GO terms enables reducing the
number of rules describing genes while simultaneously
increasing the number of genes covered by the rules. Ru-
les with negative annotations can be especially useful for
negative verification of hypotheses concerning biological
functions of genes that create a given group. The presen-
ted algorithms may be useful tools that help biologists to
understand and interpret results of DNA microarray expe-
riments. Results of experiments demonstrate that the pro-
posed method of rule induction and postprocessing is ef-
ficient. In particular, the method enables discovering au-

tomatically the dependences which were found during re-
search published by biologists (Bruckmann et al., 2007;
Mata-Greenwood et al., 2003; Kano et al., 2005; Seghez-
zi et al., 1998).

The algorithms of significant rule induction and rule
filtration are available through the RuleGO Internet servi-
ce (www.rulego.polsl.pl) (Gruca et al., 2009). In
the future, we plan to extend the service by adding the po-
ssibility of evaluating GO terms importance. We also plan
to add a new functionality to the service to allow the user
to semi-automatically generate a description of groups of
genes. The user will be able to generate three different sets
of rules for an analyzed group of genes using each of the
rules generation methods described in this paper. By com-
paring the obtained sets of rules, the user will be able to
choose the best description. They will also have the possi-
bility to create their own description of the gene group. By
adding rules from the all three sets of rules to a new de-
scription and analyzing the coverage of the newly created
set of rules, the user will be able to create the best possible
description of the analyzed group of genes.
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