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We present an extension of the protector control scheme introduced for the linear case in a previous work to a class of
nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is
subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting
nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work,
we provide a simulation example.

Keywords: nonlinear distributed systems, disturbance, spreadability, vulnerability, remediability, protector control.

1. Introduction

In environmental modeling, numerous studies have shown
that transport systems describe many natural phenomena
(Beltrami, 1987; Diaz and Lions, 1993). Various situa-
tions have been considered according to the initial and
boundary conditions (Dautray and Lions, 1984). Gener-
ally, it concerns the velocity field and a portion (or all)
of the boundary of the geometrical domain on which the
system evolves. In this work, we consider a nonlinear sys-
tem which propagates with a finite velocity and its initial
condition is subject to a disturbance. Thus, where the dis-
turbance is assumed to be spreadable, we will see how to
protect certain areas which are vulnerable to the effects of
such a disturbance. This is an extension of the protector
control issue to this class of nonlinear systems. We ex-
plore this concept based on several concepts of regional
analysis.

Indeed, regarding the important role of the space
variable in the analysis and control of distributed systems,
regional analysis of such systems is limited to the study
of their behavior just on a subset of the global domain (El
Jai et al., 1995; El Jai (2002; 2004)). For systems un-
dergoing an external disturbance, the problem of control
arises. This leads (Afifi et al. (2000; 2001)) to the study
of the sources and their regional detection when they are
unknown. The concept of the spy sensor is introduced to
reconstruct these sources.

In fact, knowing this disturbance, another problem

consists in describing its spatial evolution over a time in-
terval. For that purpose, we use the concept of spread-
ability (El Jai and Kassara, 1994; 1996; Bernoussi and El
Jai, 2000; Bernoussi et al., 2001). Hence, this leads to
the problem of the influence of this disturbance on some
given areas, and also the possibility of subjecting them
to controls to achieve some specified objectives. Indeed,
given a fixed zone in the global domain on which the sys-
tem evolves, this zone is called vulnerable if it is likely
to be reached (infected) by a given property (Bernoussi
and Amharref, 2003; Bernoussi, 2007). Moreover, if this
zone is reached, then the problem of determining a control
which makes it possible to compensate the disturbance ef-
fects on such a zone at a certain time is regional remedi-
ability. This problem has been widely studied in the case
of linear systems (Afifi et al., 2002).

As it is not always possible to remedy some distur-
bances on a given area such as incurable epidemics, or the
remediable control exists but with a very high cost, we
think about the possibility of protecting such a zone from
being reached (or contaminated). This enabled us to in-
troduce the concept of the protector control in the case of
linear systems (Qaraai et al., 2006; Bernoussi , 2010). The
principle is to be able to prevent such effects from reach-
ing the area during all the time interval on which the linear
system evolves.

To characterize the solutions of the protector control
problem, we used two different approaches: the first one
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concerns the so-called adaptable families of transforma-
tions used to characterize the spreadability of the system
considered (Bernoussi and El Jai, 2000), while the other
is based on regional remediability not for the original sys-
tem but for some suitable delay system. A common aspect
of these two approaches is to deviate the property gener-
ated by the disturbance effects for not passing into a given
vulnerable zone.

On the other hand, and given the fact that the phe-
nomena that motivate us to explore the concept of the pro-
tector control are modeled by nonlinear systems, in this
work we will extend the protector control concept intro-
duced for the linear case (Bernoussi , 2010) to a class of
nonlinear systems.

Contrary to the problem of regional remediability, re-
cently introduced for the same class of systems (Qaraai
et al., 2008), which consists in neutralizing the effects of
a spreadable disturbance on a given zone, the principle
of the protector control of this zone consists in prevent-
ing disturbance effects to reach such a zone during the en-
tire time interval of the evolution of the system considered
(Qaraai et al., 2009).

Therefore, the study of the protector control will
mainly take into account the trajectory of the property
caused by the spreadable disturbance and also the first
time at which such a property starts to reach the vulner-
able zone. Indeed, if we do not act before this first time,
then the area will be reached, and in this case we cannot
consider its protection but rather its remediability. This
means the need to control the trajectory of the disturbance
effects so that it cannot pass through the fixed area.

To characterize solutions of this problem, the ap-
proach of a remediability of a certain nonlinear delay sys-
tem will be introduced. The delay arising here is justified
by the fact that we need to act “before” the disturbance
starts to reach the vulnerable zone.

This work is structured as follows. After introduc-
ing the protector control problem, we review a few math-
ematical results used for a new formulation of this prob-
lem. The solutions to this problem are characterized using
the approach of the remediability of a certain nonlinear
delay system so that an algorithm will be given. More-
over, a second characterization will be given by coupling
the families of transformations and delay. In the last sec-
tion, we illustrate the concept of the control protector by
considering a variant of Fisher’s equation (Giuggioli and
Kenkre, 2003) which can model the problem of bacterial
dynamics.

2. Problem statement: Definitions

Let Ω be an open bounded subset of R
n, I =]0, T [ a

time interval, σ a fixed region in Ω and ω the geometri-
cal support of a given disturbance f , which affects the ini-
tial condition of the system. Assume that meas(σ) �= 0,

ω ∩ σ = ∅ and the disturbance f is spreadable from
ω (Bernoussi , 2010). Consequently, if the zone σ is
f -vulnerable (Bernoussi and Amharref, 2003), it can be
reached by the disturbance f .

In this work we consider the problem of the protector
control, e.g., a control which can “protect” the vulnerable
zone subjected to the disturbance during all the time inter-
val I . The control considered will be determined through
a measure function. This problem can be studied based
on the compensation problem developed by Qaraai et al.
(2008) for the same class of nonlinear systems.

ω

σ

Ω

Fig. 1. Localization of ω and σ.

Consider a system governed by the following nonlin-
ear state equation:

(˜S)

⎧

⎨

⎩

˙̃z(t) = F z̃(t) +Bu(t), 0 < t < T,

z̃(0) = z0 + f,

(1)

where z̃ ∈ Lp(0, T ;Z), p > 1, u ∈ L2(0, T ;U), f ∈ F ,
B ∈ L(U ;Z) and F : Z −→ Z is a nonlinear operator
which satisfies the following assumptions:

1. F (0) = 0.

2. F is continuously differentiable at every point f ,
where f ∈ F ⊂ Z .

The state space Z , control U and disturbance F are
separable Hilbert spaces.

Let χσ be the restriction to σ, and χ∗
σ the adjoint op-

erator of χσ defined by

χ∗
σ : Zσ −→ Z

such that

(χ∗
σz)(x) =

⎧

⎨

⎩

z(x) on σ,

0 elsewhere,
(2)

where Zσ is a subspace of Z , which designates the set of
states restricted to σ:

Zσ = {χσz = z|σ : z ∈ Z}. (3)

The system (1) is augmented by the measure function
given by

( ˜E) ỹ σ(t) = Cχ∗
σχσz̃(t), (4)
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with ỹ σ ∈ Lp(0, T ;Y ), C ∈ L(Z;Y ), and Y is a selfad-
joint Hilbert space (Y = Y ∗).

Remark 1. The operators B and C are assumed to be
bounded. Otherwise, their images will be respectively Z1

and Y1 such that Z ⊂ Z1 ⊂ Z∗ and Y ⊂ Y1 ⊂ Y ∗.
We assume that the system (˜S) admits one unique

solution z̃f, u, and we set

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z̃f,u the solution of (˜S),
z̃f,0 the solution of (˜S) when f �= 0 and u = 0,
z̃0,0 the solution of (˜S) when f = 0 and u = 0,

ỹ σ
f,u the output ( ˜E),

ỹ σ
f,0 the output ( ˜E) when f �= 0 and u = 0,

ỹ σ
0,0 the output ( ˜E) when f = 0 and u = 0.

(5)
Consider the property P and the subsets wf,0,t of Ω

defined respectively by

P z̃f,0(x, t) ⇐⇒z̃f,0(x, t) �= z̃0,0(x, t) and

wf,0,t = {x ∈ Ω : P z̃f,0(x, t)}. (6)

Here wf,0,t is the set of all points x in Ω, where the
state of the disturbed system zf,0 satisfies property P at
time t (e.g., the points where the state zf,0 is affected
by the disturbance f ). We recall the following definition
(Bernoussi , 2010; Qaraai et al., 2008).

Definition 1.
1. We say that the disturbance f is spreadable (respec-
tively A-spreadable) if the family (wf,0,t)t∈I is increas-
ing in the inclusion sense:

wf,0,t ⊂ wf,0,s, ∀t, s ∈ I : t ≤ s,

(resp. in the measure sense:

μ(wf,0,t \ wf,0,s) ≤ μ(wf,0,s \ wf,0,t),
∀t, s ∈ I : t ≤ s.)

2. The zone σ is said to be f -vulnerable if there exists a
time t ∈ [0, T ] such that

wf,0,t ∩ σ̊ �= ∅, (7)

where μ is the Lebesgue measure and σ̊ stands for the in-
terior of σ.
3. If a zone σ is f -vulnerable, then it is said to be f -
remediable on [0, T ] if

ỹ σ
f,u(T ) = ỹ σ

0,0(T ).

In Definition 1, we consider the interior of σ instead
of σ because its boundary Γσ can be a natural barrier to

the disturbance f .

For a given z0 ∈ Z , a disturbance f ∈ F , and a mea-
sure function ( ˜E), the protector control problem is formu-
lated as follows:

( ˜P )

⎧

⎨

⎩

Find a control u ∈ L2(0, T ;U) such that

ỹ σ
f,u(t) = ỹ σ

0,0(t), ∀ t ∈ [0, T ].

The protector control problem ( ˜P ) takes into account
the zone σ, the normal evolution of system ỹσ

0,0 (an au-
tonomous undisturbed case) and the evolution of the dis-
turbed controlled system ỹ σ

f,u for every t ∈ [0, T ]. This
means that we must keep the disturbed system on its nor-
mal evolution during the whole time interval [0, T ] by a
suitable control u. The role of such a control is to prevent
effects of the disturbance f to reach the zone σ during the
entire [0, T ]. This is why the protection problem is differ-
ent from the regional remediability one. Indeed, the prin-
ciple of regional remediability (Afifi et al., 2002; Qaraai
et al., 2008) consists in compensating, by an adequate
control, the effects of the disturbance f on the reached
zone σ at final time T . Notice that, in this case, the zone
σ is not only vulnerable, but it may also be reached by
such disturbance effects. In other words, this consists in
making the disturbed system on its normal evolution on
σ by a suitable control u at time T . Recall that (Afifi
et al., 2002; Qaraai et al., 2008) the regionally remedia-
bility problem on σ is formulated as follows:

(˜RP )

⎧

⎨

⎩

Find a control u ∈ L2(0, T ;U) such that

ỹ σ
f,u(T ) = ỹ σ

0,0(T ).

Assume that the system (˜S)–( ˜E) is σ-observable
(Zerrik et al., 1994).

Definition 2. If a zone σ is f -vulnerable, then
1. σ is said to be f -protectable if

∃u ∈ L2(0, T ;U) : ỹ σ
f,u(t) = ỹ σ

0,0(t), ∀ t ∈ [0, T ].
(8)

In this case u is said to be an f -σ-protector control.
2. σ is said to be weakly f -protectable if

∀ε > 0, ∃u ∈ L2(0, T ;U) :
‖ỹ σ

f,u(t) − ỹ σ
0,0(t)‖Y ≤ ε, ∀ t ∈ [0, T ].

We say that u is a weakly f -σ-protector control with a
tolerance ε.

Remark 2.
1. As the system (˜S) is nonlinear, the existence of the so-
lution z̃f,u (and, consequently, the observation ỹσ

f,u), de-
pends particularly on the disturbance f . That is why we
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have considered the notion ‘f -protectable’ in Definition 2.
In the linear case we can consider the corresponding no-
tion ‘σ- protectable’ in the sense that σ is f -protectable
for all f ∈ F .
2. An f -σ-protector control is an f -σ-remediable one.
The converse is not true.
3. If σ is not f -vulnerable, then we do not have to protect
nor remedy it. That is why we assume that the zone con-
sidered is vulnerable in Definition 2.
4. Let ω be the geometrical support of the disturbance f .
If ω ∩ σ �= ∅ then σ is reached by the effects of f , and in
this case we cannot protect it, but it is possible to influence
its remediability.

3. Transformation of the problem (˜P)

The problem ( ˜P ) as it was formulated is not easy to ap-
proach. Indeed, in the expression for the solution z̃f,u

there is not any explicit relation of control u and distur-
bance f , and, consequently, we cannot use directly the dis-
cussed approach used in the linear case (Bernoussi , 2010).
To overcome these difficulties, we start by transforming
the system (1) to an equivalent system (S) around f , and
we reformulate the problem ( ˜P ).

Let z̃ be the solution of the system (1). With the state
variable change

z(t) = z̃(t) − f (9)

the system becomes

⎧

⎨

⎩

ż(t) = F (z(t) + f) +Bu(t), 0 < t < T,

z(0) = z0.
(10)

Using Assumption 2 on F we obtain, by linearizing
around f ,

F (z(t) + f) = F (f) + F ′(f)z(t) +Nf z(t), (11)

which permits to express the system in a semilinear form

(S)

⎧

⎨

⎩

ż(t) = Af z(t) +Nfz(t) + Ff
+Bu(t), 0 < t < T,

z(0) = z0,
(12)

where Af = F ′(f) ∈ L(Z) and Nf : Z −→ Z des-
ignates the nonlinearities term. On the other hand, the
measure function ( ˜E) around f is given by

ỹ σ(t) = Cχ∗
σχσz̃(t) = Cχ∗

σχσ(z(t) + f).

Setting yσ(t) = ỹ σ(t) − Cχ∗
σχσf and using the

linearity of Cχ∗
σχσ , the transformed measure function is

expressed by

(E) yσ
f, u(t) = Cχ∗

σχσzf, u(t),

where zf, u is the solution of the system (12). Accord-
ingly, in a neighborhood of f , we consider the following
problem:

(P )

⎧

⎨

⎩

Find a control u ∈ L2(0, T ;U) such that

yσ
f, u(t) = yσ

0, 0(t) − Cχ∗
σχσf, ∀ t ∈ [0, T ].

It is clear that the problems ( ˜P ) and (P ) are equiva-
lent in a neighborhood of f .

To treat the problem (P ), we rewrite it in an explicit
form to display the control terms in u, the disturbance in
f , and also those of nonlinearities in zf,u.

3.1. Existence and uniqueness of the solution of (S).
We assume that the linear operator Af is closed, with a
domain dense in Z , and generates a strongly continuous
semigroup (Sf (t))t≥0. We prove that under some as-
sumptions the system (S) has a unique solution zf,u given
by (Qaraai et al., 2008; Qaraai, 2008)

zf, u(t) = Sf (t)z0 +
∫ t

0

Sf (t− s)Nfzf,u(s) ds

+
∫ t

0

Sf (t− s)Ff ds

+
∫ t

0

Sf (t− s)Bu(s) ds,

(13)

which can be written in the following form:

zf,u(t) = Sf (t)z0 + ̂Hf,tzf,u + ˜Hf,tf +Hf,tu, (14)

where the three operators ̂Hf,t, ˜Hf,t and Hf,t are defined
respectively by

̂Hf,t :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Lp(0, T ;Z) → Z,

z �→
∫ t

0

Sf (t− s)Nfz(s) ds,

(15)

˜Hf,t :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F → Z,

f �→
∫ t

0

Sf (t− s)Ff ds,
(16)

Hf,t :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L2(0, T ;U) → Z,

u �→
∫ t

0

Sf (t− s)Bu(s) ds.

(17)
Consider also the mapping

ψ(·, f, u) : z ∈ Lp(0, T ;Z) �−→ ψ(z, f, u) ∈ Lp(0, T ;Z)
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defined by

ψ(z, f, u) :

⎧

⎨

⎩

[0, T ] → Z,
t �→ (z, f, u)(t) = Sf (t)z0

+ ̂Hf,tz + ˜Hf,tf +Hf,tu.
(18)

Then, to prove that zf,u is given by (13), we prove
that there exists d > 0 such that the mapping ψ(·, f, u)
admits one unique fixed point zf,u in the ball B(0, d) of
Lp(0, T ;Z). Therefore, denote by ‖ · ‖p = ‖ · ‖Lp(0,T ;Z),
p ∈]1,+∞[, and assume that (Qaraai et al., 2008)

(H1) ∃g1 ∈ Lq(0, T ) with
1
q

+
1
p

= 1:

‖Sf(t)‖L(Z) ≤ g1(t), ∀t ∈ [0, T ]

(H2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1. Nf (0) = 0,

2. ‖Nfz1(t) −Nfz2(t)‖Z

≤ K (‖z1‖p; ‖z2‖p) ‖z1(t) − z2(t)‖Z ,

∀z1, z2 ∈ Lp(0, T ;Z); K : R
2
+ −→ R+ :

lim
(θ1; θ2)→(0,0)

K(θ1; θ2) = 0.

For some a ∈]0, 1[ let

k = sup
θ<a

K(θ; 0),

K = sup
‖(θ1;θ2)‖R2

+
<a

K(θ1; θ2),

K∗ = max(k,K),

(H3)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∃α > 0 : ‖Sf(t)z0‖Z ≤ α‖z0‖Z ,
∀t ∈ [0, T ],

∃β > 0 : ‖Hf,t u‖Z ≤ β‖u‖L2(0,T ;U),
∀t ∈ [0, T ],

∃γ > 0 : ‖ ˜Hf,t f‖Z ≤ γ‖f‖F , ∀t ∈ [0, T ],

(H4) T <
1

(K∗‖g1‖q)
p ,

(H5) ∃λ ∈]0, 1[:

α‖z0‖Z + γ‖f‖F ∈

⎤

⎦0,
λ
(

1 − T
1
p k‖g1‖q

)

T
1
p

⎡

⎣.

Under all these assumptions, we have the following
result (Qaraai et al., 2008).

Theorem 1. If the hypotheses (H1)–(H5) are satisfied,
then
(a) There exists d > 0 and m = m(d) > 0 such that,
for all u in the ball B(0,m) of L2(0, T ;U), the mapping
ψ(·, f, u) admits one unique fixed point zf,u solution of
(S) in the ball B(0, d) of Lp(0, T ;Z).
(b) The mapping h1 : u ∈ B(0,m) �−→ zf,u ∈ B(0, d) is
Lipschitzian.

Proof. (a) We show that there exists d ∈]0, 1[ and m =
m(d) > 0 with

m =
1
β

⎡

⎣

d
(

1 − T
1
p k‖g1‖q

)

T
1
p

− α‖z0‖Z − γ‖f‖F

⎤

⎦

(19)
such that for all u ∈ B(0,m) we have ψ(B(0, d), f, u) ⊂
B(0, d). Besides, ψ(·, f, u) is a contraction in B(0, d)
with a contraction constant c1 ∈]0, 1[,

c1 = T
1
p ‖g1‖qK. (20)

For the point (b), the Lipschitz constant l is given by

l =
T

1
p β

1 − c1
. (21)

�

Remark 3.
1. The hypothesis (H1) is true for the whole strongly con-
tinuous semigroup (Sf (t))t∈I such that ‖Sf (t)‖L(Z) ≤
Mewt for some constants M and w (Curtain and
Pritchard, 1978; Pazy, 1983).
2. For the hypothesis (H2), the nonlinear operator Nf is
assumed to be globally Lipschitzian with respect to K∗ in
Z .
3. The positive constants α, β and γ in the hypothesis
(H3) are given respectively by

α = max
t∈[0,T ]

g1(t),

β = ‖g1‖q‖B‖,

γ = T
1
p ‖g1‖q‖F‖.

4. The hypotheses (H4) and (H5) are the conditions on the
final time T , the initial condition z0 and the disturbance f
for which the state zf,u given by (13) is defined for some
control u. Besides, (H5) justifies the fact of considering
in Remark 2 the difference between σ being f -protectable
and σ being protectable for all f .
5. For all t ∈ [0, T ] let

l(t) = Nfzf,u(t) + Ff +Bu(t).

Then (13) becomes

zf,u(t) = Sf (t)z0 +
∫ t

0

Sf (t− s)l(s) ds.

It is shown (Curtain and Pritchard, 1978) that if l ∈
C1([0, T ], Z), then (13) is a classical solution of (12).
Thus, to assure the regularity of the solution to (12), we
assume moreover that Nfzf,u, Bu ∈ C1([0, T ], Z). For
more details, we refer the reader to the work of Henry
(1981).
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3.2. New formulation of ( ˜P ). Since the expression of
the solution of (S) in a neighborhood for f is given by

zf,u(t) = Sf (t)z0 + ̂Hf,tzf,u + ˜Hf,tf +Hf,tu, (22)

the measure function (E) will be

(E) yσ
f,u(t) = Cχ∗

σχσ Sf (t)z0 + Cχ∗
σχσ

̂Hf,tzf,u

+ Cχ∗
σχσ

˜Hf,tf + Cχ∗
σχσ Hf,tu.

In the case where f = 0 and u = 0, we have

z0,0(t) = S0(t)z0 + ̂H0,t z0,0. (23)

Then the associated measure function is

yσ
0,0(t) = Cχ∗

σχσ S0(t)z0 + Cχ∗
σχσ

̂H0,t z0,0. (24)

Hence the problem (P ) is rewritten as follows:

(P )

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find a control u ∈ L2(0, T ;U) such that

Cχ∗
σχσHf,tu+ Cχ∗

σχσ
̂Hf,tzf,u

+Cχ∗
σχσ

˜Hf,tf + Cχ∗
σχσf

+Cχ∗
σχσ(Sf (t) − S0(t))z0

−Cχ∗
σχσ

̂H0,tz0,0 = 0, ∀ t ∈ [0, T ].

4. Protector control approaches

Note that, even if Problem (P ) involves control, distur-
bance and state terms (u, f , zf,u), its solution remains
delicate due to the presence of an equality constraint for
every t ∈ [0, T ]. To overcome this difficulty and to give
a link with a remediable control, we will introduce two
approaches.

4.1. Remediability and a delay system.

4.1.1. Principle. In this section we will introduce a de-
lay system whose state is defined according to the original
system (12) to reduce the solving of Problem (P ) to that
of the remediability problem of a resulting delay system.
That will be done in the following three steps:

1. Introducing a suitable delay system from System
(S): the protector control problem will be trans-
formed to a remediable control one of the resulting
delay system.

2. Formulation of the remediability problem for the re-
sulting delay system.

3. Solution of the obtained problem.

Therefore, consider the Banach space Lp(−T, 0, Z)
on which, for all t ∈ [0, T ], the following strongly contin-
uous semigroup (R(t))t≥0 is defined:

(R(t)b)(r) =

⎧

⎨

⎩

b(t+ r), r ∈ [−T,−t],

0, r ∈ ] − t, 0].
(25)

The operatorD = d/ds is the infinitesimal generator
of (R(t))t≥0 on Lp(−T, 0;Z). Also define the mapping
G ∈ L(Z,Lp(−T, 0;Z)) as follows:

(Ga(x))(r) = a(x), ∀ a(t) ∈ Z, ∀ r ∈ [−T, 0]. (26)

Then consider the operator Λ defined by

Λ :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Z −→ Lp(−T, 0;Z),

zf,u(t) �−→ Λzf,u(t) = zf,u(t)
= R(t)(Gz0)

−D
∫ t

0

R(t− s)Gzf,u(s) ds,

(27)
where zf,u designates the solution of the system (12).
Consequently, the associated measure function is given in
Lp(−T, 0;Y ) by

(E) : y σ
f,u(t) = Cχ∗

σχσzf,u(t), t ∈ [0, T ]. (28)

Recall the following result, which will be useful later.

Lemma 1. ( Ichikawa, 1982)

(y σ
f,u(T ))(r) = y σ

f,u(T + r), ∀ r ∈ [−T, 0]. (29)

Proof. The proof is based immediately on the expressions
(25)–(28). �

On the other hand, the way that the control u and
disturbance f appear in (27) leads us to the introduction
of a new state equation on the product space W = Z ×
Lp(−T, 0, Z) in the following way:

wf,u(t) = Uf (t)w0 +
∫ t

0

Uf (t− s)Nfwf,u(s) ds

+
∫ t

0

Uf (t− s)Gf ds

+
∫ t

0

Uf (t− s)Bu(s) ds,

(30)

where

2wf,u = (zf,u, zf,u)tr, w0 = (z0, Gz0)tr,

Nf = (Nf , 0)tr, G = (F, 0)tr,

B = (B, 0)tr
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and (Uf (t))t≥0 is the strongly continuous semigroup on
W defined by

Uf (t) =
(

U0,f(t) 0
U1,f(t) U2,f (t)

)

, (31)

where

U0,f (t) = Sf (t), U2,f(t) = R(t),

U1,f (t) = −D
∫ t

0

R(t− s)GSf (s) ds.

(32)

If we designate by Af the infinitesimal generator of
the semigroup (Uf (t))t≥0 on the space W , then the sys-
tem associated with (30) is given by
⎧

⎨

⎩

ẇf,u(t) = Afwf,u(t) + Nfwf,u(t) + Gf + Bu(t),
0 < t < T,

w(0) = w0,
(33)

which is augmented by the measure function

(E) y σ
f,u(t) = Cχ∗

σχσwf,u(t), (34)

where

C =
(

C 0
0 C

)

.

Remark that

y σ
f,u(t) = (y σ

f,u(t), y σ
f,u(t))tr ∈ Y × Lp(−T, 0;Y ).

(35)
Concerning (33), it is a state equation with an related

delay system. We define (formally), through (27), the fol-
lowing operator:

Π : zf,u(t) ∈ Lp(−T, 0;Z) �−→ zf,u(t) ∈ Z. (36)

This permits us to introduce some new operators on the
state zf,u(T ), the disturbance f and the control u which
are defined by (where L = Lp(−T, 0;Z))

̂Hf,T :

⎧

⎨

⎩

L → L,

zf,u(T ) �→ p2

∫ T

0

Uf(T − s)NfΠzf,u(s) ds,

˜Hf,T :

⎧

⎨

⎩

F → L,

f �→ p2

∫ T

0

Uf (T − s)Gf ds,

Hf,T :

⎧

⎨

⎩

L2(0, T ;U) → L,

u �→ p2

∫ T

0

Uf (T − s)Bu(s) ds,

where

p2 :
{

W → L,
(zf,u(t), zf,u(t)) �→ zf,u(t).

(37)

Using (30), (31) and (37), we find that

̂Hf,T zf,u(T ) =
∫ T

0

U1,f (T − s)NfΠzf,u(s) ds, (38)

˜Hf,T f =
∫ T

0

U1,f (T − s)Ff ds, (39)

Hf,Tu =
∫ T

0

U1,f (T − s)Bu(s) ds, (40)

where (U1,f (t))t≥0 is given by (32).

Remark 4. The determination of the operator Π given
in (36) is not necessary. It is introduced just to have an
explicit dependence on (38). We clarify this point later.

We define below three operators depending respec-
tively on zf,u(T ), f , u and the final time T . This permits
us to consider the following problem:

(P )

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find u ∈ L2(0, T ;U) such that
Cχ∗

σχσG[Sf (T ) − S0(T )]z0 − Cχ∗
σχσ

̂H0,T z0,0

+Cχ∗
σχσ

˜Hf,T f + Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds

+Cχ∗
σχσHf,Tu+ Cχ∗

σχσ
̂Hf,T zf,u(T ) = 0.

From this formulation and Definition 2 of an f -σ-
protector control of a given f -vulnerable zone σ, we have
the following characterization.

Theorem 2. If σ is f -vulnerable, then u is an f -σ-
protector control if and only if u is a solution to (P ).

Remark 5. The solution to (P ) is a remediable control
for the resulting delay system. This means that the protec-
tion of σ can be seen as a prediction/correction problem
when we assume that this area can be reached in the fu-
ture (at the final time T ), then to the remediability of σ at
final time T we apply a delay in time r ∈ [−T, 0] to return
to the current situation t = T + r ∈ [0, T ] (e.g., real time
or system without delay).

Proof. (Theorem 2) We prove that Problems (P ) and (P )
are equivalent. Indeed, let u ∈ L2(0, T ;U) and f ∈ F .
Through (27), we have

zf,u(T ) = R(T )(Gz0) −D

∫ T

0

R(T − s)Gzf,u(s) ds.
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Replacing zf,u by its expression (13), we obtain

zf,u(T )

= R(T )(Gz0) −D

∫ T

0

R(T − s)G
[

Sf (s)z0

+
∫ s

0

Sf (s− q)Nfzf,u(q) dq

+
∫ s

0

Sf (s− q)Ff dq

+
∫ s

0

Sf (s− q)Bu(s) dq
]

ds.

From the expressions of the semigroup (U1,f (t))t≥0,
the operator Π and the three operators given respectively
by (32), (36), (38), (39) and (40), we obtain

zf,u(T )
= GSf (T )z0 + ̂Hf,T zf,u(T ) + ˜Hf,T f + Hf,Tu.

Hence the output function (E) given by (28) be-
comes

y σ
f,u(T ) = Cχ∗

σχσ

(

GSf (T )z0 + ̂Hf,T zf,u(T )

+ ˜Hf,T f + Hf,Tu
)

.

In the case where f = 0 and u = 0, we have

y σ
0,0(T ) = Cχ∗

σχσ

(

GS0(T )z0 + ̂H0,T z0,0(T )
)

.

Then the control u is a solution to (P ) if and only if u
satisfies

Cχ∗
σχσG[Sf (T ) − S0(T )]z0 − Cχ∗

σχσ
̂H0, T z0,0

+ Cχ∗
σχσ

˜Hf,T f + Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds

+ Cχ∗
σχσHf,Tu+ Cχ∗

σχσ
̂Hf,T zf,u(T ) = 0,

which is equivalent to

y σ
f,u(T ) = y σ

0,0(T ) − Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds,

which is also equivalent to

(y σ
f,u(T ))(r) = (y σ

0,0(T ))(r)

−
(

Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds

)

(r),

∀ r ∈ [−T, 0]. On the one hand, due to (25) and (26) we
have
(

Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds

)

(r) = Cχ∗
σχσf.

Using Lemma 1, we obtain

(y σ
f,u(T ))(r) = y σ

0,0(T + r), ∀ r ∈ [−T, 0].

Then u is a solution to (P ) if and only if

y σ
f,u(T + r) = y σ

0,0(T + r)−Cχ∗
σχσf, ∀ r ∈ [−T, 0].

Setting t = T + r ∈ [0, T ], we obtain

y σ
f,u(t) = y σ

0,0(t) − Cχ∗
σχσf, ∀ t ∈ [0, T ].

This is equivalent to the fact that u is a solution to
Problem (P ). �

The point of Theorem 2 is to reduce the solving of
the protector control problem (P ) defined for all times
t ∈ I to the one of the remediability problem (P ) where
we consider only the final time T and not the state con-
straint for every t ∈ [0, T ]. In fact, we will be interested
in solving Problem (P ) based on the results developed by
Qaraai et al. (2008), but in this case the corresponding op-
erators and functional spaces are related to a delay system.

4.1.2. Determination of the protector control. Us-
ing pseudoinverse techniques, the problem of the deter-
mination of a suitable control can be brought back to the
problem of the determination of a fixed point of a certain
mapping. Thus, and under some hypothesis, a sequence
of controls will be generated by an algorithm convergent
to the desired solution.

Indeed, the control u is a solution to (P ) if it satisfies

Cχ∗
σχσG[Sf (T ) − S0(T )]z0 − Cχ∗

σχσ
̂H0, T z0,0

+ Cχ∗
σχσ

˜Hf,T f + Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds

+ Cχ∗
σχσHf,Tu+ Cχ∗

σχσ
̂Hf,T zf,u(T ) = 0.

Consider the subset V = Im(Cχ∗
σχσHf, T ) of

Lp(−T, 0, Y ) and set

y σ
f (T ) = Cχ∗

σχσG[Sf (T ) − S0(T )]z0

− Cχ∗
σχσ

̂H0,T z0,0 + Cχ∗
σχσ

˜Hf, T f

+ Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds.

(41)

Then we seek a control u such that

Cχ∗
σχσHf,Tu+ Cχ∗

σχσ
̂Hf, T zf, u(T ) = y σ

f (T ).

Using (38), we have

Cχ∗
σχσHf,Tu

= y σ
f (T ) −

∫ T

0

Cχ∗
σχσU1,f (T − s)NΠzf,u(s) ds.
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As Πzf,u(t) = h1u(t) (Eqn. (36) and part (b) of Theo-
rem 3.1), we have to find a control u ∈ B(0,m) such that

Cχ∗
σχσHf,Tu

= y σ
f (T ) −

∫ T

0

Cχ∗
σχσU1,f(T − s)Nfh1u(s) ds.

where the nonlinear term is zero (Nf = 0) and, for
y σ

f (T ) ∈ V , the set

{u : Cχ∗
σχσHf, Tu = y σ

f (T )}

is a nonempty, closed and convex subset of L2(0, T ;U)
which is a reflexive Banach space. Then there exists a
unique control u∗ with a minimum norm, which satisfies

Cχ∗
σχσHf,T u∗ = y σ

f (T ). (42)

Let u∗ = Lyσ
f (T ). Then the linear operator L

which applies V in L2(0, T ;U) is the pseudo inverse of
Cχ∗

σχσHf,T . It is given by

L = H∗
f, Tχ

∗
σχσC

∗
[

Cχ∗
σχσHf,TH∗

f, Tχ
∗
σχσC

∗
]−1

.

(43)
Then on the space V we can define the norm

‖(·)‖V = ‖L(·)‖L2(0,T ;U). (44)

It is on the Banach space (V, ‖ ·‖V ) that we will con-
sider Problem (P ).

On the other hand, we have
∫ T

0

Cχ∗
σχσU1,f (T − s)Nfh1u(s) ds ∈ V,

because Cχ∗
σχσU1,f (t) ∈ L(Z, V ). Then we must find a

control u ∈ B(0,m) such that

u = L
(

y σ
f (T )

−
∫ T

0

Cχ∗
σχσU1,f(T − s)Nfh1u(s) ds

)

. (45)

For yσ
f ∈ V , consider the mapping

ϕ(yσ
f , ·) : L2(0, T ;U) → L2(0, T ;U)

defined by

ϕ(y σ
f (T ), u)

= L
(

y σ
f (T )

−
∫ T

0

Cχ∗
σχσU1,f(T − s)Nfh1u(s) ds

)

.

(46)
Then, to prove that Problem (P ) has a solution, is

equivalent, under some hypothesis, to proving that the
mapping ϕ(yσ

f , ·) admits a unique fixed point u∗ in the
ball B(0,m) of L2(0, T ;U). For that and in addition to
the hypotheses (H1)–(H5), we assume that

(H6) ∃g2 ∈ Lq(0, T ) :
‖Cχ∗

σχσU1,f (t)‖L(Z,V ) ≤ g2(t), ∀t ∈ [0, T ].

(H7) T <
1

(K∗‖g1‖q + βK∗‖g2‖q)
p .

(H8) ∃λ′ ∈]0, 1[: α‖z0‖X + γ‖f‖F ∈
⎤

⎦0,
λ

′
(

1 − T
1
p (k‖g1‖q + βk‖g2‖q)

)

T
1
p

⎡

⎣.

Then, using a Banach fixed point theorem (Smart,
1974), we have the following result:

Theorem 3. If the hypotheses (H1)–(H8) are satis-
fied, then there exist d and ρ = ρ(d) > 0 such that for
all yσ

f (T ) ∈ B(0, ρ), where yσ
f (T ) is given by (41), the

mapping ϕ(yσ
f (T ), ·) admits a unique fixed point u∗ in

B(0,m).

Proof. The second condition of the hypothesis (H2),
lim

(θ1; θ2)→(0,0)
K(θ1; θ2) = 0, implies that

∀ε > 0, ∃ d ∈]0, 1[: sup
‖(θ1; θ2)‖<d

K(θ1; θ2) < ε.

For

ε =
1

T
1
p (‖g1‖q + β‖g2‖q)

and using the hypothesis (H7), we have

c2 = T
1
p (‖g1‖q + β‖g2‖q)K ∈]0, 1[. (47)

Now we prove that ϕ(y σ
f (T ), B(0,m)) ⊂ B(0,m)

for y σ
f (T ) ∈ V , with m and y σ

f (T ) given respectively by
(19) and (41). Indeed, for u ∈ B(0,m), we have

‖ϕ(y σ
f (T ), u)‖L2(0,T ;U)

=
∥

∥

∥y σ
f (T ) −

∫ T

0

Cχ∗
σχσU1,f (T − s)Nfh1u(s) ds

∥

∥

∥

V

≤ ‖y σ
f (T )‖V

+
∥

∥

∥

∫ T

0

Cχ∗
σχσU1,f(T − s)Nfh1u(s) ds

∥

∥

∥

V
.

Using the hypotheses (H2) and (H6), we obtain

‖ϕ(y σ
f (T )‖L2(0,T ;U)

≤ ‖y σ
f (T )‖V + ‖g2‖qK(‖h1(u)‖p; 0)‖h1(u)‖p.

The fact that u ∈ B(0,m) implies that h1(u) ∈
B(0, d), and, using the constant k given by (19), we obtain

‖ϕ(y σ
f (T ), u)‖L2(0,T ;U) ≤ ‖y σ

f (T )‖V + k‖g2‖qd.
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Then the condition

u ∈ B(0,m) ⇒ ϕ(y σ
f (T ), u) ∈ B(0,m)

is satisfied if

‖y σ
f (T )‖V ≤ m− dk‖g2‖L1(0,T ).

Using (19), we obtain ‖y σ
f (T )‖V ≤ ρ with

ρ =
d
(

1 − T
1
p (k‖g1‖q + βk‖g2‖q)

)

βT
1
p

− α‖z0‖X − γ‖f‖F
β

. (48)

As a consequence of the hypothesis (H7), we have
1 − T

1
p (k‖g1‖q + βk‖g2‖q) > 0. In addition to the hy-

pothesis (H8) with λ
′

= d, we obtain ρ > 0. Thus, if
yσ

f ∈ B(0, ρ), we get ϕ(yσ
f , B(0,m)) ⊂ B(0,m).

On the other hand, for all u, v ∈ B(0,m) and
y σ

f (T ) ∈ V , we have

ϕ(y σ
f (T ), u) − ϕ(y σ

f (T ), v)

= L

(

∫ T

0

Cχ∗
σχσU1,f(T − s)Nfh1u(s) ds

)

− L

(

∫ T

0

Cχ∗
σχσU1,f (T − s)Nfh1v(s) ds

)

.

Using the norm on L2(0, T ;U) and with the formula
(44), we have

‖ϕ(y σ
f (T ), u)− ϕ(y σ

f (T ), v)‖L2(0,T ;U)

=
∥

∥

∥

∫ T

0

Cχ∗
σχσU1,f(T − s)

[

Nfh1u(s)ds−Nfh1v(s)
]

ds
∥

∥

∥

V
.

Then, by the hypotheses (H2) and (H6), we obtain

‖ϕ(y σ
f (T ), u) − ϕ(y σ

f (T ), v)‖L2(0,T ;U)

≤ ‖g2‖qK‖h1(u) − h1(v)‖p.

As the mapping h1 is Lipschitzian with respect to

l =
T

1
pβ

1 − c1
,

we have

‖ϕ(y σ
f (T ), u) − ϕ(y σ

f (T ), v)‖L2(0,T ;U)

≤ c3‖u− v‖L2(0,T ;U)

with

c3 =
T

1
p β‖g2‖qK

1 − c1
. (49)

But 0 ≤ c3 < 1 because

1 − c3 =
1 − c2
1 − c1

∈]0, 1[.

Then the mapping ϕ(yσ
f , ·) is a contraction one on

B(0,m). Thus for all y σ
f (T ) ∈ B(0, ρ), the mapping

ϕ(y σ
f (T ), ·) has a unique fixed point u∗ in B(0,m). �

4.1.3. Implementation of the protector control.
Based on the previous sections, we will give an algorithm
which permits the generation of a control sequence that
converges to the solution u∗ to Problem (P ). Based on
Theorem 3, we have the following result:

Proposition 1. If the assumptions of Theorem 3 are
satisfied and if y σ

f (T ) ∈ V such that ‖y σ
f (T )‖V ≤ ρ,

then the sequence defined by
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u0 = 0,

un+1 = ϕ(y σ
f (T ), un) = Ly σ

f (T )

−L
∫ T

0

Cχ∗
σχσU1,f (T − s)Nfh1un(s) ds

(50)
converges to the solution u∗ to (P ) in L2(0, T,U) and
satisfies

‖un+1 − un‖L2(0,T ;U) ≤ cn3‖u1‖.

Proof. The result follows from Theorem 3 and the prop-
erties of the fixed point theorem. �

For all n ∈ N, setting

yσ,n
f,un

(T ) = Cχ∗
σχσz

n
f,un

(T )

and

rn+1 = yσ
f (T ) − Cχ∗

σχσ
̂Hf,T z

n
f,un

(T ),

we obtain

yσ,n
f,un

(T ) = yσ
f (T ) − yσ

f (T ) + Cχ∗
σχσ

[

GSf (T )z0

+ ̂Hf,T zf,un(T ) + ˜Hf,T f + Hf,Tun

]

.

Using the expression for yσ
f (T ) given by (41), we

have

yσ,n
f,un

(T )

= y σ
0,0(T ) − Cχ∗

σχσD

∫ T

0

R(T − s)Gf ds

+ rn − rn+1.
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Thus

rn+1 = rn + yσ
0,0(T ) − yσ,n

f,un
(T )

− Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds.
(51)

Moreover, it is easy to see that

‖yσ,n
0,0 (T ) − y σ

f,un
(T )

− Cχ∗
σχσD

∫ T

0

R(T − s)Gf ds‖V ≤ cn3‖u1‖.
(52)

Consequently we have the following algorithm.

Algorithm 1.

1. Data: Ω, σ, T , A, N , z0, f , B, C , ε.

2. Autonomous undisturbed case: determine y σ
0,0(T ).

3. Disturbed uncontrolled case: determine y σ
f,0(T ).

4. Set r0 = 0 and consider r1: formula (51) with n = 0.

5. Determine: un = Lrn (L is given by (43)).

6. Disturbed controlled case: determine yσ,n
f,un

(T ).

7. If ‖un−un−1‖V ≤ ε stop. Otherwise, consider rn+1

(given by (51)) and go to Step 5.

Starting from the observation associated with the
autonomous undisturbed system, the residual r0 = 0
represents the difference between this observation and
itself. When the system undergoes a disturbance, r1
measures the difference between the observations as-
sociated respectively with the autonomous undisturbed
system (normal state) and the disturbed uncontrolled one.
Therefore, the role of u1 is to reduce the amount r1 until
the condition given in Step 7 of Algorithm 1 is satisfied.
Otherwise, we start the procedure by considering rn+1

for n ≥ 1. This allows us to calculate a solution u to
Problem (P ). Therefore, by inserting this solution into
(13), we can directly determine the state zf,u (and hence
the associated output yσ

f,u) of the system (12). In addition,
the state z̃f,u of the original system (1) will be obtained
thanks to the variable change made in (9). Note that this
is the objective of Remark 4: We can return to the original
system (without delay), without determining the operator
Π given in (36).

From Algorithm 1, we see that determining the pro-
tector control u solution to Problem ( ˜P ) is essentially
based on the computation of the pseudoinverseL given by
(43). Such computation is not simple to perform, given the
dependence of the operator L on various operators of the

delay system governed by the state equation (27). What
we propose in the next section is to exploit the remedia-
bility concept and delay otherwise.

4.2. Adapted families of transformations and reme-
diability. This approach consists in finding a control
which permits to deviate the trajectory of the spreadable
disturbance so that it will not pass through σ. Taking into
account the expression (6) and the variable change (9), the
property P generated by the disturbance f is given by

Pzf,0(x, t) ⇔ zf,0(x, t) �= z0,0(x, t) − f(x).

For that purpose, we recall the following definition
(Bernoussi and El Jai, 2000; Bernoussi et al., 2001).

Definition 3. Let wf,0,t = {x ∈ Ω : Pzf,0(x, t)}. The
trajectory of P (or trajectory of f ) is

TT =
⋃

t∈I

wf,0,t.

If the disturbance f is spreadable in the inclusion
sense, then TT = wf,0,T . But if the spreadability of f is in
the measure sense, we can introduce the so-called adapted
families of transformations to characterize the trajectory
of f . We have the following definition (Bernoussi, 2007).

Definition 4. We say that a family of transformations
(F (.; s, t))s≥t : Ω → Ω is adapted to the evolution of (S)
if

wf,0,s = F (wf,0,t; s, t), t, s ∈ I : t ≤ s.

In order to protect σ, we propose an approach based
on compensating the effects of disturbance f on another
subregion D during a certain time τ properly chosen be-
fore σ is reached by the spreadable disturbance f . This
consists in exploiting the delay in another way. Let ω be
the geometrical support of the spatial disturbance f affect-
ing the system at the initial time (t = 0), σ a subregion
such that ω ∩ σ = ∅. Then the principle of this approach
consists in

1. Determining the trajectory TT of f in the au-
tonomous disturbed case.

2. Choosing a particular zone D in Tτ where τ ∈]0, t1[
and t1 is the time when f starts to reach σ, such that
remediability on D implies the protection of σ.

This can be illustrated by considering the following
examples: one-dimensional (Fig. 2) and multidimensional
(Fig. 3). For the first case (Fig. 2), the geometrical sup-
port of the disturbance can be positioned on the left (ω1)
or right (ω2) to σ. When f is spreadable and σ is vulner-
able, the first time t1 where the effects of f start to reach
σ can be computed. Therefore, the protection of σ can be
performed by a compensating, before the time t1, the ef-
fects of f in D1 and/or in D2 located on the trajectory of
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f . Generally, the areas D1 and D2 are already affected by
the effects of the spreadable disturbance that starts from
ω1 and/or ω2, but σ is not reached yet. This justifies the
combination of the two principles of remediability and the
protector control, and how this is linked to the notion of
delay.

f1
f2

ω1 ω2D1 D2σ

Fig. 2. Spatial localization of the disturbance (ω1 and ω2) and
the choice of zones (D1 and/or D2) .

The second case (Fig. 3) illustrates different situa-
tions of the localization zones Dk according to the nature
of the spreadable phenomenon; in some situations we can
consider the case where

D =
⋃

k

Dk.

ω2

ω1
ωj

D3
D2

D1

Dk

σ

(a)

ω2

ω1

ωj

D

σ

ω3

(b)

Fig. 3. Spatial localization of the disturbance ωj and the choice
of zones Dk .

Remark 6.
1. Qaraai et al. (2008) considered the regional remedi-
ability problem on a given zone D for the same class of

nonlinear systems.
2. The choice of D as the determination of the adapted
family of transformations remains very difficult. How-
ever, it is possible, for some class of systems such as trans-
portation ones or those which evolve as a travelling wave,
to determine such families (Bernoussi et al., 2001).

Then, based on the principle of this second approach
as well as Definitions 1 and 2, the protection of σ can be
characterized as in the following result.

Proposition 2. Assume that f is spreadable, σ is f -
vulnerable and will be reached at time t1 and D ⊂ Tτ

where τ ∈]0, t1[. If u is an f -D-remediable control on
[0, τ ] and stuck the disturbance effects in the direction of
σ (throughD), then σ is f -protectable.

Proof. As f is assumed to be spreadable and σ is vul-
nerable, then the trajectory of f moves in the direction of
σ and, consequently, it will reach σ at the time t1 through
the zone D. As D is assumed to be f -remediable during
[0, τ ], then there exists a control u which permits to com-
pensate the effects of f on D at time τ . This means that
the system find its normal evolution (autonomous undis-
turbed case) from the time τ . This also means that σ
would not be vulnerable for every t ∈ [τ, T ]. Taking
into account the assumptions on τ and t1, the subregion
σ would not be vulnerable over the entire time interval
[0, T ]. Consequently, it is f -protectable (by Definition 2).

�

Remark 7. The choice of the time τ and the subregionD
on which we remedy the effects of the disturbance during
[0, τ ] depends especially on the spreadability speed of the
disturbance f and its trajectory that starts from ω. That is
why in this paper we have considered only systems which
have a finite propagation velocity.

Thus, from the above, to protect σ (e.g., to solve
problem ( ˜P )), we have to solve the regional remediability
problem on D during [0, τ ] formulated as follows:

⎧

⎨

⎩

Find u ∈ L2(0, τ ;U) such that

ỹ D
f,u(τ) = ỹ D

0,0(τ),
(53)

where ỹ D
f,u is the output function in the subregionD.

5. Application to bacterial dynamics

5.1. Discussed model. In this section we consider a
variant of Fisher’s equation which combines the convec-
tion, a logistic term expressed as a quadratic nonlinear-
ity, a growth rate ρ (the difference between the birth and
mortality rates) and an environmental parameter μ (car-
rying capacity of the environment), see, e.g., the works
of Giuggioli and Kenkre (2003) or Kenkre (2004). The
diffusive component of the movement is neglected com-
pared with the convective counterpart. This can appear in
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some situations of population dynamics problems, where
the transport can lead such a population in one direction,
and therefore the effects of convection overwhelm those of
diffusion. In the case of the population dynamics of bac-
teria which can be modelled by such an equation and for
certain medical applications, it was shown that, in prac-
tice, a moving mask is used to “protect” against bacte-
ria dynamically facing ultraviolet radiation (UV), which
kills them in the areas outside the mask (Giuggioli and
Kenkre, 2003; Kenkre, 2004).

In our case, we show, through a convective model,
how to protect a certain area facing the effects of a given
disturbance due to UV radiation using a fixed actuator and
a fixed sensor. Note that we designate by the area a sub-
region containing a certain population density, and by the
fixed actuator, an actuator whose support is independent
of time (El Jai and Pritchard, 1986).

Let Ω =]0, π/4[, I =]0, T [ with T = 2. We intro-
duce the following notation:

• z̃(x, t) the infected population density in (x, t) ∈
Ω × I ,

• z̃(x, 0) the initial infected population density in x ∈
Ω,

• ρ(x, t) the population growth rate,

• μ(x, t) the carrying capacity of the environment,

• f(x) the infected population density at initial time
t = 0 in ω due to UV radiation (disturbance),

• Bu(t) the control term,

• σ a given subregion in Ω which contains a healthy
population.

At the initial time (t0 = 0), and in the absence of UV
radiation (e.g., there is no disturbance f = 0), the domain
Ω contains a given number of healthy individuals. Con-
sequently, the initial density of the infected population is
zero (z̃0,0 = 0). But if at the initial time t0 = 0 there is
an issue of UV radiation in the region ω, then there will
be an infection of the population in such a region. There-
fore, if we mean by f the infected population density on ω
which may be likened to a disturbance on the system, and
if this disturbance is spreadable, then the healthy individu-
als become increasingly infected. Note that this infection
can be done by a change in the DNA of healthy individ-
uals. Therefore, if the fixed zone σ is vulnerable to the
effects of f , then our goal is the determination of a con-
trol u which protects σ facing the effects of f . To treat
this problem, we assume that the quantities ρ and μ are
constant (in space and time), and that the infected density
is maintained null at point x = 0. On Ω × I , consider the

nonlinear convective Fisher equation whose state (e.g., the
infected population density) satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˙̃z(x, t) = −c ∂z̃
∂x

(x, t) + z̃(x, t)
[

ρ− μz̃(x, t)
]

+Bu(t), ]0, π/4[×]0, 2[,

z̃(0, t) = 0, 0 < t < 2,

z̃(x, 0) = z0(x) + f(x), 0 < x < π/4,
(54)

where z̃ ∈ L2(0, T ;Z), Z = L2(Ω), c > 0, ρ > 0 and
μ > 0.

As an example, we consider c = 3π/32, ρ = 0.5 and
μ = 0.5. The initial state z0 and the disturbance f are
given by

z0(x) = 0, ∀ x ∈ Ω

f(x) =

⎧

⎨

⎩

sin(x), x ∈ ω,

0, elsewhere,

where ω =]0, π/16[ is the geometrical support of f . Let σ
be a fixed region in Ω : σ∩ω = ∅, e.g., σ = [3π/16, π/4].
The system (54) is augmented by the output function

( ˜E) ỹσ(t) = Cχ∗
σχσ z̃(t) =

∫ π/4

0

χσ z̃(x, t) dx

Consider also the control term Bu(t) = g(x)u(t) with

g(x) =

⎧

⎨

⎩

1 + exp(x2), 3π/32 ≤ x ≤ 5π/32,

0, elsewhere.

The system (54) is a particular case of (1) with

F z̃ = −c ∂z̃
∂x

+ z̃(ρ− μz̃), Bu(t) = g(x)u(t).

The hypotheses on F are satisfied : F (0) = 0 and F is
C1 on Z . For all (x, t) ∈ Ω × I , consider the change of
variables z(x, t) = z̃(x, t)−f(x). Then, by linearizing F
around f , (54) becomes
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ż(x, t) =
(

− c
∂

∂x
+ ρ− 2μf

)

z − μz2

+
(

ρf − μf2 − c
∂f

∂x

)

+ g(x)u(t),

z(0, t) = 0,

z(x, 0) = 0.
(55)
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The linear operator

Af = −c ∂
∂x

+ ρ− 2μf

generates on Z a strongly continuous semigroup given by

(Sf (t)z)(x)

=

⎧

⎨

⎩

exp [(ρ− 2μf)t] z(x− ct), x ≥ ct

0, 0 < x < ct.

(56)

Then, based on the semigroup approach, the solution
zf,u to (55) is given by

zf,u(x, t)

= −μ
∫ t

0

Sf (t− s)z2
f,u(x, s) ds

+
∫ t

0

Sf (t− s)
(

ρf − μf2 − c
∂f

∂x

)

(x) ds

+
∫ t

0

Sf (t− s)g(x)u(s) ds

(57)

Moreover, the output (55) is expressed by

(E) yσ(t) = Cχ∗
σχσz(t) =

∫ π/4

3π/16

z(x, t) dx.

5.2. Numerical simulations. We start by representing
the states in the autonomous undisturbed case (f = 0)
and in the autonomous disturbed one (f �= 0). This can
be represented taking into account of (57) and the change
of the variable zf,u(x, t) = z̃f,u(x, t) − f(x). We get the
results presented in Fig. 4.

In Fig. 4 we represent the state z̃0,0 of the au-
tonomous undisturbed system (a) and the state of the dis-
turbed uncontrolled system (b). This means that, under the
exposure to UV radiation at the initial time, the infected
area is increasing.

Consider now the property P generated by the dis-
turbance f :

P z̃f,0(x, t) ⇔ z̃f,0(x, t) �= z̃0,0(x, t),

and besides the subdomains (wf,0,t)t and the trajectory Tt

of P (we say also the trajectory of disturbance f ) defined
respectively by

wf,0,t = {x ∈ Ω : P z̃f,0(x, t)} and Tt =
⋃

s≤t

wf,0,s.

We remark that the disturbance f is spreadable and
the zone σ is f -vulnerable. Thus, the time t1 when f
begins to reach σ is such that t1 = 4/3 (Fig. 5). As
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Fig. 4. States of the autonomous undisturbed system (a) and the
autonomous disturbed one (b).
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Fig. 5. Trajectory Tt of the disturbance f without the con-
trol, and the vulnerability of σ = [3π/16, π/4] �
[0.59, 0.78]

soon as σ is reached, we will see how can we protect it
with a suitable control u by applying the result of Propo-
sition 2. Therefore, to protect σ, we can remedy the ef-
fects of f on an area D located on the trajectory Tt before
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f

ω D σ3π
32

 π
16

5π
32

3π
16

π
4

Bu

0

Fig. 6. Different zones considered (ω, D and σ) in Ω.

it passes through σ. We have for this example: T = 2,
TT = Ω = [0, π/4] and t1 = 4/3, Tt1 = [0, 3π/16].

Hence, setting D located at Tt1 , since the trajectory
does not reach σ, the problem of the protector control of
σ boils down to that of regional remediability on D at a
fixed time τ with τ < t1. Consequently, we have to solve
the following remediability problem:

⎧

⎨

⎩

Find u ∈ L2(0, τ ;U) such that

yD
f,u(τ) = y D

0,0(τ) − Cχ∗
DχDf,

(58)

where yD
f,u is the output function on D which is given by

yD
f,u(t) = Cχ∗

DχDzf,u(t) =
∫

D

zf,u(x, t) dx

As yD
0,0(t) = 0, ∀t ∈ I , it remains to determine a

control u such that

− μ

∫

D

∫ τ

0

Sf (τ − s)z2
f,u(x, s) ds dx

+
∫

D

∫ τ

0

Sf (τ − s)g(x)u(s) ds dx

+
∫

D

∫ τ

0

Sf (τ − s)
(

ρf −μf2− c∂f
∂x

)

(x) ds dx = 0.

Consider D = [3π/32, 5π/32] as shown in Fig. 6,
and then the corresponding time τ = 1 (e.g., it is the time
when the entire zone D is reached by the effets of f , see
Fig. 5).

The problem (59) can be solved by applying the al-
gorithm developed by Qaraai et al. (2008) to determine a
control which permits compensating regionally the effects
of the spreadable disturbance.

Remedying the effect of f during the time interval
J =]0, 1[ on the zone D = [3π/32, 5π/32], as shown in
Fig. 7(b), the trajectory of the disturbance f for the dis-
turbed controlled system. We deduce that the control u
given in Fig. 8(b), which compensates f on D, enabled
stopping the spreadability of f from time τ = 1 to the
zone σ. Therefore, it is a σ-protector control.

Finally, in Fig. 8(a) we present the corresponding
controlled state of the system (54). This shows that, on the
zone σ, the state representing the density of the infected
population coincides with the undisturbed autonomous
one. Consequently, all individuals occupying the zone σ
are protected the whole of the time interval I =]0, 2[.
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Fig. 7. Trajectories of f without the control u (a) and in the
presence of the control u (b). Under the effect of u,
σ = [3π/16, π/4] � [0.59, 0.78] is f -protectable

6. Conclusion

In this work, we considered the problem of extending the
concept of the protector control, introduced in the lin-
ear case (Bernoussi , 2010), to a class of nonlinear dis-
tributed parameters systems. This consists in protecting
some given areas facing the effect of a disturbance affect-
ing the initial state. To characterize solutions of this prob-
lem, a remediability approach for a certain nonlinear delay
system was used. Hence, based on pseudoinverse tech-
niques, we solved this problem by giving an algorithm to
determine such a control. As was indicated, a difficulty
occurred because the direct application of such an algo-
rithm depends on the pseudoinverse operator and various
operators of the delay system including nonlinear terms.
That is why we considered another approach based on the
coupling of families of transformations and a delay. In-
deed, given a spreadable disturbance, we showed that it
is possible to protect a vulnerable zone by compensating
on another affected area located on the trajectory of the
disturbance acting before the first time the disturbance be-
gins to reach the area supposed to be protected. This is
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Fig. 8. State of the disturbed controlled system (54) (a) and the
protector control of σ (b) at iteration n = 20.

illustrated by considering a variant of the nonlinear Fisher
equation, which can model the problem of bacterial dy-
namics.

It would be very interesting to implement Algo-
rithm 1 in future works, and, on the other hand, to enlarge
the class of systems studied by considering different types
of boundary conditions and also when the system does not
include only convective terms but also those of diffusion.
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