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This paper investigates the problem of fault tolerant control of a class of uncertain switched nonlinear systems with time
delay under asynchronous switching. The systems under consideration suffer from delayed switchings of the controller.
First, a fault tolerant controller is proposed to guarantee exponentially stability of the switched systems with time delay. The
dwell time approach is utilized for stability analysis and controller design. Then the proposed approach is extended to take
into account switched time delay systems with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical
example is given to illustrate the effectiveness of the proposed method.
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1. Introduction

Switched systems belong to a special class of hybrid con-
trol systems that comprises a collection of subsystems to-
gether with a switching rule which specifies the switching
among the subsystems. Many practical systems are inhe-
rently multimodal in the sense that several dynamical sys-
tems are required to describe their behavior, which may
depend on various environmental factors. Besides, swit-
ched systems are widely applied in many fields, including
mechanical systems, automotive industry, aircraft and air
traffic control, and many other domains (Varaiya, 1993;
Wang and Brockett, 1997; Tomlin et al., 1998).

During the last decades there have been many studies
on stability analysis and the design of stabilizing feedback
controllers for switched systems. The interest in this di-
rection is reflected by numerous works (Sun, 2004; 2006;
Cheng et al., 2005; Liberzon, 2003; Lin and Antsaklis,
2009). As an important analytic tool, the multiple Lyapu-
nov function approach has been employed to analyze the
stability of switched systems, which has been shown to be

very efficient (Zhai et al., 2007; Hespanha, 2004; Hespan-
ha et al., 2005). Based on the dwell time method, stability
analysis and stabilization for switched systems have also
been investigated (De Persis et al., 2002; Wang and Zhao,
2007; Sun et al., 2006a; De Persis et al., 2003).

The time delay phenomenon is very common in
many kinds of engineering systems, for instance, long-
distance transportation systems, hydraulic pressure sys-
tems, networked control systems and so on, so time de-
lay systems have also received increased attention in the
control community (Guo and Gao, 2007; Guan and Gao,
2007). Many valuable results have been obtained for sys-
tems of this type (Zhang et al., 2007a; Gao et al., 2008;
Xiang and Wang, 2009a; Sun et al., 2006b; Zhang et al.,
2007b). On the other hand, actuators may be subjected to
failures in a real environment. Therefore, it is of practical
interest to investigate a control system which can tolera-
te faults of actuators. Several approaches to the design of
reliable controllers have been proposed (Lien et al., 2008;
Yao and Wang, 2006; Abootalebi et al., 2005; Liu et al.,
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1998; Yu, 2005). A reliable controller is designed for swit-
ched nonlinear systems using the multiple Lyapunov func-
tion approach by Wang et al. (2007).

However, there inevitably exists asynchronous swit-
ching between the controller and the system in actual ope-
ration, which deteriorates the performance of systems.
Therefore, it is important to investigate the problem of
the stabilization of switched systems under asynchrono-
us switching (Xie and Wang, 2005; Xie et al., 2001; Ji et
al., 2007; Hetel et al., 2007; Mhaskar et al., 2008; Xiang
and Wang, 2009b).

In this paper, we are interested in the problem of
fault tolerant control for a class of uncertain nonlinear
switched systems with time delay and actuator failures
under asynchronous switching. The remainder of the
paper is organized as follows. In Section 2, problem
formulation and some necessary lemmas are given. In
Section 3, based on the dwell time approach and the linear
matrix inequality (LMI) technique, we first consider the
design of a fault tolerant controller and a switching signal
for a switched system with time delay under asynchrono-
us switching. Sufficient conditions for the existence of the
controller are obtained in terms of a set of LMIs. Then the
design approach to the controller for a switched nonlinear
system with time delay under asynchronous switching
is presented. A numerical example is given to illustrate
the effectiveness of the proposed design approach in
Section 4. Concluding remarks are given in Section 5.

Notation. Throughout this paper, the superscript ‘T ’ de-
notes the transpose, ‖·‖ denotes the Euclidean norm.
λmax(P ) and λmin(P ) denote the maximum and mini-
mum eigenvalues of matrix P , respectively, I is an identi-
ty matrix of appropriate dimensions. The asterisk ‘∗’ in a
matrix is used to denote a term that is induced by symme-
try. The set of positive integers is represented by Z

+.

2. System description and preliminaries

Let us consider the following switched system with time
delay and an actuator failure:

ẋ(t) = Âσ(t)x(t) + Âdσ(t)x(t − d)

+ Bσ(t)u
f (t) + Dσ(t)fσ(t)(x(t), t), (1)

x(t) = φ(t), t ∈ [t0 − d, t0], (2)

where x(t) ∈ R
n is the state vector, uf (t) ∈ R

l is
the input of an actuator fault, d denotes the state delay,
φ(t) is a continuous vector-valued function. The function
σ(t) : [t0,∞) → N = {1, 2, . . . , N} is the system swit-
ching signal, and N denotes the number of the subsys-
tems. The switching signal σ(t) discussed in this paper is
time-dependent, i.e., σ(t) : {(t0, σ(t0)), (t1, σ(t1)), · · ·},
where t0 is the initial time, and tk denotes the k-th swit-
ching instant. Âi, Âdi for i ∈ N are uncertain real-valued

matrices with appropriate dimensions which satisfy

Âi = Ai+HiFi(t)E1i, Âdi = Adi+HiFi(t)Edi, (3)

where Ai, Adi, Hi, E1i, Edi are known real constant ma-
trices with proper dimensions imposing the structure of
the uncertainties. Here Fi(t) for i ∈ N are unknown time-
varying matrices which satisfy

FT
i (t)Fi(t) ≤ I, (4)

Di and Bi for i ∈ N are known real constant matrices,
and fi(·, ·) : R

n × R → R
n for i ∈ N are unknown non-

linear functions satisfying the following Lipschitz condi-
tions:

‖fi(x(t), t)‖ ≤ ‖Uix(t)‖ , (5)

where Ui are known real constant matrices.
However, there inevitably exists asynchronous swit-

ching between the controller and the system in actual
operation. Suppose that the i-th subsystem is activated
at the switching instant tk−1, the j-th subsystem is acti-
vated at the switching instant tk, and the corresponding
switching controller is activated at the switching instants
tk−1 + Δk−1 and tk + Δk, respectively. The case that
the switching instants of the controller experience delays
with respect to those of the system can be shown as in
Fig. 1. There we can see that controller Ki correspon-

Fig. 1. Diagram of asynchronous switching.

ding to the i-th subsystem operates the i-th subsystem in
[tk−1 + Δk−1, tk) , and operates the j-th subsystem in
[tk, tk + Δk).

Denoting by σ′(t) the switching signal of the control-
ler, the corresponding switching instants can be written as

t1 + Δ1, t2 + Δ2, . . . , tk + Δk, . . . , k ∈ Z
+,

where Δk(|Δk| < d) represents the period that the swit-
ching instant of the controller lags behind the one of the
system, and the period is said to be mismatched.

Remark 1. The mismatched period

Δk < inf
k≥0

(tk+1 − tk)

guarantees that there always exists a period [tk−1 +
Δk−1, tk). This period is said to be matched in what fol-
lows.
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The input of an actuator fault is described as

uf(t) = Mσ′(t)u(t), (6)

where Mi for i ∈ N are actuator fault matrices,

Mi = diag{mi1, mi2, . . . , mil}

0 ≤ mik ≤ mik ≤ mik, mik ≥ 1, k = 1, 2, . . . , l.
(7)

For simplicity, we introduce the following notation:

Mi0 = diag{m̃i1, m̃i2, . . . , m̃il}, (8)

Ji = diag{ji1, ji2, . . . , jil}, (9)

Li = diag{li1, li2, . . . , lil}, (10)

where

m̃ik =
1
2
(mik + mik),

jik =
mik − mik

mik + mik

,

lik =
mik − m̃ik

m̃ik
.

By (8)–(10), we have

Mi = Mi0(I + Li), |Li| ≤ Ji ≤ I, (11)

where
|Li| = diag{|li1| , |li2| , . . . , |lil|}.

Remark 2. Note that mik = 1 means normal operation
of the k-th actuator signal of the i-th subsystem. When
mik = 0 , it covers the case of the complete failure of the
k-th actuator signal of the i-th subsystem. When mik > 0
and mik 	= 1, it corresponds to the case of a partial failu-
re of the k-th actuator signal of the i-th subsystem. The
system (1)–(2) without uncertainties can be described as

ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t − d)

+ Bσ(t)u
f (t) + Dσ(t)fσ(t)(x(t), t), (12)

x(t) = φ(t), t ∈ [t0 − d, t0]. (13)
The system (12)–(13) without nonlinear terms can be writ-
ten as

ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t − d) + Bσ(t)u
f(t), (14)

x(t) = φ(t), t ∈ [t0 − d, t0]. (15)

Definition 1. If there exists a switching signal σ(t), such
that the trajectory of the system (1)–(2) satisfies ‖x(t)‖ ≤
α ‖x(t0)‖ e−β(t−t0), where α ≥ 1, β > 0, t ≥ t0, then
the system (1)–(2) is said to be exponentially stable.

The following lemmas play an important role in our
further developments.

Lemma 1. (Halanay, 1966) Let r ≥ 0, a > b > 0. If there
exists a real-value continuous function u(t) ≥ 0, t ≥ t0
such that the differential inequality

du(t)
dt

≤ −au(t) + b sup
t−r≤θ≤t

u(θ), t ≥ t0

holds, then

u(t) ≤ sup
−r≤θ≤0

u(t0 + θ)e−μ(t−t0), t ≥ t0,

where μ > 0, and

μ − a + beμr = 0

is satisfied.

Lemma 2. (Xiang and Wang, 2009a) For matrices X, Y
with appropriate dimensions and a matrix Q > 0 , we
have

XT Y + Y T X ≤ XT QX + Y T Q−1Y.

Lemma 3. (Petersen, 1987) For matrices R1, R2 with ap-
propriate dimensions, there exists a positive scalar β > 0
such that

R1Σ(t)R2 + RT
2 ΣT(t)RT

1 ≤ βR1URT
1 + β−1RT

2 UR2,

where Σ(t) is a time-varying diagonal matrix, U is a
known real-value matrix satisfying |Σ(t)| ≤ U .

Lemma 4. (Xiang and Wang, 2009a) Let U, V, W and X
be real matrices of appropriate dimensions with X satis-
fying X = XT . Then for all V T V ≤ I we have

X + UV W + WT V T UT < 0

if and only if there exists a scalar ε > 0 such that

X + εUUT + ε−1WT W < 0.

Lemma 5. (Boyd, 1994, Schur Complement) For a given
matrix

S =
[

S11 S12

ST
12 S22

]

with S11 = ST
11, S22 = ST

22, the following condition is
equivalent:
(1) S < 0

(2) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

The objective of this paper is to design a fault tolerant
controller such that the system (1)–(2) under asynchrono-
us switching is robust exponentially stable.
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3. Main results

To obtain our main results, consider the system (12)–
(13) with the asynchronous switching controller u(t) =
Kσ′(t)x(t). The corresponding closed-loop system is gi-
ven by

ẋ(t) = (Aσ(t) + Bσ(t)Mσ′(t)Kσ′(t))x(t)
+ Adσ(t)x(t − d) + Dσ(t)fσ(t)(x(t), t), (16)

x(t) = φ(t), t ∈ [t0 − d, t0]. (17)

Lemma 6. Consider the system (12)–(13), for given po-
sitive scalars α, η > 0, if there exist symmetric positive
definite matrices Xi > 0, Pij > 0 and matrices Yi for
fault matrix Mi, such that for i, j ∈ N

⎡
⎢⎢⎣

Ξi AdiXi Di XiU
T
i

∗ −Xi 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, (18)

⎡
⎣ Ξij PijAdj PijDj

∗ −Pij 0
∗ ∗ −I

⎤
⎦ < 0 (19)

and the dwell time satisfies infk≥0(tk+1 − tk) ≥ T . Then
there exists a controller

u(t) = Kσ′(t)x(t), Ki = YiX
−1
i , (20)

which can guarantee that the closed-loop system is expo-
nentially stable, where

Ξi = (AiXi+BiMiYi)T +AiXi+BiMiYi

+ (1 + α)Xi,

Ξij = (Aj +BjMiYiX
−1
i )T Pij +Pij(Aj +BjMiYiX

−1
i )

+ (1 + η)Pij + UT
j Uj ,

T > 2d +
ln ρ1ρ2

μ
,

ρ1 = max
i,j∈N
i�=j

{
λmax(X−1

j )
λmin(Pij)

}
,

ρ2 = max
i,j∈N
i�=j

{
λmax(Pij)
λmin(X−1

i )

}
,

μ satisfies μ + eμd = 1 + min{α, η}.

Proof. See Appendix. �

The following theorem presents sufficient conditions
for the existence of a fault tolerant controller for the sys-
tem (1)–(2) under asynchronous switching.

Theorem 1. Consider the system (1)–(2). For given po-
sitive scalars α, η > 0, if there exist symmetric positi-
ve definite matrices Xi > 0, Pij > 0, positive scalars

εi, βi, ζi, θi, and matrices Yi, such that for i, j ∈ N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Θi AdiXi Di XiU
T
i YiMi0J

1/2
i XiE

T
1i

∗ −Xi 0 0 0 XiE
T
di

∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ −βiI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (21)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θij PijAdj PijDj ζjX
−1
i Y T

i Mi0J
1/2
i

∗ −Pij 0 0
∗ ∗ −I 0
∗ ∗ ∗ −ζjI
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

PijBjJ
1/2
i θjE

T
1j PijHj

0 θjE
T
dj 0

0 0 0
0 0 0

−ζjI 0 0
∗ −θjI 0
∗ ∗ −θjI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (22)

and the dwell time satisfies infk≥0(tk+1 − tk) ≥ T , then
there exists a controller

u(t) = Kσ′(t)x(t), Ki = YiX
−1
i , (23)

which can guarantee that the closed-loop system is expo-
nentially stable, where

Θi = (AiXi + BiMi0Yi)T + AiXi + BiMi0Yi

+ (1 + α)Xi + βiH1iH
T
1i + εiBiJiB

T
i ,

Θij = (Aj + BjMi0YiX
−1
i )T Pij

+ Pij(Aj + BjMi0YiX
−1
i )

+ (1 + η)Pij + UT
j Uj ,

T > 2d +
ln ρ1ρ2

μ
,

ρ1 = max
i,j∈N
i�=j

{
λmax(X−1

j )
λmin(Pij)

}
,

ρ2 = max
i,j∈N
i�=j

{
λmax(Pij)
λmin(X−1

i )

}
,

μ satisfies μ + eμd = 1 + min{α, η}.
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Proof. Consider the system (1)–(2) with the controller
u(t) = Kσ′(t)x(t). The corresponding closed-loop sys-
tem is given by

ẋ(t) = (Âσ(t) + Bσ(t)Mσ′(t)Kσ′(t))x(t)

+ Âdσ(t)x(t − d) + Dσ(t)fσ(t)(x(t), t), (24)

x(t) = φ(t), t ∈ [t0 − d, t0]. (25)

Write

Ti =

⎡
⎢⎢⎢⎢⎢⎣

Λi ÂdiXi Di XiU
T
i Y T

i Mi0J
1/2
i

∗ −Xi 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εiI

⎤
⎥⎥⎥⎥⎥⎦

,

(26)
where

Λi = (ÂiXi + BiMi0Yi)T + ÂiXi + BiMi0Yi

+ (1 + α)Xi + εiBiJiB
T
i .

Substituting (11) to (26) and using Lemma 4, it is easy to
see that (21) is equivalent to Ti < 0.

Write

Zij =

⎡
⎢⎢⎢⎢⎣

Λij PijÂdj PijDj

∗ −Pij 0
∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗

ζjX
−1
i Y T

i Mi0J
1/2
i PijBjJ

1/2
i

0 0
0 0

−ζjI 0
∗ −ζjI

⎤
⎥⎥⎥⎥⎥⎦

,

where

Λij = (Âj +BjMi0YiX
−1
i )T Pij

+Pij(Âj +BjMi0YiX
−1
i )+(1 + η)Pij + UT

j Uj .

Following a similar proof line, we have Zij < 0 from
(22). From Lemma 6 we conclude that Theorem 1 holds.
The proof is completed. �

Remark 3. Note that the matrix inequalities (21) and (22)
are mutually constrained. Therefore, we can first solve the
linear matrix inequality (21) to obtain matrices Xi and Yi.
Then we solve (22) by substituting Xi and Yi into (22). By
adjusting the parameter α, η appropriately, feasible solu-
tions Xi, Yi, and Pij can be found such that the matrix
inequalities (21) and (22) hold.

From Theorem 1, we can easily obtain the following
results.

Corollary 1. Consider the system (14)–(15). For given
positive scalars α, η, if there exist symmetric positive de-
finite matrices Xi > 0, Pij > 0, matrices Yi and positive
scalars εi > 0, ζi > 0, such that for i, j ∈ N⎡

⎢⎣ Γi AdiXi Y T
i Mi0J

1/2
i

∗ −Xi 0
∗ ∗ −εiI

⎤
⎥⎦ < 0, (27)

⎡
⎢⎢⎢⎣

Γij PijAdj ζjX
−1
i Y T

i Mi0J
1/2
i PijBjJ

1/2
i

∗ −Pij 0 0
∗ ∗ −ζjI 0
∗ ∗ ∗ −ζjI

⎤
⎥⎥⎥⎦

< 0 (28)

and the dwell time satisfies infk≥0(tk+1 − tk) ≥ T , then
there exists a controller

u(t) = Kσ′(t)x(t), Ki = YiX
−1
i , (29)

which can guarantee that the closed-loop system is expo-
nentially stable, where

Γi = (AiXi + BiMi0Yi)T + AiXi + BiMi0Yi

+ (1 + α)Xi + εiBiJiB
T
i ,

Γij = (Aj + BjMi0YiX
−1
i )T Pij

+ Pij(Aj + BjMi0YiX
−1
i ) + (1 + η)Pij ,

T > 2d +
ln ρ1ρ2

μ
,

ρ1 = max
i,j∈N
i�=j

{
λmax(X−1

j )
λmin(Pij)

}
,

ρ2 = max
i,j∈N
i�=j

{
λmax(Pij)
λmin(X−1

i )

}
,

μ satisfies μ + eμd = 1 + min{α, η}.
Corollary 2. Consider the system (12)–(13). For given
positive scalars α, η, if there exist symmetric positive de-
finite matrices Xi > 0, Pij > 0, matrices Yi and positive
scalar εi > 0, ζi > 0, such that for i, j ∈ N

⎡
⎢⎢⎢⎢⎣

Σi AdiXi Di XiU
T
i Y T

i Mi0J
1/2
i

∗ −Xi 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εiI

⎤
⎥⎥⎥⎥⎦ < 0

(30)

⎡
⎢⎢⎢⎢⎣

Σij PijAdj PijDj ζjX
−1
i Y T

i Mi0J
1/2
i

−Pij 0 0
∗ ∗ −I 0
∗ ∗ ∗ −ζjI
∗ ∗ ∗ ∗
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PijBjJ
1/2
i

0
0
0

−ζjI

⎤
⎥⎥⎥⎥⎦ < 0 (31)

and the dwell time satisfies infk≥0(tk+1 − tk) ≥ T , then
there exists a controller

u(t) = Kσ′(t)x(t), Ki = YiX
−1
i , (32)

which can guarantee that the closed-loop system is expo-
nentially stable, where

Σi = (AiXi + BiMi0Yi)T + AiXi + BiMi0Yi

+ (1 + α)Xi + εiBiJiB
T
i ,

Σij = (Aj + BjMi0YiX
−1
i )T Pij

+ Pij(Aj + BjMi0YiX
−1
i )

+ (1 + η)Pij + UT
j Uj ,

T > 2d +
ln ρ1ρ2

μ
,

ρ1 = max
i,j∈N
i�=j

{
λmax(X−1

j )
λmin(Pij)

}
,

ρ2 = max
i,j∈N
i�=j

{
λmax(Pij)
λmin(X−1

i )

}
,

μ satisfies μ + eμd = 1 + min{α, η}.

4. Numerical example

In this section, an example is given to illustrate the ef-
fectiveness of the proposed method. Consider the system
(1)–(2) with the following parameters:

2A1 =
[ −0.1 0

0 −0.1

]
, A2 =

[ −0.2 0
0 −0.3

]
,

Ad1 =
[ −0.2 0

0 −0.1

]
, Ad2 =

[ −0.2 0.3
0 −0.1

]
,

B1 =
[ −8 0

0 7

]
, B2 =

[ −3 0
0 6

]
,

D1 =
[

0.3 −0.2
0 −0.1

]
, D2 =

[ −0.1 0.1
−0.1 0.2

]
,

U1 =
[ −0.1 0

0 0

]
, U2 =

[
0 −0.1
0 0

]
,

H1 =
[

0.1 0.1
0 0.3

]
, H2 =

[
0.4 0
0.2 0

]
,

E11 =
[

0 0.6
0 0

]
, E12 =

[
0.7 0.3
0.1 0.2

]
,

Ed1 =
[

0.1 0.3
0.9 0.6

]
, Ed2 =

[
0.2 0.4
0.3 0.7

]
,

d = 1.2,

f1(x(t), t) =
[

0.1 sinx1

0

]
,

f2(x(t), t) =
[

0
0.1 sinx2

]
.

The fault matrices are as follows:

0.1 ≤ m11 ≤ 0.5,

0.2 ≤ m12 ≤ 0.8,

0.2 ≤ m21 ≤ 0.4,

0.3 ≤ m22 ≤ 0.9.,

that is,

2M10 =
[

0.3 0
0 0.5

]
, M20 =

[
0.3 0
0 0.6

]
,

J1 =
[

0.67 0
0 0.6

]
, J2 =

[
0.33 0
0 0.5

]
.

Choosing α = 3, η = 2, by solving the LMIs in
Theorem 1, we have

K1 =
[

6.6186 0.8014
−0.4395 −3.5108

]
,

K2 =
[

5.8192 0.9082
−0.6788 −4.8117

]
,

and

X1 =
[

1.4270 −0.1871
−0.1871 1.3903

]
,

X2 =
[

1.8435 −0.2754
−0.2754 1.5919

]
,

P12 =
[

1.8322 0.3021
0.3021 1.4479

]
,

P21 =
[

3.9085 0.3765
0.3765 2.8780

]
,

ρ1 = 0.6390, ρ2 = 8.1459, T > 4.7. Choose the
switching signal as follows

σ(t) =
{

1, 2kτ∗ ≤ t < (2k + 1)τ∗,
2, (2k + 1)τ∗ ≤ t < (2k + 2)τ∗,

where k = 0, 1, 2, . . . , τ∗ = 5.

The state response of the closed-loop system is
shown in Fig. 2, where Δk = 1(k = 1, 2) and the ini-
tial condition is

x(t) =
[

2 −1
]T

, t ∈ [−1.2, 0].
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Fig. 2. State response of the closed-loop system.

5. Conclusion

This paper investigates the problem of fault tolerant con-
trol for a class of uncertain switched nonlinear systems
with time delay and actuator failures under asynchronous
switching. Sufficient conditions for the existence of a fault
tolerant control law were derived. The proposed control-
ler can be obtained by solving a set of LMIs. A numeri-
cal example was provided to show the effectiveness of the
proposed approach.
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Appendix

Proof of Lemma 6. Without loss of generality, we assume
the initial time t0 = 0.

When t ∈ [tk−1 +Δk−1, tk), the closed-loop system
(16)–(17) can be written as

ẋ(t) = (Ai + BiMiKi)x(t) + Adix(t − d)
+ Difi(x(t), t).

(33)

Consider the following Lyapunov functional candidate:

Vi(t) = xT (t)Pix(t).

Along the trajectory of the system (33), the time de-
rivative of Vi(t) is given by

V̇i(t) = 2ẋT (t)Pix(t)

= xT (t)
[
(Ai + BiMiKi)T Pi

+ Pi(Ai + BiMiKi)
]
x(t)

+ xT (t)PiAdix(t − d) + xT (t − d)AT
diPix(t)

+ 2xT (t)PiDif(x(t), t).
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From Lemma 2 and (5), we have

V̇i(t) ≤ xT (t)
[
(Ai + BiMiKi)T Pi + Pi(Ai + BiMiKi)

+ PiAdiP
−1
i AT

diPi + PiDiD
T
i Pi

]
x(t)

+ xT (t − d)Pix(t − d)

+ fT
i (x(t), t)fi(x(t), t)

≤ xT (t)
[
(Ai + BiMiKi)T Pi

+ Pi(Ai + BiMiKi) + UT
i Ui

+ PiDiD
T
i Pi + PiAdiP

−1
i AT

diPi

]
x(t)

+ xT (t − d)Pix(t − d).

By Lemma 5, (18) is equivalent to

(AiXi + BiMiYi)T + AiXi + BiMiYi + (1 + α)Xi

+AdiXiA
T
di + DiD

T
i + XiU

T
i UiXi < 0. (34)

Substituting Xi = P−1
i , Ki = YiX

−1
i to (34) and

using Pi, pre- and postmultiply the left term of (34) to
obtain

(Ai + BiMiKi)T Pi + Pi(Ai + BiMiKi) + UT
i Ui

+PiDiD
T
i P + PiAdiP

−1
i AT

diPi + (1 + α)Pi < 0. (35)

Then, by (35), we have

V̇i(t) ≤ −xT (t)(1 + α)Pix(t) + xT (t − d)Pix(t − d)
≤ −(1 + α)Vi(t) + sup

−d≤θ1≤0
Vi(t + θ1).

(36)

By Lemma 1, we have

Vi(t)
≤ sup

−d≤θ1≤0
Vi(tk−1 +Δk−1 + θ1)e−μ1(t−tk−1−Δk−1),

(37)

where μ1 > 0, and satisfies μ1 + eμ1d = 1 + α.
Let

κ1 =
λmax(Pi)
λmin(Pi)

.

We have

‖x(t)‖ ≤ κ
1
2
1 sup

−d≤θ1≤0
‖x(tk−1 + Δk−1 + θ1)‖

· e− 1
2 μ1(t−tk−1−Δk−1).

(38)

When t ∈ [tk, tk +Δk), the closed-loop system (16)–(17)
can be written as

ẋ(t) = (Aj+BjMiKi)x(t)+Adjx(t−d)+Djfj(x(t), t).
(39)

Consider the following Lyapunov functional candi-
date:

Vij(t) = xT (t)Pijx(t).

Repeating the above proof line, from (19) we have

Vij(t) ≤ sup
−d≤θ2≤0

Vij(tk + θ2)e−μ2(t−tk), (40)

where μ2 > 0, and satisfies μ2 + eμ2d = 1 + η.

Let

κ2 =
λmax(Pij)
λmin(Pij)

.

We have

‖x(t)‖ ≤ κ
1
2
2 sup

−d≤θ2≤0
‖x(tk + θ2)‖ e−

1
2 μ2(t−tk). (41)

Choosing μ = min{μ1, μ2}, we have

Vσ(tk−1)(t) ≤ sup
−d≤θ1≤0

Vσ(tk−1)(tk−1 + Δk−1 + θ1)

·e−μ(t−tk−1−Δk−1), t ≥ tk−1 + Δk−1, (42)

Vσ(tk−1)σ(tk)(t) ≤ sup
−d≤θ2≤0

Vσ(tk−1)σ(tk)(tk + θ2)

· e−μ(t−tk), t ≥ tk.
(43)

Let

ρ1 = max
i,j∈N
i�=j

{
λmax(Pj)
λmin(Pij)

}
.

Then we have

Vσ(tk)(t) ≤ ρ1Vσ(tk−1)σ(tk)(t). (44)

Let

ρ2 = max
i,j∈N
i�=j

{
λmax(Pij)
λmin(Pi)

}
,

for θ2 ∈ [−d, 0] . We have

Vσ(tk−1)σ(tk)(tk + θ2)

≤ ρ2Vσ(tk−1)(tk + θ2)

≤ ρ2e
μd sup

−d≤θ1≤0
Vσ(tk−1)(tk−1 + Δk−1 + θ1)

· e−μ(tk−tk−1)eμΔk−1 .

(45)

Notice that −d ≤ Δk + θ1 ≤ d, so we can obtain

Vσ(tk−1)(tk−1 + Δk−1 + θ1)

≤ ρ1ρ2e
2μd sup

−d≤θ1≤0
Vσ(tk−2)(tk−2 + Δk−2 + θ1)

· e−μ[(tk−1+Δk−1)−(tk−2+Δk−2)]

≤ (ρ1ρ2e
2μd)k−1e−μ(tk−1−t0)e−μ(Δk−1−Δ0)

sup
−d≤θ1≤0

Vσ(t0)(t0 + Δ0 + θ1),

(46)
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which leads to

Vσ(tk−1)(t)

≤ (ρ1ρ2e
2μd)k−1e−μ(tk−1−t0)e−μ(t−tk−1−Δk−1)

· e−μ(Δk−1−Δ0) sup
−d≤θ1≤0

Vσ(t0)(t0 + Δ0 + θ1).

(47)

From tk+1 − tk ≥ T , we have

t − t0 − Δ0 ≥ (k − 1)T − d. (48)

Let

T > 2d +
ln ρ1ρ2

μ
,

ν = −1
2

(
ln ρ1ρ2 + 2dμ

T
− μ

)
> 0.

Then

Vσ(tk−1)(t) ≤ sup
−d≤θ1≤0

Vσ(t0)(t0 + Δ0 + θ1)

·e(
ln ρ1ρ2+2μd

T −μ)(t−t0−Δ0). (49)

Similarly, we have

Vσ(tk−1)σ(tk)(t)

≤ ρ−1
1 (ρ1ρ2e

2μd)
d
T sup

−d≤θ1≤0
Vσ(t0)(t0 + Δ0 + θ1)

· e(
ln ρ1ρ2+2μd

T −μ)(t−t0−Δ0)

(50)

The proof is completed.
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