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The control flow of programs can be represented by directed graphs. In this paper we provide a uniform and detailed formal
basis for control flow graphs combining known definitions and results with new aspects. Two graph reductions are defined
using only syntactical information about the graphs, but no semantical information about the represented programs. We
prove some properties of reduced graphs and also about the paths in reduced graphs. Based on graphs, we define statement
coverage and branch coverage such that coverage notions correspond to node coverage, and edge coverage, respectively.
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1. Introduction

Control flow graphs or program graphs that represent the
control flow of programs are widely used in the analysis
of software and have been studied for many years (Jalote,
2005; Kosaraju, 1973; McCabe, 1976; Paige, 1977; Rapps
and Weyuker, 1982; Tan, 2006; White, 1981; Zhu et al.,
1997). The nodes of a control flow graph are statements
of the program and the edges represent the control flow be-
tween the statements. The approaches differ with respect
to the handling of branching and the merging of branches,
and the representation of segments of statements that are
always executed together.

The aim of this paper is to discuss control flow graphs
and their application to software testing detailed. We de-
fine control flow graphs with one node for each statement
and segment graphs where we replace segments by single
nodes. We use the definition given by Rapps and Weyuker
(1982) as well as Jalote (2005), and show structural prop-
erties and results. Our aim is to prove that for both
types of control flow graphs node coverage corresponds
to the notion of statement coverage used in software test-
ing (Jalote, 2005; Sommerville, 2004; Zhu et al., 1997).
For graph reduction we will use only (syntactical) infor-
mation about the graphs, but no (semantical) information
about the represented programs. Therefore, our reduction
can be applied to all directed graphs, not only to control
flow graphs. Furthermore, we define control flow graphs
not only for single functions, but also for C-like programs
consisting of sets of functions.

By a further reduction, using the definition of Paige
(1977), we introduce decision graphs with one edge be-
tween decision nodes, i.e., one edge for each branch in
a program, and therefore edge coverage corresponds to
branch coverage used in software testing. As above, the
reduction of graphs to decision graphs can be applied to
all directed graphs, not only to control flow graphs.

The rest of the paper is organized as follows. Ba-
sic definitions regarding graphs and the definition of con-
trol flow graphs follow in Section 2. Segment graphs and
statement coverage are described in Section 3. Decision
graphs and branch coverage are introduced in Section 4.
Section 5 discusses other works and contains conclusions.

2. Basic definitions

We start with necessary definitions about graphs.

Definition 1. A directed graph with multiple edges is a
pair G = (N, E) consisting of a finite set N of nodes and
a finite set E of edges with N ∩ E = ∅, together with
functions start and end : E → N that associate a start
node and an end node, respectively, with each edge. With
|(n, n′)| for two nodes n, n′ ∈ N , we denote the number
of edges with start node n and end node n′. For a node
n ∈ N , the sets pre(n) = {n′ | ∃ e ∈ E : start(e) = n′,
end(e) = n} and post(n) = {n′ | ∃ e ∈ E : start(e) =
n, end(e) = n′} are called preset and postset of n, re-
spectively. Nodes with an empty preset or an empty post-
set are called entry nodes and exit nodes of the graph, re-
spectively. An edge e with start(e) = end(e) is called a
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Fig. 1. Function Search and its control flow graph.

cycle. Two graphs G1 = (N1, E1), G2 = (N2, E2) are
called disjoint if N1 ∩ N2 = ∅ and E1 ∩ E2 = ∅. A
path d is a finite sequence of edges e1 e2 . . . ek such that
end(ei) = start(ei+1) for i = 1, . . . , k−1. The start node
of the first edge e1 is called the start node of d, the end
node of the last edge ek—the end node of d. A prefix of a
path d = e1 e2 . . . ek is an initial part d′ = e1 e2 . . . ei of
the path for i ∈ {0, . . . , k}. We denote by d′ ≤ d a prefix.
For a path d, the set prefix(d) = {d′ | d′ ≤ d}, and for
a set D of paths, the set prefix(D) =

⋃
d∈D prefix(d) are

the sets of prefixes of d and D, respectively. A path start-
ing with an entry node is called an S-path. An S-path that
ends in an exit node is called a complete path. By N(d)
and E(d) we denote the set of nodes and edges, respec-
tively, that are contained in the path d.

In the remainder of Section 2 and in Section 3 we
will not allow more than one edge with equal start nodes
and equal end nodes (i.e., ∀n, n′ ∈ N : |(n, n′)| ≤
1), and we will call a graph with this property simply a
directed graph. In this case, an edge e can be written as
(start(e), end(e)) ⊆ N × N . A path is then a sequence
(n1, n2)(n2, n3) . . . (nk−1, nk). We can briefly represent
a path as a sequence of nodes n1 n2 . . . nk. In Section 4
we will need directed graphs with multiple edges.

Each statement in a function written in a pro-
gramming language will be a node in the control flow
graph, the edges representing the control flow be-
tween statements. An entry and an exit node will
be added as unique entry and exit points of the func-
tion. Statements in C are function calls, assignments
and other expressions with a semicolon, return-,
break-, continue-, goto-, if-, switch-,

do-while-, for-, while-statements and the null
statement.

Definition 2. The control flow graph Gf = (N, E) of
a function f has one node na ∈ N for each statement a
in f and two additional nodes nin, nout. We add an edge
(na, na′) if the statement a′ is executed immediately after
the statement a. For the first statement a1 in the func-
tion, we introduce an edge (nin, na1). Furthermore, we
add edges (na′ , nout) for each node na′ that is associated
to a statement a′, after which the control flow leaves the
function because of a return-statement or the right brace
that terminates the function. The control flow graph of
an empty function, i.e., a function without any statements
consists of N = {nin, nout} and E = {(nin, nout)}.

The node nin is the only entry node and the node nout

the only exit node of the control flow graph. Note that the
control flow graph Gf is a graph where each node (except
nin and nout) corresponds to one statement in the func-
tion f . Figure 1 shows an example where we labelled the
nodes with the types of the statements or with “in”, “out”
for better readability. The called function isabsequal
checks whether its parameters have equal absolute values.
N is a defined constant denoting the length of the array.

3. Segment graphs

Segments are sets of consecutive nodes that can be re-
placed by single nodes.

Definition 3. A non-empty set S ⊆ N of nodes of a
directed graph G = (N, E) is called a segment (Fig. 2)
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Fig. 2. Segment of a directed graph.

if and only if there exists an order 〈n1, n2, . . . , nk〉 of the
elements of S such that

post(ni) = {ni+1}, pre(ni+1) = {ni}
for i = 1, . . . , k − 1. A segment S is called maximal if
none of supersets S′ ⊃ S are segments.

Before we show that the set of the maximal segments
of a graph is a partition of the nodes, we need a lemma
that provides some properties of segments.

Lemma 1. Let G = (N, E) be a directed graph and let
S, S′ be non-empty subsets of N .

1. |S| = 1 ⇒ S is a segment.

2. Let S be a segment with S′ ⊆ S and let S =
〈n1, n2, . . . , nk〉 be an order of the nodes with
post(ni) = {ni+1}, pre(ni+1) = {ni} for i =
1, . . . , k − 1. Then

S′ is a segment ⇔
there exist indices j, l with 1 ≤ j ≤ l ≤ k

such that

S′ = 〈nj , nj+1, . . . , nl〉 or

S′ = 〈nl, nl+1, . . . , nk, n1, n2, . . . , nj〉
with post(nk) = {n1}, pre(n1) = {nk}.

3. Let S, S′ be segments and let S be maximal. Then
S′ ⊆ S or S ∩ S′ = ∅.

Proof. We give only an outline of the proof. The first
part is obvious. The direction “⇐” of the second part fol-
lows directly from the definition. The proof of direction
“⇒” of the second part can be provided by induction over
|S′| and has two cases: the first one where the segment
S has unique start and end nodes n1, nk and therefore

the subsegment S′ is a simple subsequence (Fig. 3), and
the second one where the segment is a loop of nodes with
one-elementary pre- and postsets and therefore the sub-
segment S′ can start anywhere in S and even span from
the end node nk to the start node n1 (Fig. 4). For the proof
of the third part we also use induction over |S′|. The case
|S′| = 1 is obvious. Now assume that S̃ ⊆ S or S∩S̃ = ∅
holds for all segments S̃ with |S̃| = m − 1, especially for
the segment S̃ that we get by clipping the last element n′

m

of S′. If S̃ ⊆ S, it follows from the second part that S̃ is
a subsequence of S. If the clipped node n′

m is not in S,
then n′

m−1 has a postset with two elements and must be
the last node in S. But then S can be lengthened by n′

m

and S is not maximal. Therefore, n′
m ∈ S and S′ ⊆ S.

Now let S ∩ S̃ = ∅ but n′
m ∈ S. If n′

m is the first node in
S, both segments can be concatenated and S is not maxi-
mal. Otherwise the preset of n′

m has two elements and S
is not a segment. Therefore n′

m /∈ S and S ∩S′ = ∅. �

Fig. 3. Segment S in the case S′ = 〈nj , nj+1, . . . , nl〉.

Fig. 4. Segment S in the case S′ = 〈nl, nl+1, . . . , nk, n1,
n2, . . . , nj〉.

A segment of the type shown in Fig. 4 and used
in Lemma 1 is an isolated loop, thus unreachable from
entry nodes, and can occur in control flow graphs only
in programs with an unreachable code like in the graph
for a function with body x = 0; return; label:
x++; goto label;. The detection of an unreachable
code plays an important role in software testing since such
a code indicates a programming error and complete state-
ment coverage cannot be achieved if an unreachable code
exists.

Theorem 1. Let G = (N, E) be a directed graph. The
set of the maximal segments of G is a partition of N .

Proof. Let S and S′ be two maximal segments. From
Part 3 of Lemma 1 it follows that S′ ⊆ S or S ∩ S′ = ∅.
If S′ ⊂ S, then S′ is not maximal. Therefore, S′ = S
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Fig. 5. Control flow graph and segment graph of function Search.

or S ∩ S′ = ∅. This means that two different maximal
segments are disjoint. Let n ∈ N . The set S1 = {n}, is
according to Part 1 of Lemma 1, a segment. If S1 is not
maximal, a segment S2 with S1 ⊂ S2 exists. If S2 is not
maximal, a third segment S3 with S2 ⊂ S3 exists. Since
N is finite, there is a maximal segment Si with n ∈ S1 ⊂
S2 ⊂ . . . ⊂ Si. This means that each node is an element
of a maximal segment. �

By substitution of maximal segments with single
nodes, we reduce graphs to segment graphs.

Definition 4. Let G = (N, E) be a directed graph. The
segment graph Gr = (Nr, Er) consists of the set of nodes

Nr = {nS | S is a maximal segment in G}
and the set of edges Er with

(nS , nS′) ∈ Er ⇔ S �= S′ and there exist

n ∈ S, n′ ∈ S′

with (n, n′) ∈ E or

S = S′ and there exists a path

n1 n2 . . . nk n1 in G with

{n1, n2 . . . , nk} ⊆ S.

The second part of the definition of the set of edges
makes sure that loops in segments get cycles in the seg-
ment graphs. Figure 5 shows the segment graph of the
function Search. Figure 6 gives an example of a seg-
ment graph with a cycle.

Not only graphs but also paths can be reduced.

Definition 5. Let G = (N, E) be a directed graph
and d a path in G. Let d = d1 d2 . . . dl be partitioned
into subpaths such that in each subpath di only nodes
of one maximal segment Si and in two consecutive sub-
paths only nodes of two different maximal segments oc-
cur. Let each subpath di be partitioned once more in paths
di1 di2 . . . dimi such that the first nodes in all paths di1,
di2, . . . , dimi are equal and occur only at the first po-
sition in these paths. The segment path dr starts with
nm1

S1
nm2

S2
. . . n

ml−1
Sl−1

, where nS is the node that is associ-
ated to a maximal segment S in the segment graph ac-
cording to Definition 4. We append nml

Sl
if and only if dl

contains all nodes of Sl.
Note that, in the case when we have l = 1 and

dl does not contain all nodes of Sl, the segment path
is empty. Let the nodes of the control flow graph
and the segment graph of the function Pot (Fig. 6) be
n1, n2, . . . , n6 and n′

1, n
′
2, n

′
3 (from top to bottom), and

let d = n1 n2 n3 n4 n2 n3 n4 n2 n3 n4 n5 be a path in
the control flow graph. The decomposition is then d =
d11 d21 d22 d23 d31 with d11 = n1, d21 = d22 = d23 =
n2 n3 n4, d31 = n5. Therefore, the segment path dr is
n′

1 n′3
2 since the last subpath d3 does not run through all

nodes of the third segment. But the path d n6 has the seg-
ment path n′

1 n′3
2 n′

3.

Theorem 2. Let G = (N, E) be a directed graph and
d a path in G. The segment path dr is then a path in the
segment graph Gr.

Proof. For there to be a path there must be cycles
(nSi , nSi) ∈ Er for such i with mi > 1. This follows



Control flow graphs and code coverage 743

Fig. 6. Function Pot, control flow graph and segment graph.

from Definition 4 since di1 di2 is a path in G that consists
only of nodes from the maximal segment Si and in which
the first node of di1 occurs twice. Furthermore, there must
be edges (nSi , nSi+1) ∈ Er for i = 1, . . . , l− 1. This fol-
lows also from Definition 4 since Si, Si+1 are different
segments and there must exist an edge from a node in Si

to a node Si+1 in E because di di+1 is a path in G. �

Segments (Definition 3), graph reduction (Definition
4), path reduction (Definition 5) and the results (Theo-
rems 1 and 2) can be applied to all directed graphs, not
only to control flow graphs. Now we return to control
flow graphs and software testing. The execution of a test
case for a function runs through the control flow graph
and thus induces a path in the graph. Since the execu-
tion starts always with the first executable statement, i.e.,
with an entry node of the control flow graph, an S-path
is induced, but not always a complete path, because the
execution could encounter, for example, an infinite loop.
Such loops induce infinite paths and cannot be tested in
finite time. Therefore, in practical applications we have
to stop the execution of such a test case after some time
or, better, after a maximal length of the induced path be-
cause the latter is machine independent und reproducible.
We replace (finite and) infinite paths induced by test cases
by the sets of their finite prefixes. Thus we avoid infinite
paths and can use as a test criterion some upper bound for
the length of the paths that should be tested, i.e., in practi-
cal applications we can use a defined subset of all induced
paths for testing.

Definition 6. Let t be a test case of a function f . Then we
denote by D(f, t) the prefix closed set of the S-paths in the
control flow graph of the function that are induced by the
execution of the test case t and by Dr(f, t) = {dr | d ∈

Fig. 7. Complete path in the control flow graph of the function
Search.

D(f, t)} the set of the segment paths. For a set T of test
cases we write D(f, T ) =

⋃
t∈T D(f, t) and Dr(f, T ) =⋃

t∈T Dr(f, t).

In Fig. 7, a complete path d = n1 n2 n3 n4 n5 n3

n4 n5 n3 n4 n6 n7 n8 n9 in the control flow graph of the
function Search is shown. It is executed, e.g., for a test
case t with input arr == {1, 2, 3, 4}, key ==
-3. Therefore, D(Search, t) = prefix(d).
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Fig. 8. Function isabsequal and its control flow graph.

When we execute a program that consists of a set
of functions, the control flow graphs of these functions
are run through. Each time a function is called, a prefix
closed set of S-paths in the control flow graph of the called
function is induced.

Definition 7. A program p is a set of functions. We al-
ways assume that the functions in a program have pairwise
disjoint control flow graphs and also pairwise disjoint seg-
ment graphs (and in Section 4 also pairwise disjoint deci-
sion graphs). Let t be a test case of a program p. We
denote by D(p, t) the prefix closed set of the S-paths in
the control flow graphs of the functions of the program p
that are induced by the execution of the test case t, and
by Dr(p, t) = {dr | d ∈ D(p, t)} the set of the segment
paths. Accordingly, we define D(p, T ) and Dr(p, T ).

Consider the program p that consists of the func-
tions Search and isabsequal (Fig. 8), and again
the test case t as above and a second test case t′ with
arr == {1, 2, 3, 4}, key == 3; then the paths
D(p, {t, t′}) = prefix({d, d1, d2, d3}) with d as above
and d1 = n10 n11 n13 n15 n16, d2 = n10 n11 n13 n14 n16,
d3 = n10 n11 n12 n16 are executed.

Statement coverage means that in a test of a program
the test cases execute all statements in the program. For
the control flow graphs of the functions in the program,
this means that all nodes are covered by the paths that are
induced by the test cases. Therefore, this coverage crite-
rion is also called all-nodes criterion (Zhu et al., 1997).

Definition 8. Let p be a program. A set T of test cases
satisfies statement coverage if and only if

∀f ∈ p ∀n ∈ Nf ∃ d ∈ D(p, T ) : n ∈ N(d),

where Nf is the set of nodes of the control flow graph of
the function f .

The set of test cases T = {t, t′} with t, t′ as above
satisfies for the program p that consists of the functions

Search and isabsequal as above statement coverage
since each node in the control flow graphs of the functions
is covered by at least one path in D(p, T ).

We define the same notion for segment graphs (use
the set N r

f of nodes of the segment graph instead of Nf

and Dr(p, T ) instead of D(p, T )) and call it segment cov-
erage.

Due to infinite loops we cannot guarantee that, if a
test case enters a segment, the segment is executed com-
pletely. The program in Fig. 9 consists of the functions f
und g. For the set T = {t1, t2} with the test cases t1: i
== -1, j == 1 and t2: i == 1, j == -1, the only
node that is not covered in Gf and Gg is the node rep-
resenting the statement i = j; and the only uncovered
segment in Gr

f and Gr
g is the segment that contains the

node i = j; due to the infinite loop in the second call
of g for the second test case. According to Definition 5, a
node in the segment graph is only covered if all nodes in
the segment are covered.

This leads to what follows.

Theorem 3. Let p be a program and T a set of test
cases. Then T satisfies statement coverage if and only if
T satisfies segment coverage.

Proof. “⇒”: Let n′ be a node in the segment graph
of a function f ∈ p. Then there exists a maximal seg-
ment S in the control flow graph with n′ = nS. Let S =
〈n1, n2, . . . , nk〉 be an order of the nodes with post(ni) =
{ni+1}, pre(ni+1) = {ni} for i = 1, . . . , k − 1. Then
there is a path d ∈ D(p, T ) with nk ∈ N(d) since T
satisfies statement coverage and from Definition 7 it fol-
lows that dr ∈ Dr(p, T ). If we decompose d according
to Definition 5 into d = d1 d2 . . . dl and if nk occurs in
d1 d2 . . . dl−1, we get that nS ∈ N(dr). If nk occurs
only in dl, all other nodes n1, n2, . . . , nk−1 of the seg-
ment must also occur in dl, since n1 is the only entry point
in S and we cannot start d within a segment because d is
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Fig. 9. Functions f and g, control flow graphs Gf , Gg and segment graphs Gr
f , Gr

g .

induced by a test case and therefore it is an S-path. It fol-
lows also that nS ∈ N(dr).

“⇐”: Let n be a node in the control flow graph of a func-
tion f ∈ p and let S be the maximal segment that con-
tains n. Then there exists a path d′ ∈ Dr(p, T ) with
nS ∈ N(d′) since T satisfies segment coverage and it fol-
lows with Definition 7 that there is a path d ∈ D(p, T )
with d′ = dr. With the construction of Definition 5,
we get dr = nm1

S1
nm2

S2
. . . n

ml−1
Sl−1

, possibly followed by
nml

Sl
. If nS = nSl

, we know that all nodes of S are con-
tained in d and n ∈ N(d). Otherwise, nS = nSh

for one
h ∈ {1, . . . , l − 1} and a node nj ∈ S must be contained
in dh (S as above). Since n1 is the only entry point and
nk is the only exit point in S and we cannot start d within
a segment, the node n ∈ S must also be contained in dh

and therefore n ∈ N(d). �

4. Decision graphs

Directed graphs can be reduced further if we keep only
entry and exit nodes and such nodes that represent deci-
sions, i.e., with postsets that have two or more elements.
Paige (1977) calls them D-nodes.

Definition 9. Let G = (N, E) be a directed graph. A
node n ∈ N is called a D-node if it is an entry node or
an exit node or if |post(n)| ≥ 2. A DD-path is a path
n1 n2 . . . nk where the start and end nodes n1, nk are D-
nodes and the other nodes n2, . . . , nk−1 are no D-nodes.

To represent the branching structure of functions we
will replace DD-paths, with single edges. The following
lemma shows properties of DD-paths that are necessary
for the definition of decision graphs.

Lemma 2. Let G = (N, E) be a directed graph.

1. Let n, n′ ∈ N be two D-nodes. Then there are at
most |post(n)| different DD-paths that start in n and
end in n′.

2. Let d = n1 n2 . . . nk be a DD-path. Each inner node
n2, . . . , nk−1 occurs only once in d.

Proof.
1. Let b = |post(n)| and assume that there are b + 1
different DD-paths that start in n and end in n′. Then
two DD-paths d1, d2 have the same first edge since
there are only b possibilities to start a path from n. Let
d1 = n11 n12 . . . n1k and d2 = n21 n22 . . . n2h. Then
n11 = n21 = n, n12 = n22 and n1k = n2h = n′. Since
n12, . . . , n1 k−1 and n22, . . . , n1 h−1 are no D-nodes, they
have postsets with only one element. It follows that
n13 = n23, . . ., n1 k−1 = n1 h−1 and k − 1 = h − 1.
This means that both paths are equal.

2. Assume that an inner node occurs twice in d as
ni and nj . Then the path ni+1 . . . nj can be in-
serted v ≥ 0 times in d after nj . The resulting path
n1 . . . ni . . . nj (ni+1 . . . nj)v nj+1 . . . nk is also a DD-
path. This means that we have an infinite number of DD-
paths that start in n1 and end in nk. �

Since there may be two or more DD-paths between
two D-nodes, we need graphs with multiple edges to de-
fine decision graphs if we want one edge for each branch
in the function when we apply decision graphs to func-
tions.

Definition 10. Let G = (N, E) be a directed graph. The
decision graph Gc = (Nc, Ec) is a directed graph with
multiple edges that consists of the set of nodes

Nc = {n ∈ N | n is a D-node in G}

and the set of edges Ec that contains b edges with a start
node n and an end node n′ for all nodes n, n′ ∈ N , where
b is the number of different non-empty DD-paths in G that
start in n and end in n′.

From Lemma 2 it follows that b ≤ |post(n)| and
therefore is b finite. Figure 10 shows the decision graph
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Fig. 11. Control flow graph and decision graph of function isabsequal.

Fig. 10. Control flow graph and decision graph of function
Search.

of the control flow graph of the function Search. The
decision graph of the control flow graph of the function
isabsequal (Fig. 11) contains multiple edges.

As in Section 3, we can also reduce paths, this time
to decision paths.

Definition 11. Let G = (N, E) be a directed graph
and d = n1 n2 . . . nk a path in G that starts with a D-
node. Let ni1 , ni2 , . . ., nim be the D-nodes in d with
i1 < i2 < . . . < im. Then dj = nij nij+1 . . . nij+1

are DD-paths for j = 1, . . ., m − 1. From Definition 10
it follows that there are edges ej with start(ej) = nij

and end(ej) = nij+1 in the decision graph Gc associated
to the DD-paths dj . The decision path dc is defined as

e1 e2 . . . em−1. The decision path dc for a path d in G
without D-node is defined as the empty path.

Note that the nodes nim+1 . . . nk following the last
D-node nim are clipped. When the path contains only one
D-node, i.e., m = 1, the decision path is empty. From
end(ej) = nij+1 = start(ej+1) for j = 1, . . ., m − 2 we
obtain the following:

Theorem 4. Let G = (N, E) be a directed graph and
d a path in G. The decision path dc is then a path in the
decision graph Gc.

So far we have not used any semantical informa-
tion and therefore the definitions and results about deci-
sion graphs can be applied to all directed graphs. Deci-
sion graphs used for functions in programming languages
have one edge for each branch in the function plus one
edge from the entry node to the D-node that represents the
first decision statement. Branch coverage is usually de-
fined as all-edges criterion for control flow graphs (Zhu
et al., 1997). But since in decision graphs edges corre-
spond to branches, it is possible to define branch coverage
based on decision graphs.

Definition 12. With the same notation as in Definition 7
we define Dc(p, t) = {dc | d ∈ D(p, t)} and Dc(p, T ) =⋃

t∈T Dc(p, t).

The program p that consists of the functions
Search and isabsequal with the set of test cases
T = {t, t′} as in Section 3 has the set Dc(p, T ) =
prefix({e1 e2 e3 e2 e3 e2 e5, e6 e8 e10, e6 e8 e9, e6 e7}) of
decision paths.

Definition 13. Let p be a program. A set T of test cases
satisfies branch coverage if and only if

∀f ∈ p ∀e ∈ Ef ∃ d ∈ Dc(p, T ) : e ∈ E(d),

where Ef is the set of edges of the decision graph of the
function f .
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Fig. 12. Example with goto and its segment graph (G1) and program graph (Rapps and Weyuker, 1982) (G2); the same example
without goto and its segment graph (G3).

The set T of test cases does not satisfy branch cov-
erage since the edge e4 is not covered. If we add another
test case t′′ with arr == {1, 2, 3, 4}, key == 0,
a new path e1 e2 e3 e2 e3 e2 e3 e2 e3 e4 is executed and all
edges of the decision graphs are covered.

This example also shows that node coverage of deci-
sion graphs is not equal to statement coverage, i.e., node
coverage of control flow graphs the since test case t cov-
ers all nodes of the decision graphs of both functions but
the node n12 in the control flow graph of isabsequal
is not covered.

5. Conclusion

We defined two graph reductions that can be applied to di-
rected graphs and especially to control flow graphs. The
definitions of segments and segment graphs are based on
that of blocks and program graphs, respectively, given
by Rapps and Weyuker (1982) as well as Jalote (2005)
with two minor differences. Firstly, the latter defini-
tions are directly on programs using semantical informa-
tion whereas our definitions are based only on syntacti-
cal information about the graphs. The second difference
is the treatment of constructs if (condition) goto
label; since they are seen as one statement where we
understand them as two statements and therefore the re-
sulting graphs differ. But compared with the form of this
construct without goto, the approaches are equal, as the
example in Fig. 12 shows.

In the work of Rapps and Weyuker (1982), the def-
inition of node and edge coverage is based on complete
paths, whereas we use S-paths to capture infinite loops
which can occur in practical applications, for example, in
embedded control systems.

Paige (1977) defines a similar graph reduction called
program graphs reduced to segments. There, a segment
“is a simple path between two S-nodes such that no S-

Fig. 13. Program graph reduced to segments (Paige, 1977) for
the function Search.

node appears within the segment”. Nodes that have a pre-
set or a postset with more than one node are S-nodes, and
the entry and the exit node are also S-nodes. In a simple
path, no edge is allowed to appear more than once and no
node more than twice. A segment is reduced to the con-
tained S-nodes and an edge between the S-nodes. With
this definition, the S-nodes in the function Search are
“in”, “while”, “if”, “out” and the control flow graph is
reduced to that shown in Fig. 13. According to our def-
inition, a segment that contains no S-node will not occur
in the program graph reduced to segments. In this case,
program graphs do not distinguish between branches with
statements and empty branches, as the example in Fig. 14
shows. But this distinction is essential for code coverage.
Due to this property, a program graph reduced to segments
can be smaller than the segment graph (e.g., the program
graph of the function Search in Fig. 13 compared with
its segment graph in Fig. 5). But since a segment can also
contain two S-nodes (the first and the last node of the seg-
ment), the segment graph can have fewer nodes than the
program graph, as the example Pot in Fig. 6 shows (the
control flow graph contains four S-nodes but only three
segments).

The definitions of D-nodes and DD-paths are based
on the definitions by Paige (1977). The only difference is
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Fig. 14. Example with empty branch and its control flow graph
(G1), segment graph (G2) and program graph reduced
to segments (Paige, 1977) as a graph with multiple
edges (G3).

that there a DD-path is a simple path. But from Lemma 2
it follows that a DD-path, according to Definition 9, is
always a simple path. Decision graphs correspond to pro-
gram graphs reduced to DD-paths (Paige, 1977) with the
difference that we explicitly use multiple edges if there is
more than one DD-path between two D-nodes.

Segment and decision graphs can be seen as abstrac-
tions from statements to blocks of statements and to deci-
sions, respectively. Furthermore, they differ in the treat-
ment of entry nodes. A segment can start with an en-
try node of the graph and end with an exit node or with
another D-node (but, of course, not with an entry node).
Such a segment contains two D-nodes. A node in a seg-
ment graph can therefore represent two D-nodes (an entry
node and another D-node), but a node in a decision graph
is a single D-node by definition. Clearly, this difference
could be solved by changing the definition of segments
but, on the other hand, it is easy to see that if n is an entry
node in a graph and S is the maximal segment that con-
tains n, then the node nS in the segment graph that corre-
sponds to the segment S is also an entry node, and if nS is
an entry node in a segment graph, then the segment S in
the graph contains an entry node. Therefore, the informa-
tion about entry nodes is not lost during the construction
of segment graphs.

The reductions to segment graphs and to decision
graphs can be applied to all directed graphs, not only to

Table 1. Properties of control flow graphs.
control flow segment decision

graphs graphs graphs

multiple no no yes
edges
nodes single sequences of decision

correspond statements statements statements
to (segments) (D-nodes)

edges control flow control flow control flow
correspond between single between between

to statements segments decision
(Definition 2) (Definition 4) statements

(DD-paths),
i.e., branches

(Definition 10)
defines statement segment branch

coverage coverage coverage coverage
(Definition 8) (Definition 13)

node cover- by definition yes no
age equal to (Theorem 3) (example)
statement
coverage

edge cover- yes yes by definition
age equal to (not shown (not shown

branch in this paper) in this paper)
coverage

control flow graphs of programs, and are useful when they
should be abstracted from sequential actions or when the
focus is on decisions only. Other fields of application in-
clude business or manufacturing process modelling, pro-
gram compilation, static analysis, e.g., for software met-
rics or worst case execution times and digital system de-
sign, e.g., in VHDL or other hardware description lan-
guages.

When we apply graphs to the control flow of pro-
grams and to software testing, the three graph types, (con-
trol flow graphs, segment graphs and decision graphs),
have the properties as shown in Table 1. Nodes in con-
trol flow graphs correspond to statements and therefore
node coverage defines statement coverage. Analogously,
edges in decision graphs represent branches and therefore
edge coverage correspond to branch coverage. The de-
fined graph types are thus three different abstractions from
programs. This paper establishes a uniform and formal
basis for these graph types for the use in manual and tool-
supported control flow oriented test case generation and
graphical representation of programs.
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