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Two methods are proposed targeted at reduction in the number of look-up table elements in logic circuits of compositional
microprogram control units (CMCUs) with code sharing. The methods assume the application of field-programmable gate
arrays for the implementation of the combinational part of the CMCU, whereas embedded-memory blocks are used for
implementation of its control memory. Both methods are based on the existence of classes of pseudoequivalent operational
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of design are shown. Results of conducted experiments are given.
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1. Introduction

Very often a system includes a control unit (CU) to coor-
dinate the interplay of all system blocks (Navabi, 2007).
A particular model chosen to represent a control unit de-
pends strongly on peculiarities of the microprogram to be
implemented (Barkalov and Titarenko, 2008).

If the number of control algorithm operator vertices
is at least twice less than that of operational linear chains
(OLCs), then the model of the compositional micropro-
gram control unit (CMCU) can be used to interpret this
control algorithm (Adamski and Barkalov, 2006). Let
us point out that the model of the CMCU can be used
in any digital system, not only in computers. Field-
programmable gate arrays (FPGAs) are widely used for
the implementation of control units (Navabi, 2007; Max-
field, 2004). As a rule, these devices include a lot of look-
up table (LUT) elements with a very limited number of in-
puts (Altera, 2010; Xilinx, 2010), as well as configurable
embedded memory blocks (EMBs).

The problem of the reduction in the hardware amount
in the logic circuit of a control unit is still a task of
great importance (Maxfield, 2004; Kam et al., 1998; Ka-
nia, 2004; Solovjev and Klimowicz, 2008). Its solution
allows decreasing such characteristics as the cost of the
circuit, the number of chips, power consumption and so
on (Micheli, 1994). In the case of the FPGA, this problem

can be solved by decreasing the number of input variables
in each of the functions to be implemented (Barkalov and
Titarenko, 2008). The limited number of inputs per LUT
(up to six) results in the necessity of functional decompo-
sition of implemented functions (Scholl, 2001). In turn,
this results in a slow-down of the control unit because of
the increase in the number of levels in its combinational
part. The number of levels can be decreased due to the
use of EMBs for implementing some parts of a control
unit (Borowik et al., 2007). This approach is used in the
CMCU, too (Barkalov and Titarenko, 2008; Titarenko and
Bieganowski, 2009). It is known that in the case of finite-
state-machines (FSMs) (Baranov, 2008), the appropriate
state assignment (Micheli, 1994; Barkalov et al., 2006;
Czerwiński and Kania, 2004; Escherman, 1993) is an ef-
fective tool for hardware amount optimization. In the case
of the CMCU, only its model with code sharing gives such
a possibility. In this article we propose two possible so-
lutions to the hardware amount decrease problem for the
CMCU with code sharing implemented using FPGA chips
based on LUT elements and EMBs.

2. Background of CMCU with code sharing

Let a microprogram to be implemented be represented by
a graph-scheme of algorithm (GSA) (Baranov, 2008) with
the set of vertices B = b0, bE ∪ E1 ∪ E2 and the set
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of arcs E. Here b0 is an initial vertex, bE is a final ver-
tex, E1 is a set of operator vertices and E2 is a set of
conditional vertices. An operator vertex bq ∈ E1 con-
tains a collection of microoperations Y (bq) ⊆ Y , where
Y = {y1, . . . , yN} is a set of microoperations. A con-
ditional vertex bq ∈ E2 contains some element xe ∈ X ,
where X = {x1, . . . , xL} is a set of logical conditions.

Let the set C = {α1, . . . , αG} be formed for a
GSA Γ, where αg ∈ C is an operational linear chain. An
OLC αg ∈ C is a sequence of operator vertices such that
each pair of its adjacent components corresponds to some
arc from the set E. Each OLC αg ∈ C has only one out-
put Og and an arbitrary number of inputs (Adamski and
Barkalov, 2006).

Let us name as a linear GSA a GSA Γ where the
number of its operational vertices exceeds at least twice
the number of its operational linear chains.

Let each vertex bg ∈ E1 correspond to the microin-
struction MIq with address A(bq), and let this address
have R bits, where

R = �log2 M�. (1)

Let each OLC αg ∈ C include Fg components, and
let |C| = G. Let Q = max(F1, . . . , FG). Encode each
OLC αg ∈ C by the binary code K(αg) using variables
τr ∈ τ , where |τ | = R1 and

R1 = �log2 G�. (2)

Encode each component of the OLC αg ∈ C by the
binary code K(bq) using variables Tr ∈ T , where |T | =
R2 and

R2 = �log2 Q�. (3)

The encoding of components should be executed in
such a manner that the condition

K(bgi) = K(bgi−1) + 1 (i = 1, Fg) (4)

is met for each OLC αg ∈ C. If the condition

R = R1 + R2 (5)

holds, then the GSA Γ can be interpreted by the CMCU
with code sharing U1 (Fig. 1).

In the CMCU U1, the address of the microinstruction
corresponding to component bq of the OLC αg ∈ C is
represented as

A(bq) = K(αg) & K(bq), (6)

where & is the concatenation operator. The block of input
addresses (BIA) generates input memory functions

Φ = Φ(T, X),
Ψ = Ψ(T, X),

(7)

Fig. 1. Structural diagram of the CMCU U1.

used to load a component code into a counter CT and
a code of the OLC into a register RG, respectively. A
control memory CM keeps microoperations yn ∈ Y and
special variables y0 and yE . If y0 = 1, then the current
content of CT is incremented, otherwise both CT and RG
are loaded from the BIA. The first case corresponds to
the transition from any component of the OLC αg except
its output. The second case corresponds to the transition
from the OLC output. If yE = 1, then a flip-flop TF is
cleared, the variable Fetch = ∅ and the operation of the
CMCU is terminated. It corresponds to the vertex bE of
the GSA. Pulse Start is used to load zero codes into both
RG and CT, which corresponds to the address of the first
microinstruction. At the same time, the flip-flop TF is set
up, Fetch = 1 and microinstructions can be read from
CM. Pulse Clock is used for timing the CMCU.

The CMCU U1 can be viewed as a Moore FSM and
chains αG ∈ C correspond to internal states of the FSM.
The codes K(αg) do not depend on the codes of compo-
nents. Therefore, all well-known state assignment meth-
ods can be used for the optimization of the BIA circuit.
It is shown by Kołopieńczyk (2008) that for linear GSAs
the model of the CMCU with code sharing always con-
sumes less amount of LUT elements in comparison with
the classical Moore FSM. In the paper, we propose two ap-
proaches to the reduction in the number of LUT elements
in the logic circuit of the BIA block.

3. Proposed approaches

Our approaches are based on the existence of a pseu-
doequivalent OLC in the GSA Γ. Recall that the OLC
αi, αj ∈ C are pseudoequivalent OLCs if their outputs
are connected with the input of the same vertex (Adamski
and Barkalov, 2006). Let ΠC = {B1, . . . , BI} be the par-
tition of the set C by the classes of the pseudoequivalent
OLC. Let us construct a set Π0 ⊆ ΠC , where Bi ∈ Π0 if
the outputs of the OLC αg ∈ Bi are not connected with
the final vertex bE . Encode each class Bi ∈ Π0 by a bi-
nary code K(Bi) with R3 bits, where

R3 = �log2 |Π0|�. (8)
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(a) (b) (c)

Fig. 2. Generation of K(Bi) codes: using the block of code transformer (a), using control memory (b), using control memory and the
block of code transformer (c).

Let variables zr ∈ Z be used for such encoding, where
|Z| = R3. Let the condition

2R2 > Fg (9)

hold for all OLCs αg ∈ C1, where C1 ⊆ C is a set of
OLC from classes Bi ∈ Π0.

It was shown by Kołopieńczyk (2008) that the num-
ber of LUTs needed to implement the BIA can be re-
duced by about 50% when codes K(Bi) are used to
make transitions instead of OLC addresses. The results
of Kołopieńczyk (2008) were compared with the base
structure of a compositional control unit with code shar-
ing. The method presented by Kołopieńczyk (2008) gen-
erates codes K(Bi) using a combinational circuit called
the block of code transformer (BCT) (Fig. 2(a)). In the
paper, we propose to store codes K(Bi) in control mem-
ory to partially (Fig. 2(c)) or completely remove the BCT
(Fig. 2(b)).

In our methods we utilize some free areas in control
memory that are usually left unused, because the organi-
zation memory block is limited to some fixed variants. For
example, in the Xilinx II Pro family, the embedded mem-
ory block can be organized as 16K × 1 bit, 8K × 2 bits,
4K × 4 bits, 2K × 9 bits, 1K × 18 bits, 512 × 36 bits
(Xilinx, 2010). There are two possible variants of putting
codes K(Bi) into control memory: by adding some con-
trol microinstructions (microprogram expansion) or by
adding a field to each microinstruction (microinstruction
extension). Let us name a circuit with microprogram ex-
pansion as U2 and circuit with microinstruction extension
as U3. The microinstruction formats used in U2 and U3

are shown in Fig. 3.
The most significant bit of each format contains the

value of the variable y0. If y0 = 1 (Fig. 3(a)), then the
microinstruction contains the field FY with the code of
collection of microoperations to be executed. If y0 = 0
(Fig. 3(b)), then the microinstruction contains the field

Fig. 3. Microinstruction formats.

FB with the code K(Bi). Let us name the first of them
as an operational microinstruction (OMI) and the second
as a control microinstruction (CMI). Let us insert an addi-
tional component MCg in each OLC αg ∈ C1, and let this
component correspond to a CMI with the code K(Bi),
where αg ∈ Bi.

In the CMCU U2, the block BIA implements the sys-
tems

Φ = Φ(Z, X), (10)

Ψ = Ψ(Z, X), (11)

while the other elements of U2 have the same meaning
as their counterparts for U1. The functions (10)–(11) are
generated when the concatenation of the contents of RG
and CT represents an address of the control microinstruc-
tion. In this case, the data-path of the controlled digital
system is in the idle state. This can be achieved if the syn-
chronization of a data-path is controlled by variable y0. In
this article, we propose a synthesis method for U2 which
includes the following steps:

1. Construction of sets C, C1, ΠC and Π0 for a graph-
scheme of the algorithm Γ.

2. Including an additional component into each OLC
αg ∈ C1.

3. Encoding of the OLC α ∈ C, OLC components and
classes Bi ∈ Π0.
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4. Construction of the control memory content.

5. Construction of the transition table of the CMCU U2.

6. Implementation of the CMCU logic circuit.

This approach can be applied only if Condition (9) is
satisfied. Otherwise, it leads to an increase in the value of
R2, the violation of (5), and code sharing makes no sense
(Adamski and Barkalov, 2006). If Condition (9) is vio-
lated, we propose to use the CMCU U3 with the extended
microinstruction format shown in Fig. 3(c).

If y0 = 1, then it corresponds to OMI where the con-
tent of field FB is ignored. If y0 = 0, then it corresponds
to the output of a particular OLC αg ∈ C1. In this case, a
system data-path executes microoperations represented by
the field FY , and CMCU transition depends on the code
K(Bi) from the field FB.

In the CMCU U3, all elements have the same mean-
ing as their counterparts for U2. The only difference be-
tween U2 and U3 is in the organization of their control
memory blocks. We should point out that the number
of inputs for LUT elements of the BIA is decreased if
R3 < R1. This can result in a decrease in the numbers
of LUT elements and their levels in the circuit of the BIA
in comparison with the CMCU U1.

Our analysis of CMCU U2 and U3 shows that the
latter requires more bits in an output word of its control
memory. In the case of one-hot encoding of microoper-
ations (Adamski and Barkalov, 2006), the CMCU U2 re-
quires control memory with

n1 = max(2 + N, 2 + R3) (12)

bits. At the same time, this value for U3 is determined as

n2 = 2 + N + R3. (13)

The number 2 in both (12) and (13) is added to take into
account the bits for keeping the additional bits y0 and yE .

Let us point out that such components of the CMCU
as the BIA, CT, RG and TF are implemented using LUT
elements, whereas control memory is implemented us-
ing EMBs of the same FPGA chip. These blocks have
a fixed number of outputs denoted here as t. In reality,
t = 1, 2, 4, 8, 16 (Maxfield, 2004). This means that

R4 =
⌈

2 + N

t

⌉
t − 2 − N (14)

bits are free and can be used to represent the code K(Bi).
If the condition

R3 ≤ R4 (15)

is violated, we can use a code transformer to implement
(R3 − R4) bits of the code K(Bi). This leads to the
CMCU U4 (Fig. 2(c)), where the block of code trans-
former implements some bits of the code K(Bi).

In the case of the CMCU U4, the BIA implements the
systems

Φ = Φ(Z, V, X), (16)

Ψ = Ψ(Z, V, X), (17)

and the BCT implements the system

V = V (τ). (18)

The other components of U4 have the same meaning as
their counterparts for U3. Let us point out that variables
zr ∈ Z represent R4 leftmost bits of the code K(Bi),
whereas variables vr ∈ V represent the remaining

R5 = R3 − R4 (19)

bits. Obviously, the CMCU U4 can be reduced to U3 if the
condition (15) is true. In this article, we propose a synthe-
sis method for U4 which includes the following steps:

1. Construction of sets C, C1, ΠC and Π0 for a graph-
scheme of the algorithm Γ.

2. Encoding of the OLC αg ∈ C, their components and
classes Bi ∈ Π0.

3. Construction of the control memory content.

4. Construction of a transition table of the CMCU U4.

5. Construction of the table of the BCT.

6. Implementation of the CMCU logic circuit.

4. Examples of the application of the
proposed methods

Let a microprogram to be implemented be represented by
a GSA Γ1 (Fig. 4). Applying the approaches of Barkalov
and Titarenko (2008), the following sets can be found for
the GSA Γ1: C = {α1, . . . , α8}, C1 = {α1, . . . , α7},
ΠC = {B1, . . . , B4}, Π0 = {B1, B2, B3}, where B1 =
{α1}, B2 = {α2, α3, α4}, B3 = {α5, α6, α7}, B4 =
{α8, } α1 = 〈b1, b2〉, α2 = 〈b3, b4, b5〉, α3 = 〈b6, b7〉,
α4 = 〈b8, b9, b10〉, α5 = 〈b11, b12〉, α6 = 〈b13, b14〉,
α7 = 〈b15, b16, b17〉, α8 = 〈b18, . . . , b21〉. This means
that Q = 4, R2 = 2, T = {T1, T2}, G = 8, R1 = 3,
τ = {τ1, τ2, τ3}, Ψ = {D1, D2, D3}, Φ = {D4, D5}.
Because M = 21, R = 5, the condition (5) holds and
code sharing makes sense. Because α8 � C1, the con-
dition (9) is satisfied and all the OLC αg ∈ C1 can
be modified. After the modification, we have the OLC
α1 = 〈b1, b2, MC1〉, . . . , α7 = 〈b15, b16, b17, MC7〉.

Let us encode OLC αg ∈ C in an arbitrary manner,
namely, K(α1) = 000, . . . , K(α8) = 111. Let the code
00 be assigned to the first component of any OLC αg ∈ C,
the code 01 to the second, the code 10 to the third, and the
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Fig. 4. Initial graph-scheme of Algorithm Γ1.

code 11 to the fourth. Let us encode classes Bi ∈ Π0 in
an arbitrary manner, namely, K(B1) = 00, K(B1) = 01,
K(B3) = 10. Now microinstruction addresses are shown
in Fig. 5, where microinstructions are represented by the
corresponding vertices and additional components.

Fig. 5. Microinstruction addresses for the CMCU U2(Γ1).

Let Ui(Γj) mean that CMCU Ui is used to interpret
a GSA Γj . From Fig. 5 in can be inferred, for example,
that A(b10) = K(α4) · K(b10) = 01110; A(MC6) =
K(α6) · K(MC6) = 10110 and so on.

To get the control memory content, we should re-
place each vertex bq ∈ B1 by the set Y (bq) ∪ {y0}.
Each component MCg is replaced by the code K(Bi),
where αg ∈ Bi. The vertex b21 is replaced by the set
Y (b21) ∪ {yE}.

For example, the vertex b8 contains the set Y (b8) =
{y1, y7}. This means that the memory cell with the ad-
dress A(b8) = 01100 contains a binary code correspond-
ing to y0, y1, y7. Next, the vertex b21 is connected with
the input of the final vertex bE , and Y (b21) = {y7, y8},
A(b21) = 11111. Then, the memory cell with this ad-
dress includes a binary code corresponding to y7, y8, yE .
Finally, the memory cell with the address 01011 corre-
sponds to MC4. Because this control microinstruction fol-
lows the vertex b10, which is the output of OLC α ∈ B2,
this memory cell includes the code K(B2) = 01. The
contents of all other cells can be found in the same man-
ner.

The transitions from the outputs of the OLC αg ∈ C1

can be represented by the following system of transition
formulae (Baranov, 2008):

b2 → x1b3 ∨ x̄1x2b6 ∨ x̄1x̄2b8,

b5, b7, b10 → x3b5 ∨ x̄3x4b11 ∨ (20)

x̄3x̄4x5b13 ∨ x̄3x̄4x̄5b15,

b12, b14, b17 → x4b18 ∨ x̄4x5b14 ∨ x̄4x̄5b9.

As follows from (20), the outputs of the pseudoe-
quivalent OLC αg ∈ Bi are described by one line of
the system. This allows replacing the outputs of OLC
αg ∈ Bi by the corresponding class Bi ∈ Πc. This leads



756 A. Barkalov et al.

to the system of generalized transition formulae:

B1 → x1b3 ∨ x̄1x2b6 ∨ x̄1x̄2b8,

B2 → x3b5 ∨ x̄3x4b11 ∨ x̄3x̄4x5b13 ∨ (21)

x̄3x̄4x̄5b15,

B3 → x4b18 ∨ x̄4x5b14 ∨ x̄4x̄5b9.

The system of transition formulae can be transformed
into a transition table of the CMCU with the follow-
ing columns: Bi, K(Bi), bq, A(bq), Xh, Ψh, Φh, h.
Here Ψh(Φh) is the collection of input memory func-
tions that are equal to 1 for the h-th transition of the
CMCU (h = 1, . . . , H). The transition number h is de-
termined by a conjunction of some logical conditions Xh

(h = 1, . . . , H). In our example, H = 10 and the table of
CMCU transitions is represented by Table 1.

Table 1. Transition table of the CMCU U2(Γ1).

Bi
K(Bi)

bq
A(bq)

Xh Ψh Φh h
z1z2 τ1τ2τ3T1T2

B1 00 b3 00100 x1 D3 – 1

b6 01000 x̄1x2 D2 – 2

b8 01100 x̄1x̄2 D2D3 – 3

B2 01 b5 00110 x3 D3 D4 4

b11 10000 x̄3x4 D1 – 5

b13 10100 x̄3x̄4x5 D1D3 – 6

b15 11000 x̄3x̄4x̄5 D1D2 – 7

B3 10 b18 11100 x4 D1D2D3 – 8

b14 10101 x̄4x5 D1D3 D5 9

b9 01101 x̄4x̄5 D2D3 D5 10

This table is used to derive the systems (10) and
(11). The following equations can be derived, for exam-
ple, from Table 1:

D1 = z̄1z2x̄3 ∨ z1z̄2x4 ∨ z1z̄2x̄4x5,

D4 = z̄1z2x3,

D5 = z1z̄2x̄4.

The first term in function D1 corresponds to the lines
5–7 of Table 1, and the only term in function D5 corre-
sponds to the lines 9 and 10 of Table 1. The implementa-
tion of the CMCU U2 logic circuit is reduced to that of the
systems (10)–(11) using LUT elements and the implemen-
tation of its control memory using EMBs of FPGA chips.
Some industrial or academic packages such as SIS, Xilinx
ISE or Altera Quartus II (Altera, 2010; Xilinx, 2010; Sen-
tovich et al., 1992) can be used to solve this problem.

Let us discuss a bit different case, when a micropro-
gram is represented by a GSA Γ2 (Fig. 6). Applying the
approaches by Barkalov and Titarenko (2008), the follow-
ing sets can be found for the GSA Γ2: C = {α1, . . . , α7},

ΠC = {B1, . . . , B4}, C1 = {α1, . . . , α6}, B1 = {α1},
B2 = {α2, α3}, B3 = {α4, α5, α6}, B4 = {α7, }, where
α1 = 〈b1, b2, b3〉, α2 = 〈b4, b5, b6, b7〉, α3 = 〈b8, b9〉,
α4 = 〈b10, b11, b12, b13〉, α5 = 〈b14, b15, b16〉, α6 =
〈b17, b18, b19, b20〉, α7 = 〈b21, b22, b23〉. This means that
M = 23, R = 5, G = 7, R1 = 3, Q = 4, R2 = 2
and T = {T1, T2}, τ = {τ1, τ2, τ3}, Ψ = {D1, D2, D3},
Φ = {D4, D5}. As we can see, the GSA Γ2 includes
N = 13 different microoperations.

The analysis of the GSA Γ2 shows that R1+R2 = R,
thus the application of code sharing makes sense. Because
the condition (9) is violated for the OLC α2, α4, α6 ∈ C1,
the model U3 should be applied. Let q = 3, t = 4, where
t is the number of PROM outputs. It can be found that
R3 = 2, n2 = 17, R4 = 1 and the condition (15) is
violated. This means that the model U4(Γ2) should be
used, where V = {v1}, Z = {z1}. Let us discuss this
design example.

Let K(α1) = 000, . . . , K(α7) = 110, and let the
code 00 be assigned to the first component of any OLC
αg ∈ C, . . ., the code 11 to the fourth component of any
OLC αg ∈ C. Now microinstruction addresses for the
CMCU U4(Γ2) are shown in Fig. 7.

Let us encode the classes Bi ∈ Π0 in a trivial way
(Table 2).

Table 2. Codes of the classes Bi ∈ Π0.

Bi
K(Bi)

v1 zq

B1 0 0

B2 0 1

B2 1 0

As follows from the analysis of the GSA Γ2,
Y (b4) = {y2, y3}, Y (b5) = {y6}, Y (b6) = {y3, y5, y7},
Y (b7) = {y3, y6}. The part of the control memory con-
tent for the OLC α2 ∈ B2 is shown in Table 3.

Table 3. Part of the control memory content.

Address
Content Reference

τ1τ2τ3T1T2

00100 y0y2y3 b4

00101 y0y6 b5

00110 y0y3y5y7 b6

00111 y3y6z1 b7

Table 3 shows the main principles of control mem-
ory content construction, which are as follows. If a ver-
tex bq ∈ E1 is not the output of an OLC αg ∈ C1, then
the memory cell with the address A(bq) contains Y (bq)
and y0. Otherwise, this cell contains Y (bq) and variables
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Fig. 6. Initial graph-scheme of Algorithm Γ2.

Fig. 7. Microinstruction addresses for the CMCU U4(Γ2).

zr ∈ Z , which are equal to 1 in the code K(Bi), where
αg ∈ Bi. If bq is the output of OLC αg � C1, then the
corresponding memory cell contains Y (bq) and yE .

Using the same rules as in the case of the CMCU
U2(Γ1), the following system of the generalized transition
formulae can be constructed for the GSA Γ2:

B1 → x1x2b4 ∨ x1x̄2b6 ∨ x̄1x3b8 ∨ x̄1x̄3b12,

B2 → x3b10 ∨ x̄3x4b13 ∨ x̄3x̄4x5b14 ∨ (22)

x̄3x̄4x̄5b16,

B3 → x2b17 ∨ x̄2x3b21 ∨ x̄2x̄3b23.

This system is used to construct the transition table
of the CMCU U4(Γ2) with H4(Γ2) = 11 lines (Table 4).

Table 4. Transition table of the CMCU U4(Γ2).

Bi
K(Bi)

bq
A(bq)

Xh Ψh Φh h
v1z1 τ1τ2τ3T1T2

B1 00 b4 00100 x1x̄2 D3 – 1

b6 00110 x1x2 D3 D4 2

b8 01000 x̄1x3 D2 – 3

b12 01110 x̄1x̄3 D2D3 D4 4

B2 01 b10 01100 x3 D2D3 – 5

b13 01111 x̄3x4 D2D3 D4D5 6

b14 10000 x̄3x̄4x5 D1 – 7

b16 10010 x̄3x̄4x̄5 D1 D4 8

B3 10 b17 10100 x2 D1D3 – 9

b21 11000 x̄2x3 D1D2 – 10

b23 11010 x̄2x̄3 D1D2 D4 11

This table is used to derive the systems (16) and (17).
After minimization, the following equations can be found,
for example, from Table 4:

D1 = v̄1z1x̄3x̄4 ∨ v1z̄1,

D2 = v̄1z̄1x̄1 ∨ v̄1z1x3∨
v̄1z1x̄3x4 ∨ v1z̄1x̄2,

D5 = v̄1z1x̄3x4.
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The table of the BCT includes the following
columns: αg , K(αg), Bi, K(Bi), Vg , g. In our example,
this table has G4(Γ2) = 3 lines (Table 5).

Table 5. Table of the BCT CMCU U4(Γ2).

αg K(αg) Bi K(Bi) Vg g

α4 011 B3 10 v1 1

α5 100 2

α6 101 3

In the ordinary case, G4(Γi) is equal to the number
of the OLC αg ∈ Bi, where K(Bi) includes vr �= 0
(r = 1, . . . , R5). This table is used to derive the sys-
tem (18). After minimization, we can get the following
equation from Table 5:

v1 = τ̄1τ2τ3 ∨ τ1τ̄2. (23)

The implementation of the CMCU U4 logic cir-
cuit is reduced to that of the systems (16)–(18) using
LUT elements and that of control memory using EMBs
of FPGA chips. Some industrial or academic packages
(Altera, 2010; Xilinx, 2010; Sentovich et al., 1992) can
be used to solve this problem.

5. Analysis of the proposed methods

The proposed methods were tested using Xilinx ISE
12.1. The synthesis was made for Xilinx Virtex 5
FPGA (xc5vlx30-3ff324) and Xilinx XC9500 CPLD
(xc9536-5PC44) with area optimization (opt mode
area level 1). The outcomes of our research are
shown in Table 6. The number of slices (column SF ) and
the time of cycle (column TC) were taken from synthesis
reports of Xilinx ISE. We decided to measure results in
slices because the methods presented in Table 6 use LUTs
and flip-flops. We assume that a slice is utilized when
LUT or the flip-flop in that slice is utilized. The circuit U5

with the Moore FSM was created in the VHDL according
to guidelines of Xilinx (2006). The control memory for
all CMCU models in Table 6 was implemented using one
EMB.

All tested models were generated using original soft-
ware developed by us. The input file to our application
is the KISS file format (Yang, 1991) and the output is an
FSM or a CMCU model in the VHDL. The test files (lin-
ear GSAs) were taken from Kołopieńczyk (2008).

When we compare results of CMCU models, we can
see that the proposed methods give on average about 50%
reduction in the area (using the same number of flip-flops
and embedded memory blocks) in comparison with the
base model. The results are similar to those presented by
Kołopieńczyk (2008). When compared with the Moore

FSM, we can see that the area can be reduced on the av-
erage by about 70% for the FSM with “compact” state
encoding. We should recall here that these results were
obtained for synthetic linear GSAs and can vary in real
circuits.

It is very interesting that these methods can be ap-
plied in the case of complex programmable logic devices
(CPLDs). In this case, the logic circuit of the BIA is im-
plemented using programmable array logic (PAL) macro-
cells and control memory can be implemented using some
PROM/RAM chips external to a CPLD chip. This is con-
nected with the fact that the use of the proposed method
permits decreasing the number of transition table lines
from H1(U1) to H2(U2), where

H1 =
I0∑

i=1

Ei · |Bi|, (24)

H2 =
I0∑

i=1

Ei. (25)

In (24)–(25), Ei is the number of transitions from the
output of any OLC αg ∈ Bi, where Bi ∈ Π0. For GSA
Γ1, we have H1 = 24 and H2 = 10.

To estimate the hardware amount of the BIA, let us
use the following symbols: q is the number of terms in
a PAL macrocell, Ei(Dr) is the number of the terms in
function Dr ∈ Φ ∪ Ψ for CMCU Ui, Qi(Dr, q) is the
number of macrocells required for the implementation of
function Dr ∈ Φ∪Ψ of CMCU Ui using PAL macrocells
with q terms:

Qi(Dr, q) =
⌈

Ei(Dr) − q

q − 1

⌉
+ 1. (26)

The formula (26) is based on results presented by Kania
(2004).

From Table 1 we obtain that: E2(D1) = E2(D2) =
3, E2(D3) = 5, E2(D4) = E2(D5) = 1. Let q = 3.
Then Q2(Dr, 3) = 1 for Γ = 1, 2, 4, 5 and Q2(D3, 3) =
2. Thus, in the case of the CMCU U2(Γ1), the logic circuit
for the BIA block needs Q2(Γ1) = 6 macrocells and has
two levels.

If we construct the transition table for the CMCU
U1(Γ1), we will find that E1(D1) = 9, E1(D2) =
11, E1(D3) = 13, E1(D4) = E1(D5) = 3. Thus,
Q1(D1, 3) = 4, Q1(D2, 3) = 5, Q1(D3, 3) = 6,
Q1(D4, 3) = Q1(D5, 3) = 1 and Q1(Γ1) = 17 macro-
cells. Let us point out that this circuit has two levels, too.
The following conclusion can be drawn: transition from
U1(Γ1) to U2(Γ1) allows decreasing the hardware amount
in 2.8 times. Of course, more cycles are needed to ex-
ecute the algorithm Γ1 using U2 than in the case of U1.
In this article, we do not estimate this delay in both cases
of FPGA and CPLD implementation. To find the value of



Reduction in the number of LUT elements for control units with code sharing 759

Table 6. Results of experiments.

FPGA CPLD

File L N M G Q
U1 U2 U3 U∗

4 U5 U1 U2 U3 U∗
4 U5

SF TC SF TC SF TC SF SF TC SC SC SC SC SC

mk01 10 7 86 14 15 37 2.419 19 3.203 15 3.058 2 103 2.743 212 179 120 35 727
mk02 10 7 90 15 10 35 2.805 17 3.061 16 3.061 2 122 2.649 256 201 121 65 758
mk03 7 8 49 11 8 18 2.395 13 3.433 11 3.052 2 30 1.964 139 77 84 18 389
mk04 9 8 57 14 10 32 2.419 18 3.105 15 3.065 2 35 2.568 184 139 108 41 494
mk05 10 9 55 13 9 31 2.425 17 3.057 13 3.053 2 35 2.055 245 147 126 36 481
mk06 8 11 59 14 7 26 2.636 16 2.880 13 3.052 2 31 1.704 159 138 127 32 485
mk07 11 8 71 17 8 45 2.467 24 3.880 16 3.053 3 93 2.783 321 232 130 73 594
mk08 7 7 50 12 9 31 2.880 15 3.206 13 3.058 2 28 2.063 154 102 86 23 400
mk09 7 7 57 13 9 29 2.419 15 3.564 13 3.058 2 30 2.688 230 160 104 32 468
mk10 13 11 93 21 7 68 2.522 28 3.337 21 3.492 4 134 2.533 488 280 214 85 897
mk11 8 8 49 13 6 30 3.053 12 3.052 12 2.967 2 28 1.619 189 102 82 24 431
mk12 11 8 72 19 7 50 2.383 22 2.877 18 3.058 4 119 2.644 371 194 155 49 675
mk13 6 7 38 9 6 15 2.416 9 3.053 8 3.053 2 25 1.690 58 75 56 16 237
mk14 8 7 54 15 6 24 2.347 16 3.026 13 2.967 2 27 1.780 195 97 104 39 474
mk15 8 10 69 15 8 23 2.416 11 3.052 16 2.748 2 76 2.334 240 107 114 40 563
mk16 6 10 72 12 11 28 3.012 15 3.549 13 2.963 2 116 3.139 135 109 82 27 675
mk17 9 7 73 15 8 24 2.347 21 3.729 15 3.491 2 82 2.530 205 115 123 31 605
mk18 6 11 52 13 8 26 2.347 15 3.438 10 2.810 2 25 1.692 152 151 96 34 422
mk19 6 7 47 12 6 4 2.347 11 2.813 10 3.053 2 31 2.515 128 87 68 30 359

L: the number of logical conditions, N : the number of microinstructions in microoperation, M : the number of operational vertices, G: the number of
OLC chains, Q: the maximal length of the the OLC chain, SF: the number of slices, SC: the number of basic elements (BELS), i.e., AND2, AND3,
INV, OR2, OR3, XOR2 in the the PLA macrocell, TC: the time of the cycle in nanoseconds, U∗

4 : the maximal size of the BCT in the CMCU U4 (the
BCT implements all bits of K(Bi)), U5: control unit implemented as a Moore FSM with “compact” state encoding

this delay, some complex statistical experiments should be
conducted.

Let us estimate the number of PAL macrocells with
q = 3 in the logic circuit of the CMCU U4(Γ2) and
U1(Γ4). As follows from Table 4 E4(D1) = 2, E4(D2) =
4, E4(D3) = E4(D4) = 5, E4(D5) = 1. From Table 5
it can be found that E4(v1) = 2. Using (26), we can de-
termine Q4(D1, 3) = Q4(D5, 3) = Q4(v1, 3) = 1 and
Q4(Dr, 3) = 2 for r = 2, 3, 4. Thus, Q4(Γ2) = 9 macro-
cells.

If we construct the transition table for the CMCU
U1(Γ2), we will find that H1(Γ2) = 24, E1(D1) = 5,
E1(D2) = 8, E1(D3) = E1(D4) = 9, E1(D5) = 2. This
means that Q1(D1, 3) = 2, Q1(D5, 3) = 1, Q1(Dr, 3) =
4 for r = 2, 3, 4. Thus Q1(Γ2) = 15 macrocells. There-
fore, the combinational part of the CMCU U4(Γ2) is im-
plemented using 1.67 times fewer PAL macrocells. Let
us point out that cycle times for both CMCU U1(Γ2) and
U4(Γ2) are the same. Besides, they use the same num-
ber of PROM chips with t = 4 outputs to implement their
control memories.

6. Conclusion

The aim of the proposed methods is to reduce the num-
ber of LUT elements in the combinational part of com-
positional microprogram control units implemented with

FPGA. These methods are based on the existence of
classes of pseudoequivalent operational linear chains. The
encoding of these classes allows a reduction in the num-
ber of variables in each of input memory functions. At the
same time, these methods allow reducing the number of
terms in input memory functions. Therefore the proposed
method can be applied in the case of a CPLD, too.

The first approach suggests the introduction of addi-
tional control microinstructions. If the condition (9) takes
place, each OLC can be transformed in this way. This
leads to the optimization of hardware, but it also has a
negative effect connected with additional idle cycles in the
digital system data-path. The second approach is based
on the inclusion of the class code into the microinstruc-
tion and it does not affect the performance, but sometimes
an additional block of code transformer is needed so the
hardware amount could be increased in comparison with
the first approach. Also, note that the second approach is
more flexible because it does not depend on the condition
(9) and can be applied for any GSA.

Our experiments show that the proposed methods
always produce logic circuits with fewer LUT elements
compared to the use of the known model of the CMCU
with code sharing U1. These methods produce CMCU cir-
cuits with less hardware, when they are implemented with
a CPLD, too. This shows once more that reduction meth-
ods targeted at CPLDs can be applied for the FPGA and
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vice versa. This was first mentioned by Kania (2004). Re-
call that these methods are useful only if a microprogram
to be implemented is represented by a linear GSA.

The proposed methods can be applied to a linear
GSA with many long chains of operations. Such long
chains can be found in many computational tasks, i.e.,
MD5 (Rivest, 1992) and SHA (Eastlake and Jones, 2001)
algorithms. The MD5 algorithm has 64 unconditional
steps, and each step depends on the results of previous
calculations. This means that there is no possibility to
make operations in paralel and the only way to improve
the throughput is to use the pipelined data-path (Jarvinen
et al., 2005). We should note here that control units de-
scribed in our article execute microinstructions sequen-
tially, but the microoperations for data-path are executed
in parallel. One microinstruction can activate an unlim-
ited number of microoperations in parallel. A sequential
control unit does not limit the data-path to be sequential.
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