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In this paper, an adaptive fuzzy robust output feedback control approach is proposed for a class of single input single output
(SISO) strict-feedback nonlinear systems without measurements of states. The nonlinear systems addressed in this paper
are assumed to possess unstructured uncertainties, unmodeled dynamics and dynamic disturbances, where the unstructured
uncertainties are not linearly parameterized, and no prior knowledge of their bounds is available. In recursive design, fuzzy
logic systems are used to approximate unstructured uncertainties, and K-filters are designed to estimate unmeasured states.
By combining backstepping design and a small-gain theorem, a stable adaptive fuzzy output feedback control scheme is
developed. It is proven that the proposed adaptive fuzzy control approach can guarantee the all the signals in the closed-loop
system are uniformly ultimately bounded, and the output of the controlled system converges to a small neighborhood of the
origin. The effectiveness of the proposed approach is illustrated by a simulation example and some comparisons.
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1. Introduction

In the past decade, interest in adaptive control of non-
linear systems has been increasing, and many significant
developments have been achieved. As a breakthrough in
nonlinear control, adaptive backstepping control was in-
troduced to achieve global stability and asymptotic track-
ing for a class of nonlinear systems in parametric strict-
feedback form by Kanellakopopoulos et al. (1991). Later,
the overparametrization problem was successfully elimi-
nated by Kristic et al. (1992) through the tuning function
method. In an effort to extend the backstepping control
idea to larger classes of nonlinear systems, Kristic et al.
(1995) and Qian et al. (2002) studied the adaptive control
problem of parametric strict-feedback systems, obtained
local stability results, and proposed several adaptive ap-
proaches to nonlinear systems with a triangular structure.

To accommodate uncertainties, a robust adaptive
backstepping control has been developed for strict-
feedback nonlinear systems with time-varying distur-
bances and static or dynamic uncertainties by Jiang et al.
(1998; 1999) (to name a few). The advantages of back-
stepping methodology include the facts that: (i) global
stability can be achieved with ease, (ii) the transient per-
formance can be guaranteed and explicitly analyzed, and

(iii) it has the flexibility to avoid unnecessary cancellation
of useful nonlinearities compared with feedback lineariza-
tion techniques. However, these schemes are only suit-
able for nonlinear systems with nonlinear dynamics mod-
els known exactly or with unknown parameters appearing
linearly with respect to known nonlinear functions. If that
kind of knowledge is not available a priori, these adaptive
backstepping controllers cannot be applied.

Fuzzy logic systems have been widely used to model
nonlinearities. A fuzzy logic system is a universal ap-
proximator which, with the increased size of fuzzy rules,
can approximate any nonlinearities with arbitrary preci-
sion (Wang, 1994). Based on this capability, fuzzy logic
systems are vastly adopted for nonlinear systems identifi-
cation and control (Chen et al., 1996; Denai et al., 2002;
Boukezzoula et al., 2007; Qi et al., 2009). Most of them
use fuzzy logic systems as nonlinear models for the under-
lying nonlinearity. The stability issues for adaptive fuzzy
controllers are addressed by Lyapunov functions. How-
ever, these adaptive fuzzy controllers are only applied to a
relatively simple class of nonlinear systems. The key re-
quirement is that the unknown nonlinearities must satisfy
the matching conditions. If the unknown nonlinearities
do not satisfy the matching conditions, the adaptive fuzzy
controllers mentioned above cannot be implemented.
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To handle the control problem of uncertain nonlin-
ear systems without satisfying matching conditions, in
recent years, many backstepping-based adaptive fuzzy
controllers have been developed for nonlinear systems
in strict-feedback form (Yang et al., 2005; Wang et al.,
2007; Zou et al., 2008; Chen et al., 2005; 2007; Tong et
al., 2010a; 2010b). Among them, are those for single-
input and single-output (SISO) nonlinear systems (Yang
et al., 2005; Wang et al., 2007; Zou et al., 2008; Tong et
al., 2010a; 2010b), those for multiple-input and multiple-
output (MIMO) nonlinear systems (Chen et al., 2005;
2007), and the ones for SISO nonlinear systems with dy-
namics and dynamical disturbances (Tong et al., 2010a;
2010b).

In general, adaptive fuzzy backstepping control can
provide a systematic methodology of solving tracking
or regulation control problems, where fuzzy systems are
used to approximate unknown nonlinear functions. Typ-
ically, adaptive fuzzy controllers are constructed recur-
sively in the framework of the traditional backstepping
design technique. The main features of these adaptive ap-
proaches include the facts that (i) they can deal with those
nonlinear systems without satisfying the matching condi-
tions, and (ii) they do not require unknown nonlinear func-
tions being linearly parameterized (Kanellakopopoulos et
al., 1991; Kristic et al., 1992; 1995; Qian et al., 2002;
Jiang et al., 1998; 1999). Therefore, approximator-based
adaptive fuzzy backstepping control has attracted great in-
terest in the intelligent control community.

Despite these efforts regarding adaptive fuzzy back-
stepping control, the proposed adaptive fuzzy backstep-
ping control methods are all based on the assumption that
the states of the systems to be controlled can be mea-
sured directly. As noted by Wang (1994), in practice,
state variables are often unmeasurable for many nonlin-
ear systems. In such cases, some output feedback con-
trol schemes should be applied. It is worth mentioning
that, in the case of linear systems, output-feedback con-
trol problems can be solved by combining state-feedback
controllers with the state observer. However, the separa-
tion principle doses not hold for nonlinear systems (Kris-
tic et al., 1995; Qian et al., 2002). Thus, the adaptive out-
put feedback control design is more complex and difficult
than the counterpart based on state feedback.

Motivated by the above observations, in this paper, a
robust adaptive fuzzy output feedback control approach
is proposed for a class of SISO strict-feedback nonlin-
ear systems with modeled dynamics and dynamical distur-
bances, without measurements of states. Fuzzy logic sys-
tems are utilized to approximate unknown nonlinear func-
tions, K-filters are used for estimating unmeasured states,
and, combining the backstepping technique and the small-
gain theorem, a new stable adaptive fuzzy output feedback
robust control scheme is developed. The main advantages
of the proposed control scheme are as follows: (i) by de-

signing K-filters as a state observer, the proposed control
method does not require that all the states of the system be
measured directly, which is a common assumption in the
existing adaptive fuzzy backstepping controller (Yang et
al., 2005; Wang et al., 2007; Tong et al., 2010a; 2010b);
(ii) by combining backstepping design with input-to-state
practically stability (ISpS) and the small-gain theorem, the
proposed control method has a strong robustness to the
modeled dynamics and dynamical disturbances, and the
stability of entire closed-loop systems can be guaranteed
by the small-gain theorem.

It is noted that, in recent years, several adaptive fuzzy
backsteping control approaches have also been developed
by Yang et al. (2005) and Tong et al. (2010a; 2010b) for
some strict-feedback nonlinear systems based on small-
gain theorem. However, the approach of Yang et al.
(2005) can only control a class of nonlinear systems with-
out unmodeled dynamics or dynamical disturbances and
requires that the states of the controlled systems must be
measured. Although the approaches of Tong et al. (2010a;
2010b) have addressed the same class of nonlinear sys-
tems as this paper, they also require that the states of
the nonlinear systems must be measured. Therefore, they
cannot be applied to nonlinear systems with unmeasured
states.

2. Problem formulations and some
preliminaries

2.1. Model description and basic assumptions. Con-
sider a class of strict-feedback nonlinear systems with un-
modeled dynamics and dynamical disturbances given by
the following equations:

ζ̇ = q(ζ, y),
ẋ1 = x2 + f1,0(y) + f1(y) + Δ1(ζ, y),

...

ẋn−1 = xn + fn−1,0(y) + fn−1(y)
+ Δn−1(ζ, y),

ẋn = b0σ(y)u + fn,0(y) + fn(y) + Δn(ζ, y),
y = x1,

(1)

where x = [x1, . . . , xn]T ∈ R
n is the state vector,

u ∈ R is the control input, y ∈ R is the output; σ(y)
is a known smooth nonlinear function (σ(y) �= 0), and
fi(y), 1 ≤ i ≤ n is an unknown smooth nonlinear func-
tion; fi,0(y), 1 ≤ i ≤ n is a known smooth nonlinear
function; ζ represents unmodeled dynamics and Δi(ζ, y),
1 ≤ i ≤ n represents disturbances related to unmodeled
dynamics; b0 �= 0 is an unknown constant and the sign of
b0 is known. In this paper, it is assumed that only y = x1

is available for control design.
In the sequel, the following assumptions are imposed

on the system (1):
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Assumption 1. (Jiang et al., 1998; 1999) For each 1 ≤
i ≤ n, there exists an unknown positive constant p∗i such
that

|Δi| ≤ p∗iψi1(|y|) + p∗iψi2(|ζ|), (2)

where ψi1 and ψi2 are two known nonnegative smooth
functions. Without loss of generality, it is assumed that
ψi2(0) = 0.

It is worth mentioning that Assumption 1 implies that
the allowed class of uncertainties Δi(x, ς, t) satisfies the
so-called triangular bounds condition in terms of x and ς .
The same or similar assumptions can be found in recent
works (Jiang et al., 1998; 1999). Such a restriction is cru-
cial in controller design.

Definition 1. (Kristic et al., 1995) A continuous function
γ: [0, a) → R+ is said to belong to class κ if it is strictly
increasing and γ(0) = 0. It is said to belong to class κ∞
if a = ∞ and γ(r) → ∞ as r → ∞.

Assumption 2. (Jiang et al., 1998; 1999) Unmodeled dy-
namics are input-to-state practically stable (ISpS), i.e., the
system ζ̇ = q(ζ, y) has an ISpS Lyapunov function V0(ζ)
such that

α1(|ζ|) ≤ V0(ζ) ≤ α2(|ζ|),
∂V0

∂ζ
q(ζ, y) ≤ −α0(|ζ|) + γ0(|y|) + d0,

(3)

where α0, α1, α2 and γ0 are κ∞-functions defined by
Kristic et al. (1995), d0 is a nonnegative constant.

Control objectives: The control task is to design an adap-
tive fuzzy controller using output y only of the form

χ̇ = v(χ, y), u = μ(χ, y), (4)

such that all the signals of the closed-loop systems (1) and
(4) are uniformly ultimately bounded. Furthermore, the
output can be forced to a small neighborhood of the origin.

Definition 2. (Coddington, 1989) Let f be a function
defined for (x, y) in a set S. We say that f satisfies locally
the Lipschitz condition on S if there exists a constantM >
0 such that

|f(x, y1) − f(x, y2)| ≤M |y1 − y2|
for all (x, y1), (x, y2) in S. The constant M is called a
Lipschitz constant.

Lemma 1. (Jiang et al., 1996) Given the interconnected
systems

ẋ1 = f1(x1, x2, u1), (5)

ẋ2 = f2(x1, x2, u2), (6)

where, for i = 1, 2, xi ∈ R
ni , ui ∈ R

mi and fi :
R
n1 × R

n2 × R
mi → R

ni locally satisfies the Lipschitz
condition.

Assume that, for i = 1, 2, there exists an ISpS-Lyapunov
function Vi for the xi-subsystems such that the following
holds:
1. there exist κ∞-functions ϑi1 and ϑi2 such that

ϑi1(|xi|) ≤ V i(xi) ≤ ϑi2(|xi|), ∀xi ∈ R
ni , (7)

2. there exist κ∞-function α′
i and κ-functions χi, γi and

some constant ci ≥ 0 such that, if

V1(x1) ≥ max{χ1(V2(x2)), γ1(|u1|) + c1},
then

∇V1(x1)f1(x1, x2, u1) ≤ −α′
1(V1), (8)

and, if

V2(x2) ≥ max{χ2(V1(x1)), γ2(|u2|) + c2},
then

∇V2(x2)f2(x1, x2, u2) ≤ −α′
2(V2). (9)

A nonlinear small-gain condition is given by Jiang
et al. (1996), under which an ISpS-Lyapunov function
for the interconnected systems (5)–(6) may be expressed
in terms of ISpS-Lyapunov functions for the two subsys-
tems.

Theorem 1. (Jiang et al., 1996) Assume that, for i = 1, 2,
the xi-subsystems have an ISpS-Lyapunov Vi satisfying
(7)–(9). If there exists c0 ≥ 0 such that

χ1 ◦ χ2(r) < r, ∀r > c0, (10)

then the interconnected system (5)–(6) is ISpS. Further-
more, if c0 = c1 = c2 = 0, then the system is ISS.

2.2. Fuzzy logic systems and system modeling. A
fuzzy logic system (FLS) consists of four parts: a knowl-
edge base, a fuzzifier, a fuzzy inference engine working
on fuzzy rules, and a defuzzifier. The knowledge base for
an FLS is composed of a collection of fuzzy If-then rules
of the following form:

Rl : If x1 is F l1 and x2 is F l2 and . . . and xn is F ln,
then y is Gl, l = 1, 2, . . . , N ,

where x = [x1, . . . , xn]T and y are the FLS input and
output, respectively; F li and Gl are fuzzy sets, associated
with the fuzzy functions μF l

i
(xi) and μGl(y); N is the

rule number.
Through the singleton function, center average de-

fuzzification and product inference, the FLS can be ex-
pressed as

y(x) =

N∑

l=1

ȳl
n∏

i=1

μF l
i
(xi)

N∑

l=1

[ n∏

i=1

μF l
i
(xi)

] , (11)
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where ȳl = max
y∈R

μGl(y).

Define the fuzzy basis functions as

ϕl =

n∏

i=1

μF l
i
(xi)

N∑

l=1

(
n∏

i=1

μF l
i
(xi))

.

If we let θ = [ȳ1, ȳ2, . . . , ȳN ]T = [θ̄1, θ̄2, . . . , θ̄N ]T and
ϕT (x) = [ϕ1(x), . . . , ϕN (x)] then the FLS (11) can be
rewritten as

y(x) = θTϕ(x) . (12)

It has been proved that the fuzzy logic system (12)
can approximate any continuous function f(x) over a
compact set Ω ⊂ R

q to any arbitrary accuracy as

f(x) = θ∗Tϕ(x) + ε(x), ∀x ∈ Ω, (13)

where θ∗ is an ideal constant parameter, and ε(x) is the
fuzzy minimums approximation error, which is defined by
Wang (1994) as

θ∗ = arg min
θ∈U

{sup
y∈Ω

∣
∣f(x) − θTϕ(x)

∣
∣}.

By employing the FLS to approximate the unknown
smooth function fi(y) in (1) and assuming that

fi(y) = θ∗Ti ϕi(y) + εi(y), (14)

denote the fuzzy minimums approximation error vector as
ε(y) = [ ε1(y) . . . εn(y) ]T .

Assumption 3. The fuzzy minimum approximation error
vector ε(y) satisfies ‖ε(y)‖ ≤ β, where β is an unknown
positive constant, and ‖·‖ represents the 2-norm of a vec-
tor.

By substituting (14) into (1), the system (1) can be
expressed as

ζ̇ = q(ζ, y),

ẋ1 = x2 + f1,0(y) + θ∗T1 ϕ1(y)
+ ε1(y) + Δ1(ζ, y),

...

ẋn−1 = xn + fn−1,0(y) + θ∗Tn−1ϕn−1(y)
+ εn−1(y) + Δn−1(ζ, y),

ẋn = b0σ(y)u + fn,0(y) + θ∗Tn ϕn(y)
+ εn(y) + Δn(ζ, y),

y = x1.

(15)

Rewrite (15) as

ζ̇ = q(ζ, y),
ẋ = Ax+ f0(y) + ΦT (y)θ + ε(y)

+Δ +
[

0 b0,
]T
σ(y)u

y = CT1 x,

(16)

where

A =

⎡

⎢
⎣

0
...

In−1

0 · · · 0

⎤

⎥
⎦ ,

f0(y) =

⎡

⎢
⎣

f1,0(y)
...

fn,0(y)

⎤

⎥
⎦ ,

ΦT (y) =

⎡

⎢
⎣

ϕT1 (y)
. . .

ϕTn (y)

⎤

⎥
⎦

n×l

,

l = l1 + · · · + ln,

C1 = [1, 0, . . . , 0]T ,

θT =
[
θ∗1 · · · θ∗n

]
1×l,

Δ =
[

Δ1 · · · Δn

]T
.

The system (16) is further rewritten as

ζ̇ = q(ζ, y), (17)

ẋ = Ax+ f0(y) +GT (y, u)ϑ+ ε(y) + Δ, (18)

y = CT1 x,

where

ϑ =
[
b0
θ

]

(l+1)×1

,

GT (y, u) =
[[

0(n−1)×1

1

]

σ(y)u,ΦT (y)
]

.

Choose a vector k = [k1, · · · , kn]T so that the ma-
trix A0 = A − kCT1 is a strict Hurwitz matrix, i.e., given
a positive definite matrix Q = QT > 0, there exists a
positive definite matrix P = PT > 0 such that

PA0 +AT0 P = −Q. (19)

3. Adaptive fuzzy controller design
and stability analysis

Note that in the system (1) or (16), the states x2, x3, . . .,
xn are an unmeasured, b0 and θ are an unknown constant
and unknown parameter vector, respectively. Thus, the
states of the system (1), b0 and θ should be estimated by
using the filters given by Kristic et al. (1995) as well as
Ye (2001). Define the virtual state estimate as

x̂ = ξ + ΩTϑ. (20)

According to Kristic et al. (1995) and from (18), the
K-filters may be defined as follows:

ξ̇ = A0ξ + ky + f0(y),

Ω̇T = A0ΩT +GT (y, u).
(21)
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Note that the parameter vector ϑ is unknown, and, as such,
it cannot be used in control design. Therefore, an estimate
ϑ̂ of the parameter vector ϑ need to be obtained later. On
the other hand, the virtual state estimate defined by (20)
is not used in control design, and the actual state estimate
should be ˆ̂x = ξ + ΩT ϑ̂. Denote by v0 the first column of
ΩT . The vector v0 is governed by

v̇0 = A0v0 + Cnσ(y)u, (22)

where Cn = [0, · · · , 0, 1]T . In view of (21) and (22), Ω is
expressed as

ΩT = [v0,Ξ]. (23)

From (21), one obtains

Ξ̇ = A0Ξ + ΦT (y). (24)

Define the observation error vector e as

e = [e1, e2, · · · , en]T =
x− x̂

p∗
, (25)

where p∗ = max
{
p∗i , p

∗2
i , 1; 1 ≤ i ≤ n

}
is an unknown

constant. The time derivative of e can be expressed as

ė = A0e+
ε(y) + Δ

p∗
. (26)

From the second equation in (16), one obtains

ẏ = x2 + f1,0(y) + θ∗T1 ϕ1(y) + ε1(y) + Δ1. (27)

Since x2 is unavailable, it is replaced by available filter
signals. From (18), one has

x = ξ + ΩTϑ+ x− x̂

= ξ + ΩTϑ+ p∗e.
(28)

Therefore, using (28), x2 is expressed as

x2 = ξ2 + ΩT(2)ϑ+ p∗e2

= b0v0,2 + ξ2 + [0,Ξ(2)]ϑ+ p∗e2,
(29)

where ΩT(2) and Ξ(2) are the second rows of ΩT and Ξ,
respectively.

Substituting (29) into (27) yields

ẏ = b0v0,2+ξ2+f1,0(y)+ω̄Tϑ+p∗e2+ε1(y)+Δ1, (30)

where the “regressor” ω and the “truncated regressor” ω̄
are defined by Kristic et al. (1995) as follows

ω = [v0,2,ΦT(1)(y) + Ξ(2)]T , (31)

ω̄ = [0,ΦT(1)(y) + Ξ(2)]T . (32)

From (22), we obtain

v̇0,i = v0,i+1 − kiv0,1, i = 2, . . . , n,−1, (33)

v̇0,n = σ(y)u− knv0,1. (34)

Define a change of coordinates as

z1 = yλ′(y2), (35)

zi = v0,i − πi−1, i = 2, · · · , n, (36)

where λ′(y2) is the derivative of a smooth class
κ∞-function λ(y2), and λ′(y2) �= 0, which will be chosen
later.

After the above preparations, adaptive fuzzy back-
stepping control design is given by the following proce-
dures.

Step 0: Consider the following Lyapunov function:

V0 = eTPe. (37)

The time derivative of V0 along (26) is

V̇0 = eT (AT0 P + PA0)e+
2
p∗
eTP (ε+ Δ). (38)

By Assumption 1 and Young’s inequality 2ab ≤ a2 + b2

and p∗ ≥ 1, we have

2
p∗
eTPΔ ≤ 2

p∗
‖e‖ ‖P‖ ‖Δ‖

≤ 2
p∗

n∑

i=1

‖e‖ ‖P‖ |Δi|

≤ 2 ‖e‖ ‖P‖ (
n∑

k=1

ψk1(|y|) +
n∑

k=1

ψk2(|ζ|)),

(39)

2 ‖e‖ ‖P‖
n∑

k=1

ψk1(|y|)

≤ ‖e‖2 + ‖P‖2(
n∑

k=1

ψk1(|y|))2. (40)

Since ψi1 is a smooth function, using the same proof
of Jiang (1999), we get

(
n∑

k=1

ψk1(|y|))2 ≤ y2φ1(y) + d0
ψ, (41)

where φ1 is a smooth nonnegative function, and d0
ψ =

(
∑n

i=1 ψi1(0))2 is a constant.
Substituting (41) into (40) yields

2 ‖e‖ ‖P‖
n∑

k=1

ψk1(|y|)
≤ ‖e‖2 + ‖P‖2

y2φ1(y) + ‖P‖2
d0
ψ .

(42)

Using Young’s inequality, we have

2 ‖e‖ ‖P‖
n∑

k=1

ψk2(|ζ|)

≤ ‖e‖2 + ‖P‖2(
n∑

k=1

ψk2(|ζ|))2,
(43)
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2
p∗
eTPε ≤ 2 ‖e‖ ‖P‖ ‖ε‖ ≤ ‖e‖2 + ‖P‖2

β2. (44)

Substituting (42)–(44) into (38), we obtain

V̇1 ≤ − [λmin(Q) − 3] ‖e‖2

+‖P‖2(
n∑

k=1

ψk2(|ζ|))2 + ‖P‖2y2φ1(y)

+‖P‖2
β2 + ‖P‖2

d0
ψ.

(45)

Step 1: Consider the following Lyapunov function:

V1 = V0 + 1
2λ(y2) + 1

2 ϑ̃
TΓ−1ϑ̃

+ 1
2γ

−1
1 β̃2 + 1

2γ
−1
2 p̃2 + 1

2γ
−1
3 |b0| κ̃2,

(46)

where Γ = ΓT > 0, γ1 > 0, γ2 > 0 andγ3 > 0 are
design constants; ϑ̃ = ϑ− ϑ̂, β̃ = β − β̂, p̃ = p− p̂ and
κ̃ = κ− κ̂; ϑ̂, β̂, p̂ and κ̂ are the estimates of ϑ, β, p and
κ, respectively. Here κ = b−1

0 is an unknown constant.
Define π1 = κ̂π̄1, where π̄1 is a stabilizing function to be
designed later.

The time derivative of V1 along (30) is

V̇1 = V̇0 + yλ′(y2)ẏ − ϑ̃TΓ−1 ˙̂
ϑ

− γ−1
1 β̃

˙̂
β − γ−1

2 p̃ ˙̂p− γ−1
3 |b0| κ̃ ˙̂κ

= V̇0 + yλ′(y2)(b0v0,2 + ξ2

+ f1,0(y) + ω̄Tϑ+ p∗e2

+ ε1(y) + Δ1) − ϑ̃TΓ−1 ˙̂
ϑ− γ−1

1 β̃
˙̂
β

− γ−1
2 p̃ ˙̂p− γ−1

3 |b0| κ̃ ˙̂κ.

(47)

Substituting (35) into (47) results in

V̇1 = V̇0 + z1(b0v0,2 + ξ2 + f1,0(y)

+ ω̄Tϑ+ p∗e2 + ε1(y) + Δ1)

− ϑ̃TΓ−1 ˙̂
ϑ− γ−1

1 β̃
˙̂
β − γ−1

2 p̃ ˙̂p

− γ−1
3 |b0| κ̃ ˙̂κ

= V̇0 + b0z1z2 − z1b0κ̃π̄1

+ z1(π̄1 + ξ2 + f1,0(y) + ω̄Tϑ)

+ yλ′(y2)(p∗e2 + ε1(y) + Δ1)

− ϑ̃TΓ−1 ˙̂
ϑ− γ−1

1 β̃
˙̂
β

− γ−1
2 p̃ ˙̂p− γ−1

3 |b0| κ̃ ˙̂κ.

(48)

Using Assumption 1 and Young’s inequality, we have

yλ′(y2)(p∗e2 + Δ1)

≤ p∗
∣
∣yλ′(y2)

∣
∣ |e2| +

∣
∣yλ′(y2)

∣
∣ |Δ1|

≤ p∗
∣
∣yλ′(y2)

∣
∣ |e2| + p∗1

∣
∣yλ′(y2)

∣
∣ (ψ11(|y|)

− ψ11(|0|)) + p∗1
∣
∣yλ′(y2)

∣
∣ψ12(|ζ|)

+ p∗1
∣
∣yλ′(y2)

∣
∣ψ11(|0|)

≤ |e2|2 +
p∗21

4
(yλ′(y2))2

+ p∗1y
2λ′(y2)ψ̄11(|y|)

+
p∗21

2
(yλ′(y2))2 + ψ2

12(|ζ|) + ψ2
11(0),

(49)

where ψ̄11(|y|) =
∫ 1

0
ψ′

11(s |y|) ds.
Using the proof of Jiang (1999), given any d11 > 0,

there exists a smooth function ψ̂11 with ψ̂11(0) = 0, such
that

|y| ψ̄11(|y|) ≤ yψ̂11(y) + d11, ∀y ∈ R,

Therefore, (49) can be rewritten as

yλ′(y2)(p∗e2 + Δ1)

≤ ‖e‖2 + pφ 11(y)(yλ′(y2))2

+ ψ2
12(|ζ|) + d2

11 + ψ2
11(0),

(50)

where p = (p∗)2 and

φ11(y) = 1 + 1
/
(2λ′(y2)) + 1

/
(2λ′(y2))ψ̂2

11(y)

is a smooth nonnegative function.

Note that, for ∀ς > 0, the following inequality holds:

|r| − r tanh(r/ς) ≤ 0.2785ς. (51)

By (51), one has

|ε1(y)z1| − z1η1β tanh
(z1η1

ς

)

≤ β
(
|z1| − z1η1 tanh

(z1η1
ς

))

≤ 0.2785ςβ = ς ′, (52)

where ς is an arbitrary small constant and η1 = −1.
Substituting (45), (50) and (52) into (48) yields

V̇1 ≤ − [λmin(Q) − 4] ‖e‖2 + z1

(
π̄1 + ξ2

+ f1,0(y) + ω̄ϑ̂+
‖P‖
λ′

2

yφ1(y)

+ p̂φ11(y)z1 + η1β̂ tanh
(z1η1

ς

))

+ b0z1z2 + ϑ̃T (ω̄z1 − Γ−1 ˙̂
ϑ)

+ β̃
(
z1η1β tanh

(z1η1
ς

)
− γ−1

1
˙̂
β
)

+ p̃(φ11(y)z2
1 − γ−1

2
˙̂p) − κ̃(z1b0π̄1

+ γ−1
3 |b0| ˙̂κ) + ‖P‖2

( n∑

k=1

ψk2(|ζ|)
)2

+ ψ2
12(|ζ|) + ‖P‖2

β2 + ‖P‖2
d0
ψ

+ ψ2
11(0) + ς ′ + d2

11.

(53)
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Choose the stabilizing control function π̄1, tuning func-
tions and parameters adaptation laws as

π̄1 = −yρ(y2) − ξ2 − f1,0(y) − ω̄ϑ̂

− ‖P‖
λ′

2

yϕ1(y) − p̂φ11(y)z1

− η1β̂ tanh
(z1η1

ς

)
, (54)

τ1 = ω̄z1, (55)

σ1 = z1η1β tanh
(z1η1

ς

)
, (56)

λ̄1 = φ11(y)z2
1 , (57)

˙̂κ = −γ3(sgn(b0)π̄1z1 + μκ̂), (58)

where ρ(y2) is a smooth non-decreasing function with
ρ(0) > 0, and μ > 0 is a design parameter. Substitut-
ing (54)–(58) into (53) yields

V̇1 ≤ − [λmin(Q) − 4] ‖e‖2 − z1yρ(y2)

+ b0z1z2 + ϑ̃T (τ1 − Γ−1 ˙̂
ϑ)

+ β̃(σ1 − γ−1
1

˙̂β) + p̃(λ̄1 − γ−1
2

˙̂p)

+ μκ̃κ̂+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2

+ ψ2
12(|ζ|) + ‖P‖2

β2 + ‖P‖2
d0
ψ

+ ς ′ + ψ2
11(0) + d2

11.

(59)

Step 2: The time derivative of z2 along (36) is

ż2 = v0,3 − k2v0,1 − ∂π1

∂y
(ξ2 + f1,0(y)

+ ωTϑ+ p∗e2 + Δ1 + ε1(y))

− ∂π1

∂ξ
(A0ξ + ky) − ∂π1

∂Ξ
(A0Ξ + ΦT (y))

− ∂π1

∂v0
v̇0 − ∂π1

∂κ
κ̇− ∂π1

∂ϑ̂
Γ(τ1 − μϑ̂)

− ∂π1

∂β̂
γ1(σ1 − μβ̂) − ∂π1

∂p̂
γ2(λ̄1 − μp̂)

− ∂π1

∂ϑ̂
(̇̂ϑ− Γτ1 + Γμϑ̂)

− ∂π1

∂β̂
(̇̂β − γ1σ1 + γ1μβ̂)

− ∂π1

∂p̂
(̇̂p− γ2λ̄1 + γ2μp̂).

(60)

Consider the Lyapunov function

V2 = V1 +
1
2
z2
2 . (61)

The time derivative of V2 along the solutions of (60) is

V̇2 ≤ V̇1 + z2[z3 + π2 − k2v0,1 − ∂π1

∂y
(ξ2

+ f1,0(y) + ωTϑ) − ∂π1

∂ξ
(A0ξ + ky)

− ∂π1

∂v0
v̇0 − ∂π1

∂Ξ
(A0Ξ + ΦT (y))

− ∂π1

∂ϑ̂
Γ(τ1 − μϑ̂) − ∂π1

∂β̂
γ1(σ1 − μβ̂)

− ∂π1

∂p̂
γ2(λ̄1 − μp̂)

− ∂π1

∂ϑ̂
( ˙̂
ϑ− Γτ1 + Γμϑ̂)

− ∂π1

∂β̂
( ˙̂
β − γ1σ1 + γ1μβ̂)

− ∂π1

∂p̂
( ˙̂p− γ2λ̄1 + γ2μp̂) − ∂π1

∂κ
κ̇]

+
∣
∣
∣
∣
∂π1

∂y
p∗e2z2

∣
∣
∣
∣ +

∣
∣
∣
∣
∂π1

∂y
Δ1z2

∣
∣
∣
∣

+
∣
∣
∣
∣
∂π1

∂y
ε1(y)z2

∣
∣
∣
∣ .

(62)

By Assumption 1 and Young’s inequality, using the
similar derivations in Step 1, one obtains the following
inequalities:

∣
∣
∣
∣
∂π1

∂y
p∗e2z2

∣
∣
∣
∣ ≤ eT e+ p

(∂π1

∂y

)2

z2
2 , (63)

∣
∣
∣
∣
∂π1

∂y
Δ1z2

∣
∣
∣
∣

≤
∣
∣
∣
∣
∂π1

∂y
(p∗1ψ11(|y|) + p∗1ψ12(|ζ|)) z2

∣
∣
∣
∣

≤ p∗1

∣
∣
∣
∣
∂π1

∂y
z2

∣
∣
∣
∣ψ11(|y|)

+
1
4
p(
∂π1

∂y
)2z2

2 + ψ2
12(|ζ|)

= p∗1

∣
∣
∣
∣
∂π1

∂y
z2

∣
∣
∣
∣ (ψ11(|y|) − ψ11(0))

+ p∗1

∣
∣
∣
∣
∂π1

∂y
z2

∣
∣
∣
∣ψ11(0)

+
1
4
p(
∂π1

∂y
)2z2

2 + ψ2
12(|ζ|)

≤ p∗1

∣
∣
∣
∣
∂π1

∂y
z2

∣
∣
∣
∣ |y| ψ̄11(|y|) +

1
2
p(
∂π1

∂y
)2z2

2

+ ψ2
12(|ζ|) + ψ2

11(0),

(64)

p∗1

∣
∣
∣
∣
∂π1

∂y
z2

∣
∣
∣
∣ |y| ψ̄11(|y|)

≤ p∗1

∣
∣
∣
∣
∂π1

∂y
z2

∣
∣
∣
∣ (yψ̂11(y) + d11)

≤ p
(∂π1

∂y

)2

z2
2ψ̂

2
11(y) +

1
4
y2

+
1
2
p
(∂π1

∂y

)2

z2
2 +

1
2
d2
11,

(65)

where d11 > 0 is a known constant, ψ̂11 is a known
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smooth function with ψ̂11(0) = 0.

Substituting (65) into (64) yields

∣
∣
∣
∣
∂π1

∂y
Δ1z2

∣
∣
∣
∣ ≤ p(

∂π1

∂y
)2z2

2(ψ̂2
11(y) + 1)

+
1
4
y2 + ψ2

12(|ζ|) + ψ2
11(0) +

1
2
d2
11. (66)

Note that
∣
∣
∣
∣
∂π1

∂y
ε1(y)z2

∣
∣
∣
∣ − z2η2β tanh

(z2η2
ς

)

≤ 0.2785ςβ = ς ′, (67)

where η2 = −∂π1/∂y.
Substituting (63), (66) and (67) into (62), we obtain

V̇2 ≤ − [λmin(Q) − 5] ‖e‖2 − z1yρ(y2)

+
1
4
y2 + z2[z3 + π2 + b̂0z1 − k2v0,1

− ∂π1

∂y
(ξ2 + f1,0(y) + ωT ϑ̂) +H2]

− z2
∂π1

∂ϑ̂
( ˙̂
ϑ− Γτ1 + Γμϑ̂)

− z2
∂π1

∂β̂
( ˙̂
β − γ1σ1 + γ1μβ̂)

− z2
∂π1

∂p̂
( ˙̂p− γ2λ̄1 + γ2μp̂)

+ ϑ̃T (τ1 − ∂π1

∂y
ωz2 + �z2 − Γ−1 ˙̂

ϑ)

+ β̃
(
σ1 + η2z2 tanh

(z2η2
ς

)
− γ−1

1
˙̂
β
)

+ p̃(λ̄1 + (
∂π1

∂y
)2z2

2(ψ̂
2
11(y) + 2) − γ−1

2
˙̂p)

+ μκ̃κ̂+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2

+ 2ψ2
12(|ζ|) + ‖P‖2

β2 + ‖P‖2
d0
ψ + 2ς ′

+ 2ψ2
11(0) +

3
2
d2
11,

(68)

where

H2 = −∂π1

∂ξ
(A0ξ + ky) − ∂π1

∂Ξ
(A0Ξ + ΦT (y))

− ∂π1

∂v0
v̇0 − ∂π1

∂κ
κ̇− ∂π1

∂ϑ̂
Γ(τ1 − μϑ̂)

− ∂π1

∂β̂
γ1(σ1 − μβ̂) − ∂π1

∂p̂
γ2(λ̄1 − μp̂)

− β̂η2 tanh
(z2η2

ς

)
+ p̂(

∂π1

∂y
)2z2

2(ψ̂2
11(y) + 2),

� = [ z1 0 . . . 0 ]T .

Choose the tuning functions and parameters adapta-
tion laws as follows:

τ2 = τ1 − z2

(∂π1

∂y
ω − �

)
, (69)

τi = τi−1 − zi
∂πi−1

∂y
ω, i = 3, . . . , n, (70)

σi = σi−1 + ziηi tanh
(ziηi

ς

)
, i = 2, . . . , n, (71)

λ̄i = λ̄i−1 +
(∂πi−1

∂y

)2

z2
i (ψ̂

2
11(y) + 2), i = 2, . . . , n,

(72)

˙̂
ϑ = Γ(τn − μϑ̂), (73)

˙̂
β = γ1(σn − μβ̂), (74)

˙̂p = γ2(λ̄n − μp̂), (75)

where

ηi = −∂πi−1

∂y
, i = 2, . . . , n.

Define

−∂π1

∂ϑ̂
( ˙̂
ϑ− Γτ1 + Γμϑ̂) =

n∑

j=2

Δ1,jzj , (76)

−∂π1

∂β̂
( ˙̂
β − γ1σ1 + γ1μβ̂) =

n∑

j=2

Λ1,jzj , (77)

−∂π1

∂p̂
( ˙̂p− γ2λ̄1 + γ2μp̂) =

n∑

j=2

A1,jzj, (78)

where

Δ1,j =
∂π1

∂ϑ̂
Γ
∂πj−1

∂y
ω,

Λ1,j =
∂π1

∂β̂
γ1ηj tanh

(ηjzj
ς

)
,

A1,j =
∂π1

∂p̂
γ2

(∂πj−1

∂y

)2

z2
j (ψ̂

2
11(y) + 2),

i = 2, . . . , n.
Choose the stabilizing control function π2 as

π2 = −b̂0z1 − c2z2 +
∂π1

∂y
(ξ2

+ f1,0(y) + ωT ϑ̂) + k2v0,1

− (Δ1,2 + Λ1,2 + A1,2) −H2,

(79)

where c2 > 0 is a design constant.
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Substituting (69) and (71)–(79) into (68) yields

V̇2 ≤ − [λmin(Q) − 5] ‖e‖2 − z1yρ(y2)

+
1
4
y2 + z2z3 + ϑ̃T (τ2 − Γ−1 ˙̂

ϑ) + μκ̃κ̂

+ β̃(σ2 − γ−1
1

˙̂
β) + p̃(λ̄2 − γ−1

2
˙̂p)

+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2 + 2ψ2
12(|ζ|)

+ ‖P‖2β2 +
n∑

j=3

(Δ1,j + Λ1,j + A1,j)z2zj

+ ‖P‖2
d0
ψ + 2ς ′ + 2ψ2

11(0) +
3
2
d2
11.

(80)

Step i (i = 3, . . . , n − 1): A similar procedure in Step 2
is employed recursively for consemtive steps. The time
derivative of zi along (36) is

żi = v0,i+1 − kiv0,1 − ∂πi−1

∂y
(ξ2 + f1,0(y)

+ ωTϑ+ p∗e2 + Δ1 + ε1(y))

− ∂πi−1

∂ξ
(A0ξ + ky)

− ∂πi−1

∂Ξ
(A0Ξ + ΦT (y)) − ∂πi−1

∂v0
v̇0

− ∂πi−1

∂κ
κ̇− ∂πi−1

∂ϑ̂
Γ(τi−1 − μϑ̂)

− ∂πi−1

∂β̂
γ1(σi−1 − μβ̂)

− ∂πi−1

∂p̂
γ2(λ̄i−1 − μp̂)

− ∂πi−1

∂ϑ̂
( ˙̂
ϑ− Γτi−1 + Γμϑ̂)

− ∂πi−1

∂β̂
( ˙̂
β − γ1σi−1 + γ1μβ̂)

− ∂πi−1

∂p̂
( ˙̂p− γ2λ̄i−1 + γ2μp̂).

(81)

Consider the following Lyapunov function:

Vi = Vi−1 +
1
2
z2
i . (82)

The time derivative of Vi along the solutions of (81) is

V̇i ≤ V̇i−1 + zi[zi+1 + πi − kiv0,1

− ∂πi−1

∂y
(ξ2 + f1,0(y) + ωTϑ)

− ∂πi−1

∂ξ
(A0ξ + ky)

− ∂πi−1

∂Ξ
(A0Ξ + ΦT (y)) − ∂πi−1

∂v0
v̇0

− ∂πi−1

∂κ
κ̇− ∂πi−1

∂ϑ̂
Γ(τi−1 − μϑ̂)

− ∂πi−1

∂β̂
γ1(σi−1 − μβ̂)

− ∂πi−1

∂p̂
γ2(λ̄i−1 − μp̂)

− ∂πi−1

∂ϑ̂
( ˙̂
ϑ− Γτi−1 + Γμϑ̂)

− ∂πi−1

∂β̂
( ˙̂
β − γ1σi−1 + γ1μβ̂)

− ∂πi−1

∂p̂
( ˙̂p− γ2λ̄i−1 + γ2μp̂)]

+
∣
∣
∣
∣
∂πi−1

∂y
p∗e2zi

∣
∣
∣
∣ +

∣
∣
∣
∣
∂πi−1

∂y
Δ1zi

∣
∣
∣
∣

+
∣
∣
∣
∣
∂πi−1

∂y
ε1(y)zi

∣
∣
∣
∣ .

(83)

By Young’s inequality and Assumption 1, one ob-
tains the following inequalities:

∣
∣
∣
∣
∂πi−1

∂y
p∗e2zi

∣
∣
∣
∣ ≤ eT e+ p(

∂πi−1

∂y
)2z2

i , (84)

∣
∣
∣
∣
∂πi−1

∂y
Δ1zi

∣
∣
∣
∣

≤
∣
∣
∣
∣
∂πi−1

∂y
(p∗1ψ11(|y|) + p∗1ψ12(|ζ|)) zi

∣
∣
∣
∣

≤ p∗1

∣
∣
∣
∣
∂πi−1

∂y
zi

∣
∣
∣
∣ψ11(|y|)

+
1
4
p(
∂πi−1

∂y
)2z2

i + ψ2
12(|ζ|)

≤ p∗1

∣
∣
∣
∣
∂πi−1

∂y
zi

∣
∣
∣
∣ |y| ψ̄11(|y|)

+
1
2
p(
∂πi−1

∂y
)2z2

i + ψ2
12(|ζ|) + ψ2

11(0) (85)

p∗1

∣
∣
∣
∣
∂πi−1

∂y
zi

∣
∣
∣
∣ |y| ψ̄11(|y|)

≤ p∗1

∣
∣
∣
∣
∂πi−1

∂y
zi

∣
∣
∣
∣ (yψ̂11(y) + d11)

≤ p(
∂πi−1

∂y
)2z2

i ψ̂
2
11(y)

+
1
4
y2 +

1
2
p(
∂πi−1

∂y
)2z2

i +
1
2
d2
11 (86)

∣
∣
∣
∣
∂πi−1

∂y
Δ1zi

∣
∣
∣
∣

≤ p(
∂πi−1

∂y
)2z2

i (ψ̂
2
11(y) + 1)

+
1
4
y2 + ψ2

12(|ζ|) + ψ2
11(0) +

1
2
d2
11 (87)
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∣
∣
∣
∣
∂πi−1

∂y
ε1(y)zi

∣
∣
∣
∣ − ziηiβ tanh(

ziηi
ς

)

≤ 0.2785ςβ = ς ′, (88)

where ηi = −∂πi−1/∂y.
Substituting (84), (87) and (88) into (83) gives

V̇i ≤ − [λmin(Q) − (i+ 3)] ‖e‖2 − z1yρ(y2)

+
i− 1

4
y2 + zi[zi+1 + πi − kiv0,1

− ∂πi−1

∂y
(ξ2 + f1,0(y) + ωT ϑ̂) +Hi]

− zi
∂πi−1

∂ϑ̂
( ˙̂
ϑ− Γτi−1 + Γμϑ̂)

− zi
∂πi−1

∂β̂
( ˙̂
β − γ1σi−1 + γ1μβ̂)

− zi
∂πi−1

∂p̂
( ˙̂p− γ2λ̄i−1 + γ2μp̂)

+ ϑ̃T (τi−1 − ∂πi−1

∂y
ωzi − Γ−1 ˙̂

ϑ)

+ β̃(σi−1 + ηizi tanh
(ziηi

ς

)
− γ−1

1
˙̂
β)

+ p̃(λ̄i−1 +
(∂πi−1

∂y

)2

z2
i (ψ̂

2
11(y) + 2)

− γ−1
2

˙̂p) + μκ̃κ̂−
i−1∑

j=1

cjz
2
j

+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2 + iψ2
12(|ζ|)

+ ‖P‖2
β2 + ‖P‖2

d0
ψ + iς ′

+ iψ2
11(0) +

i+ 1
2

d2
11,

(89)

Hi = −∂πi−1

∂ξ
(A0ξ + ky) − ∂πi−1

∂Ξ
(A0Ξ + ΦT (y))

− ∂πi−1

∂v0
v̇0 − ∂πi−1

∂κ
κ̇− ∂πi−1

∂ϑ̂
Γ(τi−1 − μϑ̂)

− ∂πi−1

∂β̂
γ1(σi−1 − μβ̂) − ∂πi−1

∂p̂
γ2(λ̄i−1 − μp̂)

− β̂ηi tanh
(ziηi

ς

)
+ p̂

(∂πi−1

∂y

)2

z2
i (ψ̂

2
11(y) + 2).

Define

−∂πi−1

∂ϑ̂
( ˙̂
ϑ− Γτi−1 + Γμϑ̂) =

n∑

j=i

Δi,jzj , (90)

−∂πi−1

∂β̂
( ˙̂
β − γ1σi−1 + γ1μβ̂) =

n∑

j=i

Λi,jzj, (91)

−∂πi−1

∂p̂
( ˙̂p− γ2λ̄i−1 + γμp̂) =

n∑

j=i

Ai,jzj , (92)

where

Δi,j =
n∑

j=i

∂πi−1

∂ϑ̂
Γ
∂πj−1

∂y
ω,

Λi,j =
n∑

j=i

∂πi−1

∂β̂
γηj tanh

(ηjzj
ς

)
,

Ai,j =
n∑

j=i

∂πi−1

∂ϑ̂
γ2

(∂πj−1

∂y

)2

z2
j (ψ̂

2
11(y) + 2).

Choose the stabilizing control function πi as

πi = −zi−1 − cizi + kiv0,1

+
∂πi−1

∂y
(ξ2 + f1,0(y) + ωT ϑ̂)

−
i−1∑

k=2

(Δk,i + Λk,i + Ak,i)zk −Hi,

(93)

where ci > 0 is a design constant. Substituting (90)–(93)
into (89) and repeating procedures in Step 2, we have

V̇i ≤ − [λmin(Q) − (i+ 3)] ‖e‖2 − z1yρ(y2)

+
i− 1

4
y2 −

i∑

j=1

cjz
2
j + ϑ̃T (τi − Γ−1 ˙̂

ϑ)

+ β̃(σi − γ−1
1

˙̂
β) + p̃(λ̄i − γ−1

2
˙̂p) + μκ̃κ̂

+
n∑

j=i+1

i∑

k=2

(Δk−1,j + Λk−1,j)zkzj

+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2 + zizi+1

+ iψ2
12(|ζ|) + ‖P‖2

β2 + ‖P‖2
d0
ψ + iς ′

+ iψ2
11(0) +

i+ 1
2

d2
11

(94)

Step n: In the final design step, the actual control input u
appears. Consider the overall Lyapunov function as

Vn = Vn−1 +
1
2
z2
n. (95)

Using (33) and (34), the time derivative of Vn is

V̇n ≤ − [λmin(Q) − (n+ 3)] ‖e‖2 − z1yρ(y2)

+
n− 1

4
y2 + zn[σ(y)u− knv0,1

− ∂πn−1

∂y
(ξ2 + f1,0(y) + ωT ϑ̂) +Hn]

− ∂πn−1

∂ϑ̂
( ˙̂
ϑ− Γτn−1 + Γμϑ̂)

− ∂πn−1

∂β̂
( ˙̂
β − γ1σn−1 + γ1μβ̂)
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− ∂πn−1

∂p̂
( ˙̂p− γ2λ̄n−1 + γ2μp̂)

+ ϑ̃T (τn−1 − ∂πn−1

∂y
ωzn − Γ−1 ˙̂

ϑ)

+ β̃
(
σn−1 + ηnzn tanh

(znηn
ς

)
− γ−1

1
˙̂
β
)

+ p̃(λ̄n−1 +
(∂πn−1

∂y

)2

z2
n(ψ̂

2
11(y) + 2)

− γ−1
2

˙̂p) + μκ̃κ̂−
n−1∑

j=1

cjz
2
j

+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2 + nψ2
12(|ζ|)

+ ‖P‖2
β2 + ‖P‖2

d0
ψ + nς ′

+ nψ2
11(0) +

n+ 1
2

d2
11,

(96)

where

Hn = −∂πn−1

∂ξ
(A0ξ + ky) − ∂πn−1

∂Ξ
(A0Ξ + ΦT (y))

− ∂πn−1

∂v0
v̇0 − ∂πn−1

∂κ
κ̇− ∂πn−1

∂ϑ̂
Γ(τn−1 − μϑ̂)

− ∂πn−1

∂β̂
γ1(σn−1 − μβ̂)

− ∂πn−1

∂p̂
γ2(λ̄n−1 − μp̂)

− β̂ηn tanh
(znηn

ς

)
+ p̂

(∂πn−1

∂y

)2

z2
n(ψ̂

2
11(y) + 2).

Choose the actual control u as

u =
1

σ(y)

(
knv0,1 +

∂πn−1

∂y
(ξ2 + f1,0(y)

+ ωT ϑ̂) − cnzn − zn−1 −
n−1∑

k=2

(Δk−1,n

+ Λk−1,n + Ak−1,n)zk −Hn

)
,

(97)

where cn > 0 is a design constant.

Substituting (73)–(75) and (97) into (96) yields

V̇n ≤ − [λmin(Q) − (n+ 3)] ‖e‖2 − z1yρ(y2)

+
n− 1

4
y2 −

n∑

j=1

cjz
2
j + μϑ̃ϑ̂+ μβ̃β̂

+ μp̃p̂+ μκ̃κ̂+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2

+ nψ2
12(|ζ|) + ‖P‖2

β2 + ‖P‖2
d0
ψ + nς ′

+ nψ2
11(0) +

n+ 1
2

d2
11.

(98)

By completing the squares,

μϑ̃T ϑ̂ = μϑ̃T (ϑ− ϑ̃) = μϑ̃Tϑ− μ
∥
∥
∥ϑ̃

∥
∥
∥

2

≤ −1
2
μ
∥
∥
∥ϑ̃

∥
∥
∥

2

+
1
2
μ‖ϑ‖2

, (99)

μβ̃β̂ ≤ −1
2
μ
∥
∥
∥β̃

∥
∥
∥

2

+
1
2
μ‖β‖2, (100)

μp̃p̂ ≤ −1
2
μ‖p̃‖2 +

1
2
μ‖p‖2

, (101)

μκ̃κ̂ ≤ −1
2
μ‖κ̃‖2 +

1
2
μ‖κ‖2

. (102)

Substituting (99)–(102) into (98) results in

V̇n ≤ − [λmin(Q) − (n+ 3)] ‖e‖2 −
n∑

j=1

cjz
2
j

− 1
2
μ(

∥
∥
∥ϑ̃

∥
∥
∥

2

+
∥
∥
∥β̃

∥
∥
∥

2

+ ‖p̃‖2 + ‖κ̃‖2)

− y2(λ′(y2)ρ(y2) − n− 1
4

)

+ ‖P‖2(
n∑

k=1

ψk2(|ζ|))2 + nψ2
12(|ζ|) +D,

(103)

where

D =
1
2
μ(‖ϑ‖2 + ‖β‖2 + ‖p‖2) + ‖P‖2β2

+ ‖P‖2d0
ψ + nς ′ + nψ2

11(0) +
n+ 1

2
d2
11.

Assume that

λmin(Q) − (n+ 3) > 0.

In the sequel, we are to robustify the adaptive fuzzy
controller obtained in the preceding design procedures
via the appropriate choice of design functions λ(y2) and
ρ(y2) to check the conditions of small-gain Theorem 1.

Firstly, choose a smooth function ρ(y2) as introduced
in Step 1 to satisfy

y2
[
λ′(y2)ρ(y2) − n− 1

4

]
≥ c1λ(y2). (104)

Because λ′(y2) �= 0 for any y, as stated by Jiang (1999),
such a smooth function always exists. Since each function
ψi2 is smooth and vanishes at the origin, there is a smooth
class-κ∞ function h such that

‖P‖2(
n∑

i=1

ψi2(|ζ|))2 + nψ2
12(|ζ|) ≤ h(|ζ|2). (105)

Let

c = min
{λmin(Q) − (n+ 3)

λmax(P )
, 2cj,

μ

λmax(Γ−1)
,

μγ1, μγ2, μγ3; j = 1, . . . , n
}
.

(106)
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Then (103) can be expressed as

V̇n ≤ −cVn + h(|ζ|2) +D, (107)

In order to use Lemma 1 and Theorem 1, one assumes that

V̇n ≤ −d1Vn + d1Vn − cVn + h(|ζ|2) +D

≤ −d1Vn
(108)

that is, for any 0 < d1 < c, (108) ensures that the follow-
ing inequality holds:

d1Vn − cVn + h(|ζ|2) +D ≤ 0 (109)

or, equivalently,

Vn ≥ h(|ζ|2)
c− d1

+
D

c− d1
. (110)

From (3), one has

|ζ| ≤ α−1
1 (V0(ζ)), (111)

|ζ| ≥ α−1
2 (V0(ζ)). (112)

From (111) and (110), we obtain

h(α−1
1 (V0(ζ))

2)
c− d1

+
D

c− d1
≥ h(|ζ|2)
c− d1

+
D

c− d1
.

Therefore, (110) holds as long as the following in-
equality holds:

Vn ≥ h(α−1
1 (V0(ζ))

2)
c− d1

+
D

c− d1
. (113)

On the other hand,

max
{2h(α−1

1 (V0(ζ))
2)

c− d1
,

2D
c− d1

}

≥ h(α−1
1 (V0(ζ))

2)
c− d1

+
D

c− d1
. (114)

Therefore, if

Vn ≥ max{2h(α−1
1 (V0(ζ))

2)
c− d1

,
2D
c− d1

}, (115)

it follows that (108) holds.
Secondly, in order to invoke Theorem 1 (the small-

gain theorem), the function λ(y2) needs to be chosen ap-
propriately such that for arbitrary d2 > 0, the following
inequality holds:

γ−1 ◦ γ0(|y|) ≤ 1
4
λ(y2) + d2 ≤ 1

2
Vn + d2, (116)

where the notation ◦ stands for the composition operator
between two functions. Since γ is a κ∞-function and γ is
an increasing function, we have

γ(
1
2
Vn + d2) ≤ γ(Vn) + γ(2d2). (117)

Substituting (116) and (117) into (3) results in

∂V0

∂ζ
q(ζ, y) ≤ −α0(|ζ|) + γ(γ−1 ◦ γ0(|y|)) + d0

≤ −α0(|ζ|) + γ(Vn) + γ(2d2) + d0.

(118)

For any given 0 < d3 < 1, by (109) and (115), we obtain

V̇0 ≤ −α0(|ζ|) + γ(Vn) + γ(2d2) + d0

≤ −d3α0 ◦ α−1
2 (V0(ζ))

+ d3α0 ◦ α−1
2 (V0(ζ)) − α0 ◦ α−1

2 (V0(ζ))
+ γ(Vn) + γ(2d2) + d0.

(119)

The following inequality holds:

V̇0 ≤ −d3α0 ◦ α−1
2 (V0(ζ)), (120)

as long as

d3α0 ◦ α−1
2 (V0(ζ)) − α0 ◦ α−1

2 (V0(ζ))
+ γ(Vn) + γ(2d2) + d0 ≤ 0 (121)

or, equivalently,

α0 ◦ α−1
2 (V0(ζ)) ≥ γ(Vn)

1 − d3
+
γ(2d2) + d0

1 − d3
. (122)

From (122), we get

V0 ≥ α2 ◦ α−1
0

{
γ(Vn)
1 − d3

+
γ(2d2) + d0

1 − d3

}

. (123)

Since

max
{

α2 ◦ α−1
0 ◦ 2γ(Vn)

1 − d3
, α2 ◦ α−1

0 ◦ 2γ(2d2) + 2d0

1 − d3

}

≥ α2 ◦ α−1
0

{
γ(Vn)
1 − d3

+
γ(2d2) + d0

1 − d3

}

,

for any given d4 > 0, as long as

d4V0 ≥ max
{
d4α2 ◦ α−1

0 ◦ 2γ(Vn)
1 − d3

,

d4α2 ◦ α−1
0 ◦ 2γ(2d2) + 2d0

1 − d3

}
, (124)

it is sufficient to guarantee that the inequality (120) holds,
that is, V̇0 ≤ −d3α0 ◦ α−1

2 (V0). From (108) and (115),
the condition (8) is satisfied. The class κ∞-function for
the (x1, v0, z1, · · · , zn, β̂, p̂, ϑ̂, κ) system with input d4V0

and output Vn is given as

χ1(s) =
2h(α−1

1 ( 1
d4
s)2)

c− d1
. (125)

Similarly, from (120) and (124), the condition (9) is
also satisfied for the z-system with input Vn and output
d4V0. The gain function is

χ2(s) = d4α2 ◦ α−1
0 ◦ 2γ(s)

1 − d3
. (126)
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Finally, to check the conditions of Theorem 1 (Jiang
et al., 1996), for any given s > 0, we select any function
γ of class κ∞ such that

γ(s) <
1 − d3

2
α0 ◦ α−1

2 ◦ α1(

√

h−1(
c− d1

2
s)). (127)

From (125), (126) and (127), we obtain

χ1 ◦ χ2(s) < s. (128)

Therefore, by (128) and Theorem 1, we conclude that the
closed-loop system is ISpS, and the variables xi(t), e(t),
ϑ, β, p, κ and u(t) are uniformly ultimately bounded.

The above analysis and small-gain design are sum-
marized in the following theorem.

Theorem 2. For the nonlinear system (1), under As-
sumptions 1–3, after the application of the above design
procedures, the proposed adaptive fuzzy output feedback
control scheme can guarantee that all the signals of the
closed-loop system are uniformly ultimately bounded.

From the previous synthesis, we can obtain the fol-
lowing controller design procedure:

Step 1: Define the fuzzy IF-THEN rules and the member-
ship functions, determine the fuzzy basis functions, and
establish the fuzzy logic systems (11).

Step 2: Specify the observer gain vector K , such that A0

is a strict Hurwitz matrix.

Step 3: Specify a positive definite matrix Q = QT > 0,
such that λmin(Q) − (n + 3) > 0, solving the matrix
equation (19) to obtain positive definite matrix P .

Step 4: Select the appropriate design parameter c1 > 0,
by using (104), (116) and (127), construct functions ρ(y2)
and λ(y2), then obtain the adaptation functions κ̂ in (58)
and the stabilizing function π̄1 in (54), i.e., the intermedi-
ate control function π1 = κ̂π̄1.

Step 5: Select the appropriate design parameters ci > 0
(i = 2, . . . , n), Γ = ΓT > 0, γ1 > 0, γ2 > 0, γ3 > 0,
μ > 0. Compute the partial derivations of the stabilizing
function πi, for i = 1, . . . , n− 1, then obtain the interme-
diate control function πi in (93). Finally, obtain u in (97)
and adaptation functions β̂, p̂ and ϑ̂, which are expressed
by (73)–(75), respectively.

4. Simulation

In this section, a simulation example and simulation com-
parisons are presented to show the effectiveness of the
proposed adaptive backstepping control scheme.

Example 1. Consider the second-order nonlinear system
with unmodeled dynamics and dynamical disturbances

ζ̇ = −ζ + 0.125y2,

ẋ1 = x2 + f1,0(y) + f1(y) + Δ1,

ẋ2 = b0u+ f2,0(y) + f2(y) + Δ2,

y = x1,

(129)

where f1,0(y) = 0 and f2,0(y) = 0 are known functions.
f1(y) = 5y2 and f2(y) = −0.5y are unknown functions.
ζ̇ = −ζ+0.125y2 stands for unmodeled dynamics, Δ1 =
ζ2 and Δ2 = 0.2ζ2 are nonlinear dynamical disturbances
and b0 = −4.

Based on the following inequalities:

|Δ1| ≤ |ζ|2 = 0.|x1|2 + 1.|ζ|2 ≤ p∗1|x1|2 + p∗1|ζ|2,
|Δ2| ≤ |ζ|2 = 0.|x1|2 + 0.2.|ζ|2 ≤ p∗2|x1|2 + p∗2|ζ|2,

set ψ11(s) = 0, ψ21(s) = 0, ψ12(s) = s2, ψ22(s) = s2.
Then Assumption 1 is satisfied.

Taking V0 = ζ2, the time derivative of V0 along (129)
is

V̇0 = 2ζζ̇ = −2ζ2 + 0.25ζy2

≤ −1.875ζ2 + 0.125y4

≤ −ζ2 + 0.125y4.

Defining α0(s) = s2, γ0(s) = 0.125s4, α1(s) = 0.5s2,
α2(s) = 1.5s2 and d0 = 0, Assumption 2 holds.

According to the controller design procedures in the
above section, the controller design is as follows:

Step 1: Since the functions f1(y) and f1(y) in (129) are
zero at the point y = 0, it usually takes a symmetrical
interval about the origin [−a, a]. Then choose the fuzzy
membership function to cover the interval [−a, a] uni-
formly. In this way, the fuzzy logic system can achieve
better approximating results. In this paper, we take [−a, a]
as [−6, 6] for the variable y. Therefore, define fuzzy mem-
bership functions as

μF l
1
(y) = exp[−(y − 6 + 2l)2], l = 1, . . . , 5,

μF l
2
(y) = exp[−(y − 6 + 2l)2] · exp[−(y − 12 + l4)2],

l = 1, . . . , 5.

The fuzzy basis functions are expressed as

ϕ1j(y) =
exp[−(y − 6 + 2j)2]

5∑

n=1
exp[−(y − 6 + 2n)2]

, l = 1, . . . , 5,

ϕ2j(y)

=
exp[−(y − 6 + 2j)2] × exp[−(y − 12 + 4j)2]

5∑

n=1
exp[−(y − 6 + 2n)2] × exp[−(y − 12 + 4n)2]

,

l = 1, . . . , 5.
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Therefore, the unknown functions fi(y) (i = 1, 2) can be
approximated as f1(y) = θ∗T1 ϕ1(y) + ε1(y) and f2(y) =
θ∗T2 ϕ2(y) + ε2(y).

Step 2: Specify the observer gain vector

K = [k1, k2]T = [15, 15]T ,

such that A0 is a strict Hurwitz matrix.

Step 3: Given a positive definite matrixQ = 8I , such that
λmin(Q)−(n+3) > 0, by solving the Lyapunov equation
(19) , a positive definite matrix

P =
[

4.2667 −4
−4 4.2844

]

is obtained.

Step 4: Selecting the design parameter c1 = 2 and design
function λ(y2) = 10y8 + 0.1y2, we obtain the function

φ11(y) = 1 +
1
2
· 1
40y6 + 0.1

.

Using (104), we choose function ρ(y2) = y2 + 4.85.
Using (105) and (127), respectively, the design functions
are h(s) = 280s2, γ(s) = 0.007s

1
2 and d1 = 0.0001. If

we choose d3 = 0.0001, d2 = d4 = 0.1 and c = 1, then
the conditions of the small-gain-theorem are satisfied.

Define the parameter vector as

ϑ =
[
b0 θ∗T1 θ∗T2

]T
.

The filters are given as

ξ̇ = A0ξ +
[
k1

k2

]

y,

Ξ̇ = A0Ξ + Φ, v̇0 = A0v0 +
[

0
1

]

u,

where

ξ =
[
ξ1
ξ2

]

, A0 =
[ −k1 1

−k2 0

]

,

Ξ =
[

Ξ(1)

Ξ(2)

]

, Φ =
[
ϕT1 0
0 ϕT2

]

,

v0 =
[
v01
v02

]

.

The stabilization functions and the control laws are
given by

π1 = κ̂π̄1,

π̄1 = −yρ(y2) − ξ2 − f1,0(y) − ω̄ϑ̂

− ‖P‖
λ′

2

yφ1(y) − p̂φ11(y)z1 − η1β̂ tanh
(z1η1

ς

)
,

where

ω = [v0,2,ΦT(1)(y) + Ξ(2)]T ,

ω̄ = [0,ΦT(1)(y) + Ξ(2)]T .

Step 5: Controller u and parameter adaptation laws are
chosen as

u =
1

σ(y)

(
− b̂0z1 − c2z2 +

∂π1

∂y
(ξ2 + f1,0(y) + ωT ϑ̂)

+ k2v0,1 − (Δ1,2 + Λ1,2 + A1,2) −H2

)

˙̂
ϑ = Γ(τ2 − μϑ̂), ˙̂

β = γ1(σ2 − μβ̂),
˙̂p = γ2(λ̄2 − μp̂), ˙̂κ = −γ3(sgn(b0)π̄1z1 + μκ̂),

where

τ1 = ω̄z1,

σ1 = z1η1β tanh
(z1η1

ς

)
,

λ̄1 = φ11(y)z2
1 ,

τ2 = ω̄z1 + �z2 − z2
∂π1

∂y
ω,

σ2 = z1η1 tanh
(z1η1

ς

)
+ z2η2 tanh

(z2η2
ς

)
,

λ2 = φ11(y)z2
1 +

(∂π1

∂y

)2

z2
2(ψ̂2

11(y) + 2),

H2 = −∂π1

∂ξ
(A0ξ + ky) − ∂π1

∂Ξ
(A0Ξ + ΦT (y))

− ∂π1

∂v0
v̇0 − ∂π1

∂κ
κ̇− ∂π1

∂ϑ̂
Γ(τ1 − μϑ̂)

− ∂π1

∂β̂
γ1(σ1 − μβ̂) − ∂π1

∂p̂
γ2(λ̄1 − μp̂)

− β̂η2 tanh
(z2η2

ς

)
+ p̂

(∂π1

∂y

)2

z2
2(ψ̂

2
11(y) + 2).

The design parameters in the controller and adapta-
tion laws are chosen as c2 = 0.5, μ = 0.9, Γ = 1.2I ,
ς = 0.1, γ1 = 1.2, γ2 = 1.2, γ3 = 1.2.

If the initial conditions are given as

x1(0) = 0.12, ζ(0) = 0.1,
κ̂(0) = 0.1, p̂(0) = 1.5,

ϑ̂(0) = [0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T,

ξ(0) = Ξ(0) = v0(0) = β̂(0) = 0.

The simulation results are shown in Figs. 1–3, where
Figs. 1 and 2 show the trajectories of x1, x2, ˆ̂x1 and ˆ̂x2,
respectively, while Fig. 3. shows the trajectory of control
input u.
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Fig. 1. Trajectories of x1 (dashed) and x̂1 (solid).
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Fig. 2. Trajectories of x2 (dashed) and x̂2 (solid).
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Fig. 3. System control input u.

Example 2. In order to further illustrate the effectiveness
of the proposed control method, use the control scheme
by Yang et al. (2005) to control the nonlinear system in
Example 1.

Case 1: Consider the nonlinear system (129) without un-
modeled dynamics and dynamical disturbances, and as-
sume that x1 and x2 are both measured.

For this case, we use the same fuzzy membership
functions and fuzzy logic systems as in Example 1 to ap-
proximate the unknown functions f1(y) and f2(y), re-
spectively. According to Yang et al. (2005), the stabi-
lization functions, the controller and adaptation laws are
given by

α1 = −k1z1 − 1
4γ2

1

z1λ1ξ
T
1 (x1)ξ1(x1)

− θ̂1 tanh
( θ̂1z1
δ1

)
,

λ̇1 = Γ11

[ 1
4γ2

1

λ1ξ
T
1 (x1)ξ1(x1)z2

1 − σ11(λ1 − λ0
1)

]
,

˙̂
θ1 = Γ12[‖z1‖ − σ12(θ̂1 − θ01)],

u = −k2z2 − z1 − 1
4γ2

2

z2λ2ξ
T
2 ξ2 − θ̂2z2 tanh

( θ̂2z2
δ2

)
,

λ̇2 = Γ21

[ 1
4γ2

2

λ2ξ
T
2 ξ2z

2
2 − σ21(λ2 − λ0

2)
]
,

˙̂
θ2 = Γ22

[
‖z2‖ − σ22(θ̂2 − θ02)

]
.

Design parameters in the controller and adaptation
laws are chosen as k1 = 0.2, k2 = 0.8, γ1 = 1, γ2 = 2,
μ = 0.9, Γ11 = 1, Γ12 = 1, Γ21 = 1, Γ22 = 1, δ1 =
0.01, δ2 = 0.02, λ0

1 = 0, λ0
2 = 0, θ01 = 0, θ02 = 0,

σ11 = 0.01, σ12 = 0.01, σ21 = 0.01, σ22 = 0.01 if the
initial conditions are given as x1(0) = 0.12, x2(0) = 0,
λ1(0) = 0, λ2(0) = 0, θ̂1(0) = 0, θ̂2(0) = 0.
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Fig. 4. Trajectory of x1.

The simulation results are shown in Figs. 4–6, where
Figs. 4 and 5 show the trajectories of x1, x2, respec-
tively, while Fig. 6 shows the trajectory of control input
u. From the above simulation results, it is concluded that
the adaptive fuzzy control method (Yang et al., 2005) can
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Fig. 5. Trajectory of x2.
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Fig. 6. System control input u.

guarantee that all variables of the closed-loop systems are
bounded and can achieve better control performance un-
der the assumptions that the controlled nonlinear system
does not contain unmodeled dynamics or dynamical dis-
turbances, and the states are measured directly.

Case 2: Consider the nonlinear system (129) with unmod-
eled dynamics and dynamical disturbances, and assume
that x1 and x2 are both measured.

For this case, use the same control scheme and the
initial conditions as in Case 1, and we obtain the simula-
tion results, which are shown by Figs. 7–8. From these
one can conclude that the control scheme of Yang et al.
(2005) cannot guarantee that the variables x1, x2 and u
are bounded if the nonlinear system considered contains
unmodeled dynamics and dynamical disturbances. The
above simulation results in Example 1 and the simulation
comparison in Example 2 demonstrate that the proposed
adaptive fuzzy control approach can guarantee that all the
signals in the closed-loop system are uniformly ultimately
bounded and achieve better control performance even if
the controlled system contains unmeasured states, unmod-
eled dynamics and dynamical disturbances.
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Fig. 7. Trajectory of x1.

0 0.5 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Time(sec)

Fig. 8. Trajectory of x2.

5. Conclusion

In this paper, an adaptive fuzzy output feedback robust
control approach was developed for a class of SISO strict-
feedback nonlinear systems by combining backstepping
design, K-filters and a small-gain theorem. The proposed
control approach not only guarantees that all variables of
the closed-loop system are uniformly ultimately bounded,
but it also has a strong robustness to unmodeled dynamics
and dynamical disturbances. Meanwhile, it cancels the
restrictive condition given in recent works (Yang et al.,
2005; Tong et al., 2010a; 2010b) that the states of con-
trolled systems must be measured directly. Therefore, this
paper has extended the existing results for the adaptive
fuzzy backstepping control to nonlinear systems.
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