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A decomposition technique of the solution of an n-th order linear differential equation into a set of solutions of 2-nd order
linear differential equations is presented.
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1. Introduction

Let us consider the differential equation determining the
transient error in a linear control system of the n-th order
with lumped and constant parameters ai, i = 1, . . . , n:

dnx(t)
dtn

+a1
dn−1x(t)

dtn−1
+ · · ·+an−1

dx(t)
dt

+anx(t) = 0,

(1)
with the initial conditions which, in general, are different
from zero:

x(i−1)(0) = ci �= 0 for i = 1, 2, . . . , n.

The solution of Eqn. (1) takes the following form:

x(t) =
n∑

k=1

Akeskt, (2)

where sk are the simple roots of the characteristic equ-
ation

sn + a1s
n−1 + · · · + an−1s + an = 0 . (3)

In order to obtain an explicit form for Ak, we need higher
derivatives of x(t):

dpx(t)
dtp

=
n∑

k=1

sp
kAkeskt, p = 1, 2, . . . , n − 1. (4)

The formulae (2) and (4) represent a system of n linear
equations with respect to unknown terms Akeskt. Its ma-

trix of coefficients is the Vandermonde matrix
⎛

⎜⎜⎜⎜⎝

1 1 . . . 1
s1 s2 . . . sn

...
...

...

sn−1
1 sn−1

2 . . . sn−1
n

⎞

⎟⎟⎟⎟⎠
. (5)

According to the assumption that si �= sj for i �= j,
the matrix (5) has an inverse and the system (2) and
(4) can be solved. We denote by V the Vandermonde
determinant of the matrix (5) and by Vk the Vander-
monde determinant of order (n − 1) of the variables
s1, . . . , sk−1, sk+1, . . . , sn.

We also denote by Φ(k)
r the fundamental symmetric

function of the r-th order of (n − 1) variables s1, . . . ,
sk−1, sk+1, . . . , sn for r = 0, 1, . . . , n − 1:

Φ(k)
0 = 1,

Φ(k)
1 = s1 + s2 + · · · + sk−1 + sk+1 · · · + sn

= −a1 − sk,

Φ(k)
2 = s1s2 + s1s3 + · · · + s1sk−1 + s1sk+1

· · · + s2s3 + · · · + s2sk−1 + s2sk+1

· · · + s2sn + . . .
= a2 − s1sk − s2sk − · · · − snsk,

Φ(k)
n =

n∏

i=1,i�=k

si = (−1)n an

sk
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

It can be shown that the elements of the matrix inverse to
the matrix (5) have the form

αik =
(−1)i+k

V
· Φ(i)

n−kVk. (7)
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The solution of the system (2) and (4) is as follows:

Akeskt =
n∑

j=1

αkjx
(j−1)(t)

=
n∑

j=1

(−1)k+j

V
· Φ(k)

n−jVkx(j−1)(t)

(8)

or

Akeskt =
(−1)kVk

V

n∑

j=1

(−1)jΦ(k)
n−jx

(j−1)(t),

k = 1, 2, . . . , n . (9)

For t = 0, we know x(j−1)(0) = cj , and the substitution
t = 0 into (9) gives

Ak =
(−1)kVk

V

n∑

j=1

(−1)jΦ(k)
n−jcj . (10)

Using the relation (6), we can formulate the follo-
wing theorem.

Theorem 1. The explicit form of the coefficient A1 is as
follows:

A1 =

cn −
( n∑

j=1

sj

)
cn−1 +

( n∑

i,j �=i�=1

sjsi

)
cn−2

(sn − s1)(sn−1 − s1) . . . (s2 − s1)

−

( n∑

i,j,k �=1

sisjsk

)
cn−3 + . . .

(sn − s1)(sn−1 − s1) . . . (s2 − s1)

+

· · · + (−1)n−1

n∏

i�=1

sic1

(sn − s1)(sn−1 − s1) . . . (s2 − s1)
.

(11)

Then the coefficients A2, A3, . . . , An can be obtained by
the sequential change of the indices of si according to the
scheme

s1 −→ s2 −→ s3 −→ . . . −→ sn−1 −→ sn −→ s1.

Example 1. The solution of the 3-rd order equation is as
follows:

x(t) = A1e
s1t + A2e

s2t + A3e
s3t.

The coefficient

A1 =
(−1)V1

V

3∑

j=1

(−1)jΦ(1)
3−jcj ,

where

V1 =
∣∣∣∣

1 1
s2 s3

∣∣∣∣ = s3 − s2,

V =

∣∣∣∣∣∣

1 1 1
s1 s2 s3

s2
1 s2

2 s2
3

∣∣∣∣∣∣
= (s2 − s1)(s3 − s2)(s3 − s1),

Φ(1)
0 = 1, Φ(1)

1 = s2 + s3, Φ(1)
2 = s2s3,

A1 =
(−1)(s3 − s2)

(s2 − s1)(s3 − s2)(s3 − s1)

·
[
(−1)Φ(1)

2 c1 + Φ(1)
1 c2 − Φ(1)

0 c3

]

=
(−1)

[−s2s3c1 + (s2 + s3)c2 − c3

]

(s2 − s1)(s3 − s1)

=
c3 − (s2 + s3)c2 + s2s3c1

(s2 − s1)(s3 − s1)
,

A2 =
c3 − (s3 + s1)c2 + s3s1c1

(s3 − s2)(s1 − s2)
,

A3 =
c3 − (s1 + s2)c2 + s1s2c1

(s1 − s3)(s2 − s3)
.

After the substitution of (10) into (9), we obtain

eskt (−1)kVk

V

n∑

j=1

(−1)jΦ(k)
n−jx

(j−1)(0)

=
(−1)kVk

V

n∑

j=1

(−1)jΦ(k)
n−jx

(j−1)(t)

and, finally, for k = 1, 2, . . . , n, we have

eskt
n∑

j=1

(−1)jΦ(k)
n−jcj =

n∑

j=1

(−1)jΦ(k)
n−jx

(j−1)(t).

(12)
Premultiplying both sides of (12) and using Viete’s rela-
tions between the roots si and the coefficient a1 of the
characteristic equation,

n∑

k=1

sk = −a1, (13)

we obtain the main result formulated as Theorem 2.

Theorem 2. (Górecki and Turowicz, 1968) The relation
between cofficients ai, i = 1, 2, . . . , n, the initial values
cj , j = 1, 2, . . . , n and solutions x(j)(t) is as follows:

e−a1t
n∏

k=1

n∑

j=1

(−1)jΦ(k)
n−jcj

=
n∏

k=1

n∑

j=1

(−1)jΦ(k)
n−jx

(j−1)(t). (14)
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Both the sides of Eqn. (2) are composed of symmetric po-
lynomials of variables s1, . . . , sn. Accordingly, it is possi-
ble to express these terms as polynomials of the coefficiets
a1, . . . , an. Using Vieta’s relations, it is possible to repla-
ce the roots sk by the coefficients ai and to avoid calcula-
ting the roots by solving algebraic equations.

Example 2. For n = 3, we have

e−a1t
{

a2
3c

3
1 + 2a2a3c2c

2
1 + (a1a3 + a2

2) c2
2c1

+(a1a2 − a3) c3
2 + (a1a2 + 3a3) c1c2c3 + a1a3c

2
1c3

+a2c1c
2
3 + (a2

1 + a2) c2
2c3 + 2a1c2c

2
3 + c3

3

}

= a2
3

[
x(t)

]3 + 2a2a3x
(1)(t)

[
x(t)

]2 + (a1a3 + a2
2)

· [x(1)(t)
]2

x(t) + (a1a2 − a3)
[
x(1)(t)

]3

+ (a1a2 + 3a3) x(t)x(1)(t)x(2)(t)

+ a1a3

[
x(t)

]2
x(2)(t) + a2x(t)

[
x(2)(t)

]2

+ (a2
1 + a2)

[
x(1)(t)

]2
x(2)(t) + 2a1x

(1)(t)

· [x(2)(t)
]2 +

[
x(2)(t)

]3
,

(15)
where

a1 = −(s1 + s2 + s3),
a2 = s1s2 + s1s3 + s2s3,

a3 = −s1s2s3.

Example 3. For n = 4, similarly

e−a1t
[
a3
4c

4
1 + 3a3a

2
4c

3
1c2 + 2a2a

2
4c

3
1c3 + a1a

2
4c

3
1c4

+(3a2
3a2a4)a4c

2
1c

2
2 + (4a2a3 + 3a1a4)a4c

2
1c2c3

+2(a1a3 + 2a4)a4c
2
1c2c4

+
(
a2
2 + a1a3 + 2a4

)
a4c

2
1c

2
3

+
(
a1a2 + 3a3

)
a4c

2
1c3c4 + a2a4c

2
1c

2
4

+(a3
3 + 2a2a3a4 − a1a

2
4)c1c

3
2 + 2(a2a

2
3 + a2

2a4

+2a1a3a4 − 2a2
4)c1c

2
2c3

+(a1a
2
3 + a1a2a4 + 5a3a4)c1c

2
2c4

+(a2
2a3 + a1a

2
3 + 5a1a2a4 − a3a4)c1c2c

2
3

+(a1a2a3 + 3a2
1a4 + 3a2

3 + 4a2a4)c1c2c3c4

+(a2a3 + 3a1a4)c1c2c
2
4

+
(
a1a2a3 + a2

1a4 − a2
3 + 2a2a4

)
c1c

3
3

+
(
a2
1a3 + a2a3 + 5a1a4

)
c1c

2
3c4

+2
(
a1a3 + 2a4

)
c1c3c

2
4 + a3c1c

3
4

+(a2a
2
3 − a1a3a4 + a2

4)c
4
2

+(2a2
2a3 + a1a

2
3 − a1a2a4 − a3a4)c3

2c3

+(a1a2a3 − a2
1a4 + a2

3 − 2a2a4)c3
2c4

+a2(a2
2 + 3a1a3 − 3a4)c2

2c
2
3

+(a1a
2
2 + a2

1a3 + 5a2a3 − a1a4)c2
2c3c4

+(a2
2 + a1a3 + 2a4)c2

2c
2
4

+(2a1a
2
2 + a2

1a3 − a2a3 − a1a4)c2c
3
3

+2(a2
1a2 + a2

2 + 2a1a3 − 2a4)c2c
2
3c4

+(4a1a2 + 3a3)c2c3c
2
4 + 2a2c2c

3
4(

a2
1a2 − a1a3 + a4

)
c4
3 +

(
a3
1 + 2a1a2 − a3

)
c3
3c4

+
(
3a2

1 + a2

)
c2
3c

2
4 + 3a1c3c

3
4 + c4

4

]

= a3
4x(t)4 + 3a3a

2
4x(t)3x(1)(t)

+2a2a
2
4x(t)3x(2)(t) + a1a

2
4x(t)3x(3)(t)

+
(
3a2

3 + a2a4

)
a4x(t)2

[
x(1))(t)

]2

+
(
4a2a3 + 3a1a4

)
a4x(t)2x(1)(t)x(2)(t)

+2
(
a1a3 + 2a4

)
a4x(t)2x(1)(t)x(3)(t)

+
(
a2
2 + a1a3 + 2a4

)
a4x(t)2

[
x(2)(t)

]2

+
(
a1a2 + 3a3

)
a4x(t)2x(2)(t)x(3)(t)

+a2a4x(t)2
[
x(3)(t)

]2

+
(
a3
3 + 2a2a3a4 − a1a

2
4

)
x(t)

[
x(1)(t)

]3

+2
(
a2a

2
3 + a2

2a4 + 2a1a3a4 − 2a2
4

)
x(t)

·[x(1)(t)
]2

x(2)(t) +
(
a1a

2
3 + a1a2a4 + 5a3a4

)

·x(t)
[
x(1)(t)

]2
x(3)(t)

+
(
a2
2a3 + a1a

2
3 + 5a1a2a4 − a3a4

)
x(t)x(1)(t)

·[x(2)(t)
]2

+
(
a1a2a3 + 3a2

1a4 + 3a2
3 + 4a2a4

)

·x(t)x(1)(t)x(2)(t)x(3)(t)

+
(
a2a3 + 3a1a4

)
x(t)x(1)(t)

[
x(3)(t)

]2

+
(
a1a2a3 + a2

1a4 − a2
3 + 2a2a4

)
x(t)

[
x(2)(t)

]3

+
(
a2
1a3 + a2a3 + 5a1a4

)
x(t)

[
x(2)(t)

]2
x(3)(t)

+2
(
a1a3 + 2a4

)
x(t)x(2)(t)

[
x(3)(t)

]2

+a3x(t)
[
x(3)(t)

]3

+
(
a2a

2
3 − a1a3a4 + a2

4

)[
x(1)(t)

]4

(
2a2

2a3 + a1a
2
3 − a1a2a4 − a3a4

)[
x(1)(t)

]3
x(2)(t)

+
(
a1a2a3 − a2

1a4 + a2
3 + 2a2a4

)[
x(1)(t)

]3
x(3)(t)

+a2

(
a2
2 + 3a1a3 − 3a4

)[
x(1)(t)

]2[
x(2)(t)

]2

+ · · · + (
a1a

2
2 + a2

1a3 + 5a2a3 − a1a4

)[
x(1)(t)

]2

·x(2)(t)x(3)(t)

+
(
a2
2 + a1a3 + 2a4

)[
x(1)(t)

]2[
x(3)(t)

]2

+
(
2a1a

2
2 + a2

1a3 − a2a3 − a1a4

)
x(1)(t)

[
x(2)(t)

]3

2
(
a2
1a2 + a2

2 + 2a1a3 − 2a4

)
x(1)(t)

[
x(2)(t)

]2
x(3)(t)
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+
(
4a1a2 + 3a3

)
x(1)(t)x(2)(t)

[
x(3)(t)

]2

+2a2c2

[
x(3)(t)

]3

+
(
a2
1a2 − a1a3 + a4

)[
x(2)(t)

]4

+
(
a3
1 + 2a1a2 − a3

)[
x(2)(t)

]3
x(3)(t)

+
(
3a2

1 + a2

)[
x(2)(t)

]2[
x(3)(t)

]2

+3a1x
(2)(t)

[
x(3)(t)

]3 +
[
x(3)(t)

]4
.

(16)

2. Analytical method of determining zeroes
and extremal values of the solution x(t)
described by the relation (2)

2.1. Basic results. The general relation analogous to
the formulae (15) or (16) for the equation of the n-th or-
der is very complicated. For that reason, we illustrate the
method on examples of equations of the 3-rd and 4-th or-
ders. We assume that at the extremal point te, or at the zero
t0 of the solution (2), the second derivative d2x/dt2 �= 0.
We can write the relation (15) in the following form:

[
x(2)

]3
{[ x

x(2)

]3

a2
3 +

(
2a2a3

x(1)

x(2)
+ a1a3

) [ x

x(2)

]2

+
[
(a1a3 + a2

2)
(x(1)

x(2)

)2

+ (a1a2 + 3a3)
x(1)

x(2)
+ a2

] x

x(2)

+
[
(a1a2 − a3)

(x(1)

x(2)

)3

+ (a2
1 + a2)

(x(1)

x(2)

)2

+ 2a1
x(1)

x(2)
+ 1

]}

= e−a1tc3
3

{
a2
3

(c1

c2

)3

+
(
2a2a3

c2

c3
+ a1a3

)(c1

c3

)2

+
[
(a1a3 + a2

2)
(c2

c3

)2

+ (a1a2 + 3a3)
c2

c3
+ a2

]c1

c3

+
[
(a1a2 − a3)

(c2

c3

)3

+ (a2
1 + a2)

(c2

c3

)2

+2a1
c2

c3
+ 1

]}
.

(17)
Setting

x

x(2)
=

c1

c3
= u, (18)

x(1)

x(2)
=

c2

c3
= v, (19)

we can write the relations (17) in the following form:
{[

x(2)
]3 − e−a1tc3

3

}

·
{[

a2
3u

3 + (2a2a3v + a1a3

)
u2

+
[
(a1a3 + a2

2

)
v + a2

]
u

+
[
(a1a2 − a3)v3 + (a2

1 + a2)v2 + 2a1v + 1
]}

= 0.

(20)

If we assume that c2 = 0, then from (19) we ha-
ve x(1)(te) = 0 and v = 0. It is a necessary condition
for extremum. In this case the equation (20) has a simple
form:{[

x(2)
]3 − e−a1tec3

3

} [
a2
3u

3 + a1a3u
2 + a2u + 1

]
= 0.

(21)
If we assume c1 = 0, then from (18) we obtain that

x(t0) = 0 and u = 0. It is a necessary condition for x(t)
to be zero. In this case, Eqn. (20) has the following form:
{[

x(2)
]3 − e−a1t0c3

3

}

· [a1a2 − a3)v3 + (a2
1 + a2)v2 + 2a1v + 1

]
= 0. (22)

It is possible to find the relations between the roots
of the equation

a2
3u

3 + a1a3u
2 + a2u + 1 = 0, (23)

and the roots s1, s2 and s3 of the characteristic equation

s3 + a1s
2 + a2s + a3 = 0. (24)

Setting

u =
y

3
√

a2
3

(25)

in Eqn. (23), we obtain the following:

y3 +
a1

3
√

a3
y2 +

a2

3
√

a2
3

y + 1 = 0. (26)

Similarly, setting
s = 3

√
a3 z (27)

in Eqn. (24), we obtain that

z3 +
a1

3
√

a3
z2 +

a2

3
√

a2
3

z + 1 = 0. (28)

Equations (26) and (28) are identical. As a result, we
have that

y = z or 3
√

a2
3 u =

s
3
√

a3
. (29)

Finally, from (29), we conclude that

u =
s

a3
. (30)

Returning to (19), we find that, if x(1) = c2 = 0, at
the extremum point te the following relations hold:

x(te)
x(2)(te)

=
c1

c3
=

si

a3
, i = 1, 2, 3. (31)

Taking into account in (31) that a3 = −s1s2s3, we finally
obtain that

x(te)
x(2)(te)

=
c1

c3
= − 1

s2s3
or

x(te)
x(2)(te)

=
c1

c3
= − 1

s3s1
or

x(te)
x(2)(te)

=
c1

c3
= − 1

s1s2
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(32)
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Theorem 3. From the relations (32) it is possible to de-
termine extrema (if they exist) using the relations

s2s3x(te) + x(2)(te) = 0,

s3s1x(te) + x(2)(te) = 0,

s1s2x(te) + x(2)(te) = 0,

⎫
⎪⎬

⎪⎭
(33)

under the constraints that c1 and c3 fullfil the same rela-
tions.

Following a similar procedure with the equation

(a1a2 − a3)v3 + (a2
1 + a2)v2 + 2a1v + 1 = 0, (34)

we can find that in the article by Górecki and Szymkat
(1983) it is proved that the roots of the equation

8r3 + 8a1r
2 + 2(a2 + a2

1)r + a1a2 − a3 = 0 (35)

are as follows:

r1 =
s1 + s2

2
, r2 =

s2 + s3

2
, r3 =

s3 + s1

2
.

Setting 2r = p in (35), we obtain the equation

p3 + 2a1p
2 + (a2

1 + a2)p + a1a2 − a3 = 0. (36)

whose roots are p1 = s1 +s2, p2 = s2 +s3, p3 = s3 +s1.
Let

p =
1
q
. (37)

Then Eqn. (36) has the following form:

(a1a2 − a3)q3 + (a2
1 + a2)q2 + 2a1q + 1 = 0, (38)

and its roots are

q1 =
1

s1 + s2
, q2 =

1
s2 + s3

, q3 =
1

s3 + s1
. (39)

Finally, from (19) and (39), we obtain that

x(1)(t0)
x(2)(t0)

=
c2

c3
=

1
s1 + s2

,

x(1)(t0)
x(2)(t0)

=
c2

c3
=

1
s2 + s3

,

x(1)(t0)
x(2)(t0)

=
c2

c3
=

1
s3 + s1

.

(40)

Theorem 4. From the relation (40), it is possible to deter-
mine the zeros of x(t0) (if they exist) using the relations

x(1)(t0)(s1 + s2) − x(2)(t0) = 0,

x(1)(t0)(s2 + s3) − x(2)(t0) = 0,

x(1)(t0)(s3 + s1) − x(2)(t0) = 0,

⎫
⎪⎬

⎪⎭
(41)

under the constraints that c2 and c3 fullfil the same rela-
tions.

A generalization of these result relations (33) and
(41) to higher order equations may be obtained directly,
due to the following remark.

Remark 1. The relations (33) and (41) may be obtained
directly from the following propositions.

Let the coefficients Ai of the solution x(t) fullfil the
relations

A1 = 0 A2 �= 0, A3 �= 0,

A2 = 0 A1 �= 0, A3 �= 0,

A3 = 0 A1 �= 0, A2 �= 0.

⎫
⎪⎬

⎪⎭
(42)

In this way, we obtain equations which contain only
two exponential terms, and such equations can be solved
in analytical form.

The relations (42) are more general than (33) and
(41) because they are also valid when c2 �= 0 or c1 �= 0.
Moreover, they also hold for higher order equations. For
such equations, to obtain only two exponential terms, it is
necessary to assume more than one coefficient Ai equal to
zero.

3. Basic result

Theorem 5. The equation

x(t) =
n∑

i=1

Aie
sit (43)

or

x(1)(t) =
n∑

i=1

siAie
sit (44)

can be decomposed into a system of equations containing
a set of equations composed of only two terms. The set
contains (

n
n − 2

)
=

1
2

n(n − 1)

equations with two exponential terms.

Example 4. For n = 3, we have the following equations:

x(t) = A1e
s1t + A2e

s2t + A3e
s3t, (45)

x(1)(t) = A1s1e
s1t + A2s2e

s2t + A3s3e
s3t, (46)

where

A1 =
c3 − (s2 + s3)c2 + s2s3c1

(s1 − s2)(s1 − s3)
, (47)

A2 =
c3 − (s3 + s1)c2 + s3s1c1

(s2 − s3)(s2 − s1)
, (48)

A3 =
c3 − (s1 + s2)c2 + s1s2c1

(s3 − s1)(s3 − s2)
. (49)

Looking for an extremum, we use Eqn. (46), where
the necessary condition is x(1)(t) = 0. Assuming that

x(1)(t) = 0, A1 = 0, (50)
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after eliminating the initial condition c1 from (50), we ob-
tain that

e(s2−s3)te =
c3 − s2c2

c3 − s3c2
, (51)

where
e(s3−s1)te =

c3 − s3c2

c3 − s1c2
, (52)

e(s1−s2)te =
c3 − s1c2

c3 − s2c2
, (53)

c1 =
1

s2s3

[
(s2 + s3)c2 − c3

]
.

Similarly, asumming A2 = 0, we obtain, after elimi-
nating c2, that

e(s2−s3)te =
c3 − s2

2c1

c3 − s2
3c1

s3

s2
, (54)

e(s3−s1)te =
c3 − s2

3c1

c3 − s2
1c1

s1

s3
, (55)

e(s1−s2)te =
c3 − s2

1c1

c3 − s2
2c1

s2

s1
. (56)

Finally, asumming A3 = 0, after eliminating c3, we
obtain

e(s2−s3)te =
c2 − s2c1

c2 − s3c1

s3

s2
, (57)

e(s3−s1)te =
c2 − s3c1

c2 − s1c1

s1

s3
, (58)

e(s1−s2)te =
c2 − s1c1

c2 − s2c1

s2

s1
. (59)

Similarly, the equation

x(t) = A1e
s1t + A2e

s2t + A3e
s3t + A4e

s4t = 0

can be decomposed into the following set of equations:

A1e
s1t + A2e

s2t = 0, where A3 = 0 and A4 = 0,

A1e
s1t + A3e

s3t = 0, where A2 = 0 and A4 = 0,

A1e
s1t + A4e

s4t = 0, where A2 = 0 and A3 = 0,

A2e
s2t + A3e

s3t = 0, where A1 = 0 and A4 = 0,

A2e
s2t + A4e

s4t = 0, where A1 = 0 and A3 = 0,

A3e
s3t + A4e

s4t = 0, where A1 = 0 and A2 = 0.

It is a set of
(

4
2

)
=

3 · 4
2

= 6

equations with only two exponential terms.

Remark 2. It is evident that looking for x(t0) = 0 instead
of x(1)(te) = 0, we must multiply the relations (51)–(59)
a propriately by si/sj . For example,

e(sj−si)t0 =
c3 − sjc2

c3 − sic2

si

sj
,

and so on.

Remark 3. If Eqn. (3) has repeated roots, then the rela-
tions (2) and (11) must be transformed by properly passing
to the limit.

In the particular case, when s1 = s2 = · · · = sn = s,
we obtain

x(t) = est
n∑

k=1

Aktk−1,

Ak =
k∑

i=0

x(k)(0)(−1)isi

i!(k − i)!
, k = 1, 2, . . . , n.

The necessary condition for the existence of the local
extremum of the solution (2) is x(1)(t) = 0, and the pro-
blem is reduced to an algebraic one,

n∑

k=1

Ak

[
st(k−1)

e + (k − 1)tk−2
e

]
= 0.

4. Conclusion

It was shown that every differential equation of the n-th
order can be decomposed into a set of 1

2n(n−1) equations
of the 2-nd order, which can be solved in analytical form.
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