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ALDINA CORREIA ∗,∗∗, JOÃO MATIAS ∗∗, PEDRO MESTRE ∗∗∗ , CARLOS SERODIO ∗∗∗

∗ ESTGF-IPP, School of Technology and Management of Felgueiras
Polytechnic Institute of Porto, 4610–156 Felgueiras, Portugal

e-mail: aic@estgf.ipp.pt

∗∗CM-UTAD, Centre for Mathematics
University of Trás-os-Montes and Alto Douro, 5000–911 Vila Real, Portugal

e-mail: j_matias@utad.pt

∗∗∗CITAB, Centre for the Research and Technology of Agro-Environment and Biological Sciences
University of Trás-os-Montes and Alto Douro, 5000–911 Vila Real, Portugal

e-mail: {pmestre,cserodio}@utd.pt

The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each
iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real
optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it
becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence
is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present
a new direct search method, based on simplex methods, for general constrained optimization that combines the features of
simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange
multipliers.
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1. Introduction

Let us consider the following Constrained Nonlinear Pro-
gramming Problem (NLP):

min
x∈Rn

f(x), (1a)

subject to C(x) ≤ 0, (1b)

where

• f : R
n → R (1a) is the objective function;

• ci : R
n → R, i = 1, 2, . . . , m, (1b) are constraints,

C (x) = (c1 (x) , c2 (x) , . . . , cm (x))T ;

• x = (x1, x2, . . . , xn)T , x ∈ R
n;

• Ω = {x ∈ R
n : ci(x) ≤ 0, i = 1, 2, . . . , m} is the

feasible region.

Solving this problem involves two objectives and two
concepts: minimize the objective function (Optimality)

and minimize the constraint violation, which must be zero
or tend to zero (Viability). The methods presented here
are specially dedicated to solve problems for which we
cannot compute or directly estimate derivatives of the ob-
jective and/or constraint functions, because they can be
black box or nonsmooth functions and it is not possible to
calculate their derivatives.

There are several methodologies to solve a con-
strained nonlinear optimization problem (1). The most
popular approaches are penalty or barrier methods. The
basic idea of these methods is the same: construct a se-
quence of unconstrained problems, solve them (using un-
constrained optimization techniques) and find the solution
of the original constrained problem. In these methods, op-
timality and feasibility are treated together.

Penalty methods consist in adding to the objective
function a measure of infeasibility, multiplied by a penalty
parameter, penalizing the function value of points that are
outside the feasible region. These methods allow infeasi-
ble iterates and may start with an infeasible point (Byrd
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et al., 2008; Bertsekas, 1999).
Barrier methods consist in adding to the objective

function a function multiplied by a barrier parameter. This
function approaches +∞ when the feasible iterates move
towards the frontier of the feasible region. These meth-
ods cannot start with an infeasible point but ensure the
feasibility of their iterates. This approach is often used by
Audet and colleagues, in the context of optimization with-
out derivatives (Audet and Dennis Jr., 2002; 2004; 2006;
2007; Audet et al., 2008).

Another alternative to solve the NLP problem (1) is
to use the filter method. Unlike previous methods, this one
considers feasibility and optimality separately, by using
the concept of the dominance of multiobjective optimiza-
tion. The filter method was introduced by Fletcher and
Leyffer (2002). A filter algorithm introduces a function
that aggregates constraint violations and constructs a bi-
objective problem which attempts to minimize simultane-
ously this function (feasibility) and the objective function
(optimality), giving priority to feasibility. See the work
Fletcher et al. (2006) for a survey.

The first filter method for derivative-free nonlinear
programming, based on pattern search methods, was pre-
sented by Audet and Dennis Jr. (2004). Based on this work
we have developed a new direct search method, based
on simplex methods, for general constrained optimiza-
tion, which combines the features of the simplex and filter
methods (Correia et al., 2009).

In this work we present several modifications of the
Simplex Filter Algorithm (SFA), presented by Correia
et al. (2009), which improves its performance. Then we
compare the behaviour of this new method with that of our
initial simplex filter algorithm.

2. Simplex methods

Simplex methods are derivative-free unconstrained non-
linear optimization methods characterized by changing
the search directions at each iteration, building a nonde-
generate simplex in R

n and using it to drive the search.

Definition 1. A simplex is a set of noncollinear n + 1
points in R

n:

{xi}n+1
i=1 .

The point xi is the i-th vertex of the simplex.

Thus, in R
2, a simplex is a triangle, in R

3, a tetra-
hedron, etc. Let us consider an unconstrained nonlinear
problem:

min
x∈Rn

f(x), (2)

an initial point x0, a step length s and a basis in R
n (e.g.

the canonic basis in R
n {ei}n

i=1).

The most popular simplex method is the that of
Nelder and Mead (1965). This method begins with con-
structing a simplex with edges of equal length, i.e., a set
of noncollinear n + 1 points in R

n, such that

v0 = x0, vi = x0 + s ei, i = 1, . . . , n.

The corresponding objective function values are cal-
culated as

fi = f(vi), i = 0, . . . , n.

The worst vertex in the simplex (which is the least
desirable objective value) is identified and then is replaced
using four basic operations: reflection; expansion; con-
traction and shrinkage. Thus, it is necessary to identify
the vertices that have extreme function values.

Definition 2.

• The worst vertex is the vertex vw such that

f(vw) = fw = max
0≤i≤n

{fi} .

• The better vertex is the vertex vb such that

f(vb) = fb = min
0≤i≤n

{fi} .

• The second worst vertex is the vertex vsw such that

f (xsw) = fsw = max
0≤i≤n

i�=w

{fi} .

In order to determine a new vertex to replace the
worst vertex, we can use the centroid of the best n ver-
tices.

Definition 3. Consider the simplex {vi}n
i=0 in R

n, with
the worst vertex vw, w ∈ {0, 1, . . . , n}. The centroid of
the best n vertices is

vc =
1
n

n∑

i=0
i�=w

vi.

Definition 4. With parameter values α, β and γ, which
must satisfy the conditions 0 < β < α ≤ 1 and γ > 1, the
auxiliary points corresponding to the four basic operations
are as follows:

• Reflected vertex:

vr = vc + α(vc − vw),

where α is the reflection parameter (usually α = 1).

• Expanded vertex:

ve = vc + β(vr − vc),

where β is the expansion parameter (usually β = 2).
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• Contracted vertex to the outside:

voc = vc + γ(vr − vc),

where γ is the contraction parameter (usually γ =
1/2).

• Contracted vertex to the inside:

vic = vc + γ(vw − vc),

where γ is the contraction parameter (usually γ =
1/2).
Reflection is the first operation to be executed. If

needed, the next operation is expansion, which can be fol-
lowed by contraction. The expansion step allows a more
aggressive move by doubling the length of the step from
the centroid to the reflection point. The contraction step
allows more conservative moves by halving the length of
the step from the centroid to either the reflection point or
the worst vertex.

When no step produces a significant improvement in
the objective function value, the shrink step is used:

v′i =
vi + vb

2
, i = 1, 2, . . . , n + 1, i �= b.

This step consists in reducing the lengths of the edges ad-
jacent to the current best vertex by half.

Whatever the final simplex, the corresponding f val-
ues are calculated proceeding again to the identification of
the vertices vb, vsw and vw in order to start a new iteration.

The Nelder–Mead simplex algorithm is, of all the di-
rect search methods, most often found in numerical soft-
ware packages because it is efficient and has a relatively
easy implementation.

3. Filter method

The filter method treats optimization problems as bi-
objective ones attempting to minimize the objective func-
tion and a continuous function h that aggregates the con-
straint violation functions. The priority must be given to
h, at least until a feasible iterate is found, where h is a
nonnegative function where h(x) = 0 if and only if x is
feasible.

Thus, we define h as h(x) = ‖C+(x)‖, where ‖·‖
is a vector norm and C+(x) is the vector of m constraint
values:

C+ (x) =
{

ci (x) if ci (x) > 0,
0 if ci (x) ≤ 0.

For example, in the case of the quadratic norm, we
have

h (x) = ‖C+ (x)‖2 =

√√√√
m∑

i=1

max (0, ci (x))2.

The filter method uses the concept of domi-
nance from multiobjective optimization. Defining a
forbidden region and storing in a set (filter) points
(xk, f(xk), h(xk)) (with good performance in the pre-
vious iterations), dominated points (in the sense of the
Pareto rule) are avoided at subsequent iterations.

Definition 5. (Karas et al., 2006) A point x ∈ R
n is said

to dominate y ∈ R
n, which is written as x ≺ y , if

• f(x) ≤ f(y) and h(x) ≤ h(y), or

• f(x) < f(y) or h(x) < h(y) .

Definition 6. (Karas et al., 2006) A filter, denoted by F ,
is a finite set of points in the domain of f and h such that
no pair of points x and y in the set satisfies the relation
x ≺ y.

Thus, a point is accepted in the filter if and only if it
is not dominated by any other point in the filter and its in-
clusion in the filter eliminates all points that it dominates,
i.e., the filter is a dynamic set and it works as an accep-
tance criterion for the iteration.

The Audet and Dennis filter (Audet and Dennis Jr.,
2004) differs from the usual filters in three aspects, ac-
cording to Fletcher et al. (2006):

• It only requires a simple decrease.

• It sets a bound hmax on aggregate constraint viola-
tion, so that each point x ∈ F satisfies h(x) < hmax.

• It includes only infeasible points in the filter and
tracks feasible points separately.

Definition 7. (Audet and Dennis Jr., 2004) A point x is
said to be filtered by a filter F if any of the following
properties is satisfied:

• There exists a point y ∈ F such that y ≺ x or y = x.

• h(x) ≥ hmax.

• h(x) = 0 and f(x) ≥ fF , where fF is the objective
function value of the best feasible point found.

Definition 8. (Audet and Dennis Jr., 2004) The point x is
said to be unfiltered by F if it is not filtered by F .

Definition 9. (Audet and Dennis Jr., 2004) Consider x ∈
F . The set of unfiltered points y ∈ R

n, denoted by F̄ , is
given by

{y : y ≺ x or y = x} ∪ {
y : h(y) = 0, f(y) ≥ fF

}
.
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4. Filter simplex algorithm

In this section we compare the behaviour of this new
method with our initial filter simplex (Correia et al.,
2009). They both use the Nelder–Mead simplex method
for internal iterations and neither compute nor estimate
any derivatives.

The main characteristics of the SFA (Simplex Filter
Algorithm), presented by Correia et al. (2009), are as fol-
lows:

• It builds an initial simplex from an initial point.

• Each point of the simplex is tested:

– If a point is feasible, its inclusion in the filter is
evaluated.

– If it is infeasible, only three of the basic oper-
ations of the Nelder–Mead method (reflection,
contraction and expansion) are applied and only
then its inclusion in the filter is evaluated.

• If the point is accepted in the filter, the process con-
tinues from the beginning using this point, as long as
the stop criterion is not satisfied.

• If none of the simplex points is accepted in the filter,
the Shrink step is applied and the process continues
from the beginning using the best point, as long as
the stop criterion is not satisfied.

• The solution is a feasible point, chosen from the final
filter, with the best objective function value.

In this work, a new algorithm is presented, the NSFA
(New Simplex Filter Algorithm). It differs from the SFA
in two key points:

• It applies the four basic operations of the Nelder–
Mead method to h in the simplex search so as to ob-
tain feasibility.

• It implements the Nelder–Mead method to f in the
filter step, with the aim of optimality.

Details on the implementation of the new algorithm
are presented in Section 4.1 and schematically depicted in
Fig. 1.

Moreover, while the initial algorithm (SFA) is only
allowed to find the best feasible solution xkf , with this
new algorithm (NSFA) it is possible to find the best fea-
sible solution xkf , and still the best unfeasible solution
xki. This second solution may be important for relaxable
problems, where it is possible to accept a solution with the
constraint violation value lower than hmax.

4.1. New simplex filter algorithm. The procedure
used to implement the NFSA is presented in Fig. 1.

It begins with an initial filter that contains the initial
iteration, F0 = x0. Then, we construct an initial simplex
(Sk) containing n+1 vertices from that iteration (xk) and

Sk = {xk = v0} ∪ {vi : vi = xk + ei, i = 1, . . . , n} ,

where ei, i = 1, . . . , n represent the vectors of the
canonic basis in R

n, starting with the simplex search for
i = 0, . . . , n.

If the vertex being analysed is a feasible point, its
inclusion in the filter is evaluated:

• If it is not accepted:

– The Nelder–Mead method is applied to the
function f .

– A new point is obtained, xk.

– Go back to the construction of the simplex:

Sk = {xk}∪{vi : vi = xk + ei, i = 1, . . . , n} ,

using xk.

• If it is accepted:

– The filter is updated with the new approxima-
tion to the solution, i.e., the new iteration.

– If the stop criterion is verified, this approxima-
tion is the solution. Otherwise, go back to the
simplex construction, using this point.

If the vertex is an infeasible point, its inclusion in the
filter is evaluated:

• If it is not accepted:

– The Nelder–Mead method is applied to the
function h.

– A new point is obtained, xk.

– Go back to the construction of the simplex:

Sk = {xk}∪{vi : vi = xk + ei, i = 1, . . . , n} ,

using xk.

• If it is accepted:

– The filter is updated with the new approxima-
tion to the solution, i.e., the new iteration.

– If the stop criterion is verified, this approxima-
tion is the solution. Otherwise, go back to the
simplex construction, using this point.

Thus, the method contains two distinct processes:

• The external iterative process, involving the simplex
construction and the filter update.
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Fig. 1. Implemented algorithm.

• The internal iterative process, involving the opti-
mization of f and h, where unconstrained optimiza-
tion problems are solved, with objective functions f
or h, using the Nelder–Mead simplex method.

Besides the above mentioned characteristics, the
NSFA also has a stronger component dedicated to feasi-
bility, when compared with with SFA. It includes an un-
constrained optimization process for h, when the simplex
point being analysed, in the simplex search, is infeasible.
For feasible simplex points, it includes an unconstrained
optimization process for f .

Furthermore, the SFA only optimizes f (and not h)
for infeasible points. And the SFA, for feasible points,
only verifies its admittance to the filter. If accepted, the
point is added to the filter, otherwise the shrink step is
applied. No optimization of h is then made in the SFA,
unlike the NSFA.

5. Numerical results

The algorithms of our method were implemented in the
Java language. To test the performance of our method, we
considered three problems reported in the work of Correia
et al. (2009). Neither, the SFA nor NSFA computes or
estimates derivatives because they use the Nelder–Mead
simplex method for internal iterations.

5.1. Problems. The first problem was presented by
Lewis and Torczon and used by Audet and Dennis Jr.
(2004) to illustrate the performance of their method. The
second and third problems were selected in the Cute col-
lection (Bongartz et al., 1995).

We consider kmax = 40 in the external iterative pro-
cess and kmax = 40 in the internal process. The toler-

ances T1 and T2 (T1 = T2 < 0.0001) were chosen in the
external iterative process, where

• T1 =
‖xk+1 − xk‖2

‖xk+1‖2

(or T1 = ‖xk+1 − xk‖2) and

• T2 = |fk+1 − fk|,
while xk and xk+1 are the values obtained at iterations
k and k + 1 respectively, whereas fk and fk+1 are their
corresponding function values.

Problem A.

minimize
x∈R2

−x1 − 2x2,

subject to 0 ≤ x1 ≤ 1,
x2 ≤ 0.

(3)

This problem is a linear program whose optimal so-
lution is x∗ = (1, 0)T .

Similarly to Audet and Dennis Jr. (2007), we con-
sider the initial point x0 = (0, 0)T , the mesh size pa-
rameter Δ0 = 1 and the four directions ±(1, 1)T and
±(1,−1)T to implement the pattern search algorithm.
For the simplex search algorithm, we take the same ini-
tial point, the step size s0 = 1 and the directions
(1, 0)T ,(0, 1)T .

Problem C-801.

minimize
x∈R2

f(x) ≡ 6x2
1 + x2

2 − 60x1 − 8x2 + 166,

subject to 0 ≤ x1 ≤ 10,
0 ≤ x2 ≤ 10,
x1 + x2 − x1x2 ≥ 0,
x1 + x2 − 3 ≥ 0.

(4)
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This problem is a nonlinear program whose opti-
mal solution x∗ is unknown, but its function value is
f(x∗) = 7.563. We consider in this problem the feasi-
ble initial point x0 = (5, 1)T .

Problem C-802.

minimize
x∈R2

f(x) ≡ 7x2
1 + 3x2

2 − 84x1

− 34x2 + 300,
subject to 0 ≤ x1 ≤ 10,

0 ≤ x2 ≤ 10,
x1x2 − 1 ≥ 0,
9 − x2

1 − x2
2 ≥ 0.

(5)

This problem is a nonlinear program whose opti-
mal solution x∗ is unknown, but its function value is
f(x∗) = −97.30952. We consider in this problem the
feasible initial point x0 = (2.5, 1.5)T .

5.2. Numerical results with feasible initial points.
Table 1 shows the comparison between results obtained by
Correia et al. (2009), using the SFA, and the NSFA pre-
sented in this work, for initial feasible points. Comparing
the numerical results we can conclude what follows.

Problem A.

• Both methods found the solution to the problem, but
the NSFA found it in the first iteration.

• The number of h evaluations with the NSFA is much
smaller.

• Regarding the number of f evaluations, the NSFA, in
an attempt to find feasible solutions better than that
found in the first iteration (with a value of f minor),
evaluated f many more times than the SFA did.

• In this search, the NSFA never found any infeasible
solution.

• It should be noted that these methods might not be
most appropriate to solve Problem A, since it is a
linear problem. However, it has been used as a test
for these methods that allows a comparison.

Problem C-801. Considering the feasible initial point
(5, 1)T :

• The SFA found the solution (5, 1.25)T with a func-
tion value 7.5625, a lower one than the solution pre-
sented in the original problem of the CUTE collec-
tion.

• In this case, the NSFA needed to evaluate h less often
than the SFA, but it needs to evaluate f more often
than SFA.

• The NSFA could not find a feasible solution which
would be better than the initial point.

• But the NSFA found an infeasible solution xki =
(5, 2)T with a function value of 4 and a violation
value of 3.

• Thus, if the problem is relaxable and admits a viola-
tion hmax > 3, the NSFA would be more efficient.

• Note that the solution obtained by the SFA is very
close to the initial point.

In Fig. 2 the level curves of the objective function, the
representation of the constraints and the feasible region
(shadowed) are presented. Some points of the iterative
processes, mentioned above, are also shown.

Problem C-802. Considering the feasible initial point
(2.5, 1.5)T :

• The SFA found the solution (2.5, 1.6582)T with a
function value of 85.620, a higher one than the so-
lution presented in the original problem of the col-
lection CUTE.

• In this case, the NSFA needed to evaluate h and f
less often than the SFA did, but it could not find a
feasible solution which would be better than the ini-
tial point.

• The NSFA found an infeasible solution xki =
(2.5, 2)T with a function value of 77.75 and a vio-
lation value of 1.25.

Fig. 2. Problem C-801 with feasible initial points.
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Table 1. Numerical results with feasible initial points.
Problem A Problem C801 Problem C802

Feasible
initial point (0, 0)T (5, 1)T (2.5, 1.5)T

Numerical results SFA NSFA SFA NSFA SFA NSFA
Number of

evaluations of h 129 123 118 69 153 61
Number of

evaluations off 158 3262 146 217 189 42
Unsuccessful

iterations 29 39 29 33 37 25
Successful
iterations 1 1 1 7 3 15

Last successful
iteration 2 1 4 20 24 40

Best feasible
solution: xkf (1.0, 0.0)T (1.0, 0.0)T (5.0, 1.25)T (5, 1)T (2.5, 1.6582)T (2.5, 1.5)T

Function
value: f(xkf ) −1.0 −1.0 7.5625 9 85.620 89.5
Best infeasible
solution: xki * + * (5, 2)T * (2.5, 2)T

Violation
value: h(xki) * + * 3 * 1.25

Function
value: f(xki) * + * 4 * 77.75

SFA: Simplex Filter Algorithm (Correia et al., 2009), NSFA: New Simplex Filter Algorithm.
* Algorithm rejects infeasible solutions. + There was no infeasible solutions.

Successful iterations: iterations accepted in the filter.

• Thus, if the problem is relaxable and admits a vio-
lation hmax > 1.25, the NSFA would be more effi-
cient.

Fig. 3. Problem C-802 with feasible initial points.

• Note that the solution found by the SFA is very close
to the initial point.

As for Problem C-801, Fig. 3 presents a graphical
representation of Problem C-802, i.e., the level curves of
the objective function, constraints, the feasible region and
some points of the iterative processes.

5.3. Numerical results with infeasible initial points.
Table 2 shows the comparison between results obtained by
Correia et al. (2009), using the SFA, and the NSFA pre-
sented in this work, for initial infeasible points. Compar-
ing the numerical results we can conclude what follows.

Problem C-801. If we consider an infeasible initial
point (0.1,−0.1)T , the NSFA is clearly more efficient:

• Identifying the best feasible solution (5.1, 0.9)T with
a function value of 9.67, lower than that given by the
SFA and very close to the solution presented in the
original problem of the CUTE collection.

• Finding an infeasible solution (3.1,−0.1)T with a
function value of 38.47 and a violation value of 0.1.
Thus, if the problem is relaxable and admits a viola-
tion hmax > 0.1, it can be an excellent solution.
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Table 2. Numerical results with infeasible initial points.
Prob. C801 Prob. C802

Infeasible
initial point (0.1,−0.1)T (0.1,−0.1)T

Numerical results SFA NSFA SFA NSFA
Number of evaluations of h 1226 41 1226 55
Number of evaluations of f 1526 41 1526 41

Unsuccessful iterations 39 24 40 23
Successful iterations 1 15 0 16

Last successful
iteration 1 39 0 39

Best
feasible solution: xkf (0.1,−0.09)T (5.1, 0.9)T (0.1,−0.1)T (2.5, 1.4)T

Function value: f(xkf ) 160.87 9.67 295.1 87.2
Best

infeasible solution xki * (3.1,−0.1)T * (0, 0)T

Violation value: h(xki) * 0.1 * 1.01
Function value: f(xki) * 38.47 * 295.1

SFA: Simplex Filter Algorithm (Correia et al., 2009), NSFA: New Simplex Filter Algorithm.
* Algorithm rejects infeasible solutions.

Successful iterations: iterations accepted in the filter.

• The best number of f and h evaluations.

• The SFA cannot find a feasible solution which would
be by far better than the initial point.

Problem C-802. If we consider an infeasible initial
point (0.1,−0.1)T , the NSFA is clearly more efficient:

• Finding the solution (2.6, 1.4)T with a function value
87.2, a higher one than that obtained using the SFA.

• Both of the obtained function values, were far from
the function value f(x∗) = −97.30952 presented in
the original problem of the collection CUTE, but the
solution found by the NSFA is better.

• The NSFA found an infeasible solution xki =
(0, 0)T with a violation value of 1.01, but with a
function value of 295.1, which is no better than the
initial point.

• The best number of f and h evaluations.

• Note that the SFA failed and was unable to find a so-
lution approximation different from the initial point.

In Figs. 4 and 5 Problems C-801 and C-802 are pre-
sented, respectively, in the same conditions as in the case
of the previous two figures. Some points of the iterative
process, which started in infeasible points, are also shown.

6. Conclusions and future work

Comparing the previous results, we can say that if the ini-
tial point is feasible, the NSFA and the SFA behave simi-
larly finding feasible solutions. If the problem is relaxable

Fig. 4. Problem C-801 with infeasible initial points.

and admits some violation, then the NSFA is more effi-
cient. If the initial point is infeasible, the NSFA is clearly
more efficient than the SFA.

In this work we presented a new direct search
method, based on simplex methods, for general con-
strained optimization that combines the features of the
simplex method and filter methods. This new approach
is an alternative to commonly used methods to solve such
problems. With regard to our previous approach, this al-
lows creating positive expectations, since the results are
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Fig. 5. Problem C-802 with infeasible initial points.

promising and this algorithm has a strong component with
respect to the phase of optimality.

In the future, our goal is to create a web applica-
tion able to solve constrained or unconstrained nonlinear
problems. The methods are implemented using the Java
technology. Our application will give the user the option
to indicate the type of problem he/she wants to solve: a
constrained or an unconstrained nonlinear problem. If the
user wants to solve the latter, he/she can use immediately
direct search methods: pattern search methods or simplex
methods. If the user wants to solve the former, he/she
must first choose between penalty methods or filter meth-
ods and then apply one of direct search methods.

Our first step to build the application was the im-
plementation of direct search methods in the Java lan-
guage. Then we implemented some penalty methods.
Now we presented an alternative to those: a new direct
search method, based on simplex methods, for general
constrained optimization, that combines the features of
the simplex method and filter methods. Our next objec-
tive is the implementation of dynamic penalty methods,
the improvement of the GUI (Graphical User Interface)
application. We also plan to perform more tests in order
to improve our algorithms.
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