
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 1, 173–192
DOI: 10.2478/v10006-011-0013-2

HIERARCHICAL RESIDUE NUMBER SYSTEMS WITH SMALL MODULI
AND SIMPLE CONVERTERS

TADEUSZ TOMCZAK

Institute of Computer Engineering, Control and Robotics
Wrocław University of Technology, Janiszewskiego 11/17, 50–372 Wrocław, Poland

e-mail: tadeusz.tomczak@pwr.wroc.pl

In this paper, a new class of Hierarchical Residue Number Systems (HRNSs) is proposed, where the numbers are rep-
resented as a set of residues modulo factors of 2k ± 1 and modulo 2k . The converters between the proposed HRNS
and the positional binary number system can be built as 2-level structures using efficient circuits designed for the RNS
(2k − 1, 2k, 2k + 1). This approach allows using many small moduli in arithmetic channels without large conversion over-
head. The advantages resulting from the use of the proposed HRNS depend on the possibility of factorisation of moduli
2k ± 1.

Keywords: digital arithmetic, digital circuits, residue number system, VLSI.

1. Introduction

In Residue Number Systems (RNSs), an integer X is rep-
resented as a set of residues Xi modulo given coprime
moduli Mi (Soderstrand et al., 1986). The moduli set is
called the system base and the residues are called residue
digits. The dynamic range of the system, i.e., the number
of possible number representations, is defined as the prod-
uct of all RNS moduli. On the residue representation, ad-
dition, subtraction and multiplication can be done without
carry propagation between residue digits.

Since residue digits are usually much smaller than
the represented number X , arithmetic circuits for individ-
ual digits are smaller and faster than circuits for the bi-
nary representation of X . This property allows building
arithmetic units for large numbers as a set of small and
fast circuits (Mohan, 2002). The residue arithmetic also
allows significant reduction of power consumption, espe-
cially in multipliers (Chokshi et al., 2009) and multipliers-
accumulators (Piestrak and Berezowski, 2008a; 2008b).
However, the implementation of the other arithmetic op-
erations (e.g., division, sign detection, number compari-
son, overflow detection) is complex in the RNS and should
be avoided. Additionally, the connection of residue arith-
metic channels with the rest of a digital system has to be
performed using converters between the RNS and the bi-
nary positional number system.

RNSs are especially useful in algorithms where mul-

Po
si

tio
na

lb
in

ar
y

in
pu

t

Po
si

tio
na

lb
in

ar
y

ou
tp

ut

co
nv

er
te

r
Fo

rw
ar

d

R
ev

er
se

co
nv

er
te

r

|+,−,×|M1

|+,−,×|Mn

|+,−,×|M2

Residues Arithmetic channels

Fig. 1. General scheme of RNS processing.

tiplications and additions dominate, e.g., in digital sig-
nal and image processing (Wnuk, 2008), where RNS
multiply-and-accumulate circuits can be used (Piestrak
and Berezowski, 2008b). An RNS-based digital image
processing application is proposed by Wang et al. (2004)
while RNS-based Finite Impulse Response (FIR) filters
are described by Conway and Nelson (2004) as well as
Piestrak and Berezowski (2008b). An interesting review
of RNS potential and applications is presented by Mohan
(2002) and Soderstrand et al. (1986).

The general scheme of an RNS circuit is shown in
Fig. 1. The circuit consists of three main parts: the forward
converter, the residue arithmetic channels and the reverse

tadeusz.tomczak@pwr.wroc.pl

174 T. Tomczak

converter. The forward converter translates binary input
numbers into the set of residue digits. Next, for the residue
representation, additions, subtractions and multiplications
are executed using independent circuits performing calcu-
lations modulo appropriate moduli. The final part of the
circuit is the reverse converter, which computes the po-
sitional binary representation from the residue representa-
tion obtained after the computations have been done using
arithmetic channels modulo Mi. The converters introduce
hardware overhead, thus the use of the RNS is justified
only if savings in residue channels outweigh the conver-
sion cost. It should also be noted that all results are com-
puted modulo the RNS dynamic range and there is no sim-
ple method to detect overflow.

One of the main problems in RNSs is the selection
of the system base. The RNS base should be chosen for
each application individually to get a suitable dynamic
range, circuit speed and complexity. For the required dy-
namic range, a trade-off between the speed of arithmetic
units and conversion complexity has to be found. Small
moduli allow building small and fast arithmetic units, but
the number of moduli in the RNS base and, consequently,
the complexity of converters grow. On the other hand,
arithmetic operations for large moduli could be costly.
The combination of small moduli, a large dynamic range
and simple converters is possible in Hierarchical Residue
Number Systems (HRNSs) .

In HRNSs, the values of all or only some residue dig-
its are represented in residue systems with dynamic ranges
smaller than the range of the main system (Akus̆skij and
Judickij, 1968; Yassine, 1992; Skavantzos and Abdal-
lah, 1999). The system used to represent residue digits
is called the lower level RNS, whereas the system whose
digits are represented in the lower level RNS is called the
higher level RNS. The digits of the lower level RNS can
also be represented in the next RNS leading to a multi-
level HRNS. The highest system in the hierarchy is called
the top level RNS, and the lowest system is called the bot-
tom level RNS.

The dynamic ranges of lower level RNSs can be cho-
sen in two ways. In the first approach (Akus̆skij and Ju-
dickij, 1968; Yassine, 1992), the dynamic ranges of the
lower level RNS are large enough to represent intermedi-
ate results. For example, if multiplication is to be done,
then the lower level RNS range has to be equal to at least
the higher level modulus square. The advantage of this
solution is that the same moduli can be used for the repre-
sentation of different residue digits. As an example, con-
sider the top level RNS (17, 19, 20, 21) and single multi-
plication as an arithmetic operation to compute. Since the
maximum values of the residue digits are 16, 18, 19 and
20, the dynamic ranges for the bottom level RNS have to
be at least 162 + 1 = 257, 182 + 1 = 325, 192 + 1 = 362
and 202+1 = 401. Thus, the RNS (3, 4, 5, 7) with the dy-
namic range 420 can be used for all four digits. It is then

possible to build an HRNS with the range 17 ·19 ·20 ·21 >
217 with 3-bit moduli. Unfortunately, the main disadvan-
tage of this solution is fast growth of lower level RNS dy-
namic ranges. Additionally, the converters between con-
secutive levels have to be used after a small number of
arithmetic operations—in the above example, after one
multiplication.

In the second approach (Skavantzos and Abdallah,
1999), the top level RNS base is chosen from numbers
factorisable into small factors. The lower level RNS bases
are then built from factors for corresponding moduli. In
this method, the range of the lower level RNS is equal
to moduli from the higher level base. Thus, performing
calculations in the lower level RNS is identical with per-
forming them modulo higher level moduli. The conver-
sion between consecutive levels can be done once for
all arithmetic operations, which results in low hardware
overhead. However, the main disadvantage of this idea is
the difficulty with finding the top level RNS base. In the
work of Skavantzos and Abdallah (1999), this base is cho-
sen from moduli 22k − 1 and the bottom level RNSs are
(2k−1, 2k +1). This allows implementing converters and
arithmetic units as simple structures based on Eqns. (12)
and (13) presented in the next section. However, since all
the moduli in the RNS base have to be coprime, in the
HRNS by Skavantzos and Abdallah (1999) the moduli
width difference can be large. Moreover, some moduli val-
ues can be close to the system dynamic range, so that any
advantages are lost.

In this paper, a new method for HRNS base construc-
tion is proposed. The base includes the moduli 2k ±1 fac-
torisable into small divisors. This approach allows build-
ing input/output converters as two-level circuits, as shown
in Fig. 2. In the top level RNS, the conversion between
large numbers (close to the system range) and the residues
modulo 2k ± 1 is done. In the bottom level RNS, transfor-
mations between residues modulo 2k±1 and residues mo-
dulo factors of 2k ± 1 are performed. We shall show that,
due to an efficient implementation of operations modulo
2k±1 for large numbers, the area and critical path delay of
the proposed two-level converters are small. Additionally,
arithmetic operations are performed modulo small mo-
duli, and thus adders and multipliers can be implemented
as small and fast circuits.

This paper is organized as follows. Section 2 offers
theoretical background including basic definitions, reverse
conversion algorithms and methods of efficient implemen-
tation of residue operations using the periodicity property
of the series of powers of 2 taken modulo Mi. Section 3
contains the proposition of a new HRNS class with the
analysis of the multiplier’s complexity and detailed for-
mulas describing the conversion between the proposed
HRNS and the positional binary number system. Section 4
presents detailed information about the implementation of
reverse converters for the proposed HRNS and the com-

Hierarchical residue number systems with small moduli and simple converters 175

X X

C
on

ve
rt

er
2k

±
1,

2k

C
on

ve
rt

er
2k

±
1,

2k

A
ri

th
m

et
ic

ch
an

ne
ls

Fa
ct

or
s

co
nv

.

Fa
ct

or
s

co
nv

.
|X |2k

|X |2k+1

|X |2k−1

|X |2k

|X |2k+1

|X |2k−1

top level
RNS

top level
RNS

bottom levelp
RNSp

Fig. 2. Structure of the proposed HRNS.

parison of converters hardware complexity to other RNSs.
Section 5 summarizes the paper and offers conclusions.

2. RNS basics

The RNS base is a set of n positive, co-prime moduli
Mi > 1. The RNS dynamic range M is given as a moduli
product

M =
n∏

i=1

Mi. (1)

According to the Chinese remainder theorem
(Soderstrand et al., 1986), any integer X ∈ [A, A + M)
for any A can be uniquely represented in the RNS as an n–
tuple (X1, X2, . . . , Xn). The residue digits Xi ∈ [0, Mi)
are remainders of the division of X by Mi. This is denoted
by

Xi = |X |Mi
⇔ X =

⌊
X

Mi

⌋
· Mi + Xi. (2)

Two integers X and Y which have the same residue when
divided by a specific moduli Mi are called congruent mo-
dulo Mi. This is denoted by

X ≡ Y mod Mi. (3)

Addition, subtraction and multiplication can be exe-
cuted for each modulus Mi independently,

X � Y = W ⇔ |Xi � Yi|Mi
= Wi, 1 ≤ i ≤ n, (4)

where X, Y, W ∈ [A, A + M), � ∈ {+,−, ·} and
Yi = |Y |Mi

, Wi = |W |Mi
. The result W of operations

defined by (4) is the computed modulo M , but there is
no simple way to detect overflow. The dynamic range of
the RNS can be extended by adding additional moduli to
the base, but, unlike in weighted number systems, the val-
ues of additional digits cannot be easily obtained during
computations. Accordingly, the dynamic range of the RNS
must be large enough to represent even the largest result
of computations.

2.1. Periodicity property. The periodicity property of
the series of powers of 2 taken modulo Mi presented by
Piestrak (1994) can be used for efficient implementation
of residue arithmetic circuits and forward and reverse con-
verters. The periodicity property results from Euler’s the-
orem (Biernat, 2007), which states that for coprime, posi-
tive integers X and M ,

∣∣Xϕ(M)
∣∣
M

= 1, (5)

where ϕ(M) is the totient function. Thus, the residues for
consecutive powers of X repeat with a period equal to at
most ϕ(M).

Let 2j , 2k, j < k denote two different powers of 2
and the distance between 2j and 2k be defined as k − j.
According to Piestrak (1994), the period P (Mi) of the
odd modulus Mi is defined as the minimum distance be-
tween two different powers of 2, for which residues mo-
dulo Mi are equal, i.e.,

P (Mi) = min(k − j), where
∣∣2j

∣∣
Mi

=
∣∣2k

∣∣
Mi

. (6)

The half-period HP(Mi) of the odd modulus Mi is the
minimum distance between two different powers of 2, for
which residues modulo Mi are additive inverses, i.e.,

HP(Mi) = min(k − j) where
∣∣2j

∣∣
Mi

=
∣∣−1 · 2k

∣∣
Mi

.
(7)

P (Mi) exists for any odd Mi, whereas HP(Mi) exists
for some Mi only. If HP(Mi) exists, then P (Mi) =
2 · HP(Mi). As an example, consider Mi = 9:

∣∣20
∣∣
9

=
1,

∣∣21
∣∣
9

= 2,
∣∣22

∣∣
9

= 4,
∣∣23

∣∣
9

= 8 = −1,
∣∣24

∣∣
9

= 7 =
−2,

∣∣25
∣∣
9

= 5 = −4,
∣∣26

∣∣
9

= 1, Thus, P (9) = 6 and
HP (9) = 3.

The periodicity property is very often used for mo-
duli 2k ±1, because P (2k −1) = k and HP(2k +1) = k.
A typical example is the forward converter computing
residues modulo 2k ±1. Let a positive integer X be repre-
sented in the positional binary number system as an l-bit
vector xl−1 . . . x1x0. The value of X is

X =
l−1∑
j=0

2j · xj . (8)

Let

Ba =
∣∣∣∣
⌊

X

2a·k

⌋∣∣∣∣
2k

(9)

denote the a-th k-bit field taken from a binary representa-
tion of X . Since ∣∣2k

∣∣
2k−1

= 1 (10)

and ∣∣2k
∣∣
2k+1

= |−1|2k+1 , (11)

176 T. Tomczak

x0x1 y0y1

wk−1 wk−2 w1 w0

yk−1 yk−2 xk−2xk−1

FA FA FA FA

Fig. 3. Adder with end around carry performing operation W =
|X + Y |2k−1. Here xi, yi and wi denote the i-th bits of
binary representations of X, Y and W .

the residues of a binary number X modulo 2k ± 1 are
defined as

∣∣X∣∣
2k−1

=
∣∣
⌊

l/k
⌋

∑
a=0

k−1∑
j=0

2j · xa·k+j

∣∣
2k−1

=
∣∣
⌊

l/k
⌋

∑
a=0

Ba

∣∣
2k−1

(12)

and

∣∣X∣∣
2k+1

=
∣∣
⌊

l/k
⌋

∑
a=0

(−1)a ·
k−1∑
j=0

2j · xa·k+j

∣∣
2k+1

=
∣∣

⌊
l/k

⌋
∑

a=0, a even

Ba −

⌊
l/k

⌋
∑

a=1, a odd

Ba

∣∣
2k+1

. (13)

According to Eqns. (12) and (13), the residues
|X |2k±1 can be computed as a sum or a difference mo-
dulo 2k ± 1 of k–bit fields Ba. The addition can be done
with multi-operand modulo adders (MOMAs) built using
carry-save adders (CSAs) with end-around carry (EAC).
Detailed design guidelines and analysis of a periodicity
based MOMA for various moduli are presented by Pies-
trak (1994).

The idea of the use of EAC is shown in Fig. 3 on the
basis of a ripple-carry adder (RCA) built from full-adder
cells (FA). Since the residue modulo 2k − 1 for the k-th
bit of the output sum is 1. Thus the k-th bit can be added
in the least significant position of the adder. Notice that
the adder shown in Fig. 3 can produce the result equal
to 2k − 1 instead of 0, e.g., when adding 2k − 2 and 1.
The adder is then called an adder with double zero repre-
sentation. When the double zero representation is undesir-
able, additional circuits are required or other structures of
adders modulo 2k − 1 should be used, e.g., parallel pre-
fix adders (PPAs) (Biernat, 2007). The VHDL library of
residue adders and multipliers using periodicity property
is presented by Zimmermann (1998).

2.2. Reverse conversion. Reverse conversion algo-
rithms are based on the Chinese Remainder Theorem

(CRT) or Mixed Radix Conversion (MRC). In the clas-
sical CRT converters, the value of X is computed as

X =

∣∣∣∣∣
n∑

i=1

M

Mi

∣∣∣∣∣·
(

M

Mi

)−1
∣∣∣∣∣
Mi

· Xi

∣∣∣∣∣
M

. (14)

In the MRC converters (Soderstrand et al., 1986), X is
defined as

X =
n∑

i=1

ai · (
i−1∏
j=1

Mi), (15)

where
ai = |ri|Mi

(16)

and

r1 = X,

ri = (ri−1 − ai−1) ·
∣∣(Mi−1)−1

∣∣
Mi

.
(17)

Recently, an algorithm called’ the new Chinese re-
mainder theorem II, has been developed (Wang, 2000).
For a system defined by two moduli (M1, M2), the reverse
conversion can be performed according to the equation

X = X2 + |q2,1 · (X1 − X2)|M1
· M2, (18)

where q2,1 =
∣∣M−1

2

∣∣
M1

and X ∈ [0, M1 · M2). The
only requirement for M1 and M2 is being relatively prime.
Converters based on (18) can also be used in the RNS with
the base consisting of any number of pairwise prime mo-
duli. The converters are then built as multi-level structures
(Fig. 4). On each level the moduli are grouped in pairs
and for each pair Eqn. (18) is applied. For each pair the
new residue modulo product of the moduli from the pair
is computed. The computed residues are then the input to
the next level, where they are grouped in new pairs and
the whole process is repeated. On the last level two mo-
duli roughly equal to

√
M are used. Since in (18) only one

modulo operation performed on the difference X1 − X2

is required and the other operations (multiplication by M2

and addition of X2) are done using positional arithmetic,
this approach could bring meaningful simplification com-
pared to the CRT, where a multi-operand addition modulo
product of all moduli is needed.

Besides the above general algorithms, there are also
known reverse converters optimized for specific moduli
sets (Cao et al., 2003; 2007; Molahosseini et al., 2010;
Wang et al. 2000; 2003;). Among many different moduli
sets the set (2k −1, 2k, 2k +1) was often investigated and
many efficient reverse converters are developed (Piestrak,
1995; Wang et al., 2000; Mohan, 2001; Bi et al., 2004).

3. New HRNS class

In the proposed HRNS, the top level base is chosen from
moduli 2k ± 1 factorisable into small numbers. Then, the

Hierarchical residue number systems with small moduli and simple converters 177

|X |M1·M2 |X |M3·M4∣∣q34,12 ·
(|X |M1M2

− |X |M3M4

)∣∣
M1M2

X1 X2

|q2,1 · (X1 − X2)|M1

×M2

+X2

×M3M4

+ |X |M3M4

X

|q4,3 · (X3 − X4)|M3

×M4

+X4

X3 X4

Fig. 4. Reverse converter based on the new CRT II for the 4-
moduli RNS.

factors for moduli 2k ± 1 are the bases for the bottom
level RNSs. The ranges of the bottom level RNSs are then
equal to appropriate moduli 2k ± 1. The number of possi-
ble systems is limited by the number of factorisable num-
bers 2k ± 1.

The number 2k − 1 is not prime, if k is not prime
(Biernat, 2007), since

2ij −1 = (2i−1)(20·i +21·i +2·i + · · ·+2(j−1)·i). (19)

There are also non-prime numbers 2k − 1 for prime
k, e.g., 211 − 1 = 23 · 89.

The numbers 2k + 1 are not prime, if k is neither
prime nor a power of two (Biernat, 2007), since, for any
odd j,

2ij +1 = (2i+1)(20·i−21·i+22·i−· · ·+2(j−1)·i). (20)

The condition that 2k±1 is not prime is not sufficient
to build an efficient HRNS, since many non-prime num-
bers have large factors. As an example, consider 228+1 =
17 ·15790321. The arithmetic units (e.g., multipliers) mo-
dulo 15790321 can be larger and slower than modulo
228 + 1. The limit of the factor size for efficient imple-
mentations highly depends on arithmetic units structures
and implementation technology. In Table 1 there are some
factorisable numbers 2k ± 1 which can be used as a base
for searching the required HRNS.

Many different HRNS classes can be built using mo-
duli from Table 1. For large dynamic ranges the moduli
with small factors can be combined, i.e., 250 − 1, 284 − 1

Table 1. Moduli 2k ± 1 factorisable into small divisors.
Modulus Factors Modulus Factors

26 − 1 7, 9 26 + 1 5, 13
29 − 1 7, 73 29 + 1 19, 27
210 − 1 3, 11, 31 210 + 1 25, 41
212 − 1 5, 7, 9, 13 212 + 1 17, 241
214 − 1 3, 43, 127 214 + 1 5, 29, 113
215 − 1 7, 31, 151 215 + 1 9, 11, 331
218 − 1 7, 19, 27, 73 218 + 1 5, 13, 37, 109
224 − 1 5, 7, 9, 13, 17, 241 224 + 1 97, 257, 673

230 − 1
7, 9, 11, 31, 151,

230 + 1
13, 25, 41, 61,

331 1321
Factors

232 − 1 3, 5, 17, 257, 65537
242 − 1 9, 43, 49, 127, 337, 5419
244 − 1 3, 5, 23, 89, 397, 683, 2113
250 − 1 3, 11, 31, 251, 601, 1801, 4051
252 − 1 3, 5, 53, 157, 1613, 2731, 8191

272 − 1
5, 7, 13, 17, 19, 27, 37, 73, 109, 241, 433,
38737

284 − 1
5, 9, 13, 29, 43, 49, 113, 127, 337, 1429,
5419, 14449

2100 − 1
3, 11, 31, 41, 101, 125, 251, 601, 1801,
8101, 4051, 268501

2102 − 1
7, 9, 103, 307, 2143, 2857, 6529, 11119,
43691, 131071

or 2102 − 1. In this paper, only HRNSs with the top level
base (2k − 1, 2k, 2k + 1) are investigated. This approach
allows using very efficient converter structures designed
for the RNS (2k − 1, 2k, 2k + 1). Moreover, since one of
the moduli is 2k, arithmetic operations and residue gen-
erators for those moduli are very simple (Piestrak, 1994).
One disadvantage of this solution is a dynamic range limit
at 90 bits, because for k > 30 it is difficult to find a pair
2k ± 1 factorizable into small numbers.

The proposed HRNS has two levels. Arithmetic com-
putations are performed at the bottom level RNS with the
base consisting of factors of 2k±1 and 2k. The converters
can be built as hierarchical structures, where large num-
ber computations are done with converters for the RNS
(2k − 1, 2k, 2k + 1). Additionally, the proposed HRNS
allows performing some difficult operations (e.g., sign de-
tection (Tomczak, 2008)) after partial conversion to the
RNS (2k − 1, 2k, 2k + 1). Thus, the proposed HRNS
class allows using small moduli in arithmetic channels
and simple, efficient converters developed for the RNS
(2k − 1, 2k, 2k + 1).

As an example of computations in the proposed
HRNS consider the multiplication of two 44-bit binary
numbers

X = 1759218604441510,

Y = 1759218604441410

in the HRNS with the largest 90-bit dynamic range. The

178 T. Tomczak

88-bit result is

W = X · Y = 30948500982129229216664781010.

The first step is the conversion of the numbers X and
Y to the RNS (230 − 1, 230, 230 + 1) representations:

X = (16383, 1073741823, 1073725440),

Y = (16382, 1073741822, 1073725439).

Next, the residues modulo 230 − 1 are written
using the RNS (7, 9, 11, 31, 151, 331), whereas the
residues modulo 230 + 1 are written using the RNS
(13, 25, 41, 61, 1321). Thus, the representations of the
numbers X and Y in the bottom level RNS are X =
(3, 3, 4, 15, 75, 164, 1073741823, 8, 15, 15, 24, 788) and
Y = (2, 2, 3, 14, 74, 163, 1073741822, 7, 14, 14, 23, 787).
Next, the value of W = X · Y is computed in the bottom
level RNS according to Eqn. (4) as

W = (|3 · 2|7, |3 · 2|9, |4 · 3|11, . . .)
= (6, 6, 1, 24, 114, 252, 2, 4, 10, 5, 3, 607).

Then, the conversion of W to the top-level RNS (230 −
1, 230, 230 + 1) results in

W = (268386306, 2, 268484610),

which is a representation of the required result
309485009821292292166647810.

3.1. Multiplier’s complexity. The reduction of the
moduli width usually results in smaller, faster and less
power hungry arithmetic circuits. In this section, the stan-
dard unit-gate model by Zimmermann (1999) is used
for area estimation and comparison of multipliers in the
3-moduli RNS (2k − 1, 2k, 2k + 1) and in the proposed
HRNS. According to this model, each two-input mono-
tonic gate (e.g., AND, OR, NAND, NOR) has the area
A = 1, two-input XOR and XNOR gates have the area
A = 2 and a 1-bit full-adder has the area A = 7. For gates
with the number of inputs a > 2, the area is a − 1 times
larger than that of a single, two input gate performing the
same logic function.

Multiplier area comparison requires area estimation
of different types of multipliers. The areas of the k-bit bi-
nary multiplier and multipliers modulo 2k ± 1 are taken
from the work of Zimmermann (1999), whereas the area
of a multiplier modulo any other k-bit number is estimated
for the multiplier presented by Hiasat (2000). The area of
a multiplier modulo 2k is assumed as a half of a full k-
bit binary multiplier area. In all multipliers, Wallace trees
with no Booth reduction are used for carry-save addition
and fast parallel prefix adders are used. The formulas used
for area estimation are given in Table 2.

Table 2. Area estimation formulas for different multipliers us-
ing a unit-gate model. The formulas for multipliers mo-
dulo 2k ± 1 are taken from the work of Zimmermann
(1999), the formula for a multiplier modulo any other
k-bit number is based on the results of Hiasat (2000).

Multiplier Area

k-bit binary Ak = 8k2 + 3k �log2 k� − 3k

mod 2k A2k = 0.5Ak

mod 2k − 1 A2k−1 = 8k2 + 3
2
k �log2 k� − 7k

mod 2k + 1 A2k+1 = 9k2 + 3
2
k �log2 k� + 11k

mod k-bit A∗
k = 5

4
Ak + 15k + 3k �log2 k� + k2

4

Table 3. Estimated area comparison for multipliers in the RNS
(2k − 1, 2k, 2k +1) and in the proposed HRNS. In the
4-th column the difference between RNS and HRNS
areas is shown. The gain in the 5-th column is com-
puted as (RNS area − HRNS area)/RNS area · 100%.

Range RNS area HRNS area Difference Gain
[bit] [gates] [gates] [gates] [%]

18 852 669 183 21
27 1886 1975 -89 -5
30 2305 1660 645 28
36 3270 2245 1025 31
42 4403 2998 1405 32
45 5033 3684 1349 27
54 7254 4619 2635 36
72 12696 6893 5803 46
90 19650 9950 9700 49

The area of a multiplier in the RNS is computed as
a sum of the areas occupied by individual multipliers mo-
dulo moduli from the system base. Thus, the area of the
full multiplier in the RNS (2k−1, 2k, 2k +1) is computed
as a sum of areas occupied by multipliers modulo 2k − 1,
2k and 2k + 1. The area of multipliers in the HRNS is
computed in a similar way. For moduli which are not of
the form 2a ± 1, the multipliers from the work of Hiasat
(2000) are used. The areas for RNSs with different dy-
namic ranges are compared in Table 3.

It should be noted that for all moduli the fastest mul-
tipliers with prefix adders are used. In real systems some
multipliers, especially for smaller moduli, could be imple-
mented as slower and smaller circuits, because the critical
path is usually determined only by the largest modulus.
Thus, additional area savings could be obtained.

As shown in Table 3, in all cases but one the multipli-
ers in the HRNS are from 21 to 49 % smaller than the mul-
tipliers in the RNS (2k − 1, 2k, 2k + 1) with the same dy-
namic range. The estimated area of the HRNS multiplier is
larger for the dynamic range equal to 27 bits because of a
general modulo multiplier for moduli 19, 27, 73. The mul-
tiplier presented by Hiasat (2000) cannot take advantage

Hierarchical residue number systems with small moduli and simple converters 179

0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50 60 70 80 90

N
um

be
r

of
ga

te
s

[1
03

]

Dynamic range [bit]

RNS3
RNS4
RNS5
HRNS

Fig. 5. Estimated multiplier area in unit gates for RNS3: the 3-
moduli RNS (2k − 1, 2k, 2k + 1), RNS4: the 4-moduli
RNS (2k−1, 2k, 2k+1, 22k+1−1), RNS5: the 5-moduli
RNS (2k−1, 2k, 2k+1, 2k−1−1, 2k+1−1) and HRNS:
the proposed HRNS.

of the periodicity property. The multiplier using the pe-
riodicity property could offer better parameters, because
periods or half-periods for these moduli equal 9.

The complexity of the presented HRNS multipli-
ers was also compared with that of one of the newest
residue number systems offering higher parallel process-
ing degree than the RNS (2k − 1, 2k, 2k + 1): the 4-
moduli system (2k − 1, 2k, 2k + 1, 22k+1 − 1) presented
by (Molahosseini et al., 2010) and the 5-moduli RNS
(2k−1, 2k, 2k+1, 2k−1−1, 2k+1−1) by Cao et al. (2007).
The results are shown in Fig 5. These moduli sets do not
allow constructing systems with the same dynamic range
as the proposed HRNS. Thus the comparison is done for
all achievable dynamic ranges in the scope covered by
the proposed HRNS. Analysing data from Fig. 5 shows
that for dynamic ranges larger than 30 bits the proposed
HRNS offers much smaller multipliers than for the 3- and
4-moduli RNSs, and for the dynamic ranges larger than
70 bits the multiplier area is less than for the 5-moduli
RNS. Moreover, for dynamic ranges between 30 and 70
bits HRNS multipliers complexity is comparable to that
of multipliers for the 5-moduli RNS, but HRNS multipli-
ers can be used for dynamic ranges for which the 5-moduli
RNS is not available. Thus, the proposed HRNS based on
the 3-moduli RNS allows building multipliers with a com-
parable or smaller area than the 5-moduli general RNS.

3.2. Conversion from the HRNS. In this section,
equations for efficient conversion from the proposed
HRNS to the binary number system are described. The
conversion from a new HRNS to the binary number sys-
tem is performed in two steps. In the first one, the residues

modulo 2k ± 1 are computed from the residues for appro-
priate factors of 2k ± 1. In the second step, a typical con-
verter from the RNS (2k − 1, 2k, 2k + 1) is used. Since
in the literature there are known many efficient converters
from the RNS (2k − 1, 2k, 2k + 1) (Piestrak, 1995; Wang
et al., 2000; Mohan, 2001; Bi et al., 2004), in this paper
only the first step is analysed.

Because most of the reverse conversion equations
proposed in this paper are based on (18), it is rewritten
to allow simple and efficient implementation. Transfor-
mations are chosen to replace complex arithmetic oper-
ations (such as multiplications and residue computing)
with simple logical operations on bit fields (concatena-
tion, rotation, etc.). If complex modulo operations are dif-
ficult to implement with a simple logic, Look-Up Tables
(LUTs) based on read-only memories (ROMs) are used. In
this case, the reverse conversion equations are rewritten to
minimize the ROM address width.

The first operation in Eqn. (18) is the difference X1−
X2. If M1 is small, then it is desirable to compute the
difference as a residue modulo M1 or at least as a number
congruent modulo M1 to |X1 − X2|M1

and less than the
difference X1 − X2. Therefore, the rest of the operations
in |q2,1 · (X1 − X2)|M1

· M2 can be implemented with a
simple circuit due to a low operand width. This approach
gives especially good results when M2 is much larger than
M1 and P (M1) or HP(M1) is small. Hence, the operation
|X1 − X2|M1

can be replaced with

|X1 − X2|M1

=
∣∣∣∣∣X1 − |X2|2P(M1)−1

∣∣
2P (M1)−1

∣∣∣
M1

(21)

or

|X1 − X2|M1

=
∣∣∣∣∣X1 − |X2|2HP(M1)+1

∣∣
2HP(M1)+1

∣∣∣
M1

. (22)

The operations from Eqns. (21) and (22) can be im-
plemented efficiently with circuits based on the periodic-
ity property. First, observe that if X1 < 2b and X2 < 2b

for some b, then

|X1 − X2|2b−1

=
∣∣X1 + (2b − 1) − X2 − (2b − 1)

∣∣
2b−1

=
∣∣X1 + X2

∣∣
2b−1

(23)

and

|X1 − X2|2b+1

=
∣∣X1 + (2b − 1) − X2 − (2b − 1)

∣∣
2b+1

=
∣∣X1 + X2 + 2

∣∣
2b+1

,

(24)

where X2 = (2b−1)−X2 denotes bit-by-bit complemen-
tation of X2 binary representation. Notice that only b least

180 T. Tomczak

significant bits of X2 are complemented. Since X1 < 2b

for b = P (M1) or b = HP(M1) and

X2 =
∑

a

2a·b · Ba (25)

is a concatenation of b-bit binary fields Ba defined by
Eqn. (9), we have

|X1 − X2|M1
=

∣∣∣∣∣

∣∣∣∣∣X1 +
∑

a

Ba

∣∣∣∣∣
2P (M1)−1

∣∣∣∣∣
M1

=

∣∣∣∣∣X1 +
∑

a

Ba

∣∣∣∣∣
M1

(26)

or

|X1 − X2|M1

=

∣∣∣∣∣∣

∣∣∣∣∣X1 +
∑

a even

(Ba + 2) +
∑

a odd

Ba

∣∣∣∣∣
2HP(M1)+1

∣∣∣∣∣∣
M1

=

∣∣∣∣∣X1 +
∑

a even

(Ba + 2) +
∑

a odd

Ba

∣∣∣∣∣
M1

.

(27)

Next, the difference |X1 − X2|M1
is multiplied mo-

dulo by the multiplicative inverse
∣∣M−1

2

∣∣
M1

. If P (M1)
or HP(M1) is small, then we can try to choose M2 such
that the inverse

∣∣M−1
2

∣∣
M1

is a sum of a small number
of powers of 2. In this case, the multiplication modulo
M1 can be computed as a sum modulo M1 of cyclic ro-
tated differences |X1 − X2|M1

. The ideal case is when∣∣M−1
2

∣∣
M1

= 2j and computations can be done modulo

2P (M1) − 1. The modulo multiplication by a multiplica-
tive inverse is then a simple left cyclic rotation by j bits.

The last complex operation in Eqns. (18) is the
multiplication by M2. In some of the proposed con-
version equations, this multiplication is replaced with
a concatenation or a sum of binary vectors represent-
ing |q2,1 · (X1 − X2)|M1

. The simplest implementation
(concatenation only) is when M2 is a sum of ±2bj and
2bj+1/2bj > M1 for any j.

The transformed reverse conversion process illus-
trates the following equation for computing the residue
modulo 22k − 1 from the residues modulo 2k ± 1:

|X |22k−1

= |X |2k+1

+

∣∣∣∣∣∣∣∣

∣∣∣(2k + 1
)−1

∣∣∣
2k−1︸ ︷︷ ︸

2k−1

· (|X |2k−1 − |X |2k+1

) ·

∣∣∣∣∣∣∣∣
2k−1

· (2k + 1
)
.

(28)

Equation (28) can be used as a conversion base for all
higher level moduli 2a − 1, a even, e.g., 26 − 1, 212 − 1,
218 − 1, etc. In (28), the difference X1 − X2 can be
computed with the use of Eqn. (26), the multiplicative in-

verse
∣∣∣(2k + 1

)−1
∣∣∣
2k−1

is a power of two and the quotient

2k/20 (since M2 = 2k + 20) is larger than M1 = 2k − 1.
The implementation details of operations from Eqn. (28)
will be presented in Section 4.1. The reverse conversion
equations for high level moduli different than 22k − 1 are
presented below.

3.2.1. Conversion for 26 + 1. 26 + 1 has two factors:
5 and 13. Thus the reverse conversion equation can be di-
rectly based on Eqn. (18). There are two possible versions:

|X |65 = |X |5 +

∣∣∣∣∣∣∣
∣∣5−1

∣∣
13︸ ︷︷ ︸

8

·(|X |13 − |X |5)

∣∣∣∣∣∣∣
13

· 5 (29)

and

|X |65

= |X |13 +

∣∣∣∣∣∣∣
∣∣13−1

∣∣
5︸ ︷︷ ︸

2

·(|X |5 − |X |13)

∣∣∣∣∣∣∣
5

· 13. (30)

Since the results of |X |13 − |X |5 and |X |5 − |X |13 are
both 5-bit wide, a small LUT of size 25 × 6 bits can be
used to compute the second operand of the main sum. In
this case, both equations should result in a similar circuit
complexity.

3.2.2. Conversion for 29 − 1. 29 − 1 has two factors:
7 and 73. Thus

|X |511

= |X |73 +

∣∣∣∣∣∣∣
∣∣73−1

∣∣
7︸ ︷︷ ︸

5

·(|X |7 − |X |73)

∣∣∣∣∣∣∣
7

· 73, (31)

There is also possible the second version with calculations
modulo 73, but the circuits for computations modulo 7 are
usually simpler, smaller and faster than modulo 73.

3.2.3. Conversion for 29 + 1. 29+1 also has two fac-
tors 19 and 27. Thus the value mod 29 + 1 is given by

|X |513

= |X |27 +

∣∣∣∣∣∣∣
∣∣27−1

∣∣
19︸ ︷︷ ︸

12

·(|X |19 − |X |27)

∣∣∣∣∣∣∣
19

· 27, (32)

Hierarchical residue number systems with small moduli and simple converters 181

or

|X |513

= |X |19 +

∣∣∣∣∣∣∣
∣∣19−1

∣∣
27︸ ︷︷ ︸

10

·(|X |27 − |X |19)

∣∣∣∣∣∣∣
27

· 19. (33)

Since the bit vectors representing |X |19 and |X |27 have
the same width and values of q2,1 have almost the same
binary representations, either equation should result in a
similar implementation complexity.

3.2.4. Conversion for 210 − 1. The three factors 3, 11
and 31 of 210 − 1 impose the two step conversion. In the
first step, the residue modulo 3 · 11 = 31 is calculated
according to

|X |33 = |X |11 +

∣∣∣∣∣∣∣
∣∣11−1

∣∣
3︸ ︷︷ ︸

2

·(|X |3 − |X |11)

∣∣∣∣∣∣∣
3

· 11,

(34)
and in the second step, the residue modulo 210 − 1 is
calculated from residues modulo 31 and 33 according to
Eqn. (28). The computation of the residue modulo 33 can
be also done with the second version of Eqn. (34) with
moduli 11 and 3 swapped, but then the multiplication of
the difference |X |11−|X |3 by |3−1|11 had to be done mo-
dulo 11, which has a much larger period P (11) = 10 and
half-period HP(11) = 5 than P (3) = 2 and HP (3) = 1.

3.2.5. Conversion for 210 + 1. Since 210 + 1 has two
factors 25 and 41, the conversion is done according to

|X |1025

= |X |41 +

∣∣∣∣∣∣∣
∣∣41−1

∣∣
25︸ ︷︷ ︸

11

·(|X |25 − |X |41)

∣∣∣∣∣∣∣
25

· 41. (35)

There is also the second version with computations mo-
dulo 41, but since both 25 and 41 have large periods; thus
the multiplication modulo 25 of the difference by constant
11 has to be done with an LUT. The number of LUT out-
put bits is smaller by one bit for the result modulo 25 than
modulo 41.

3.2.6. Conversion for 212 + 1. The two factors
17, 241 of 212 + 1 allow conversion according to

|X |4097

= |X |241 +

∣∣∣∣∣∣∣
∣∣241−1

∣∣
17︸ ︷︷ ︸

6

·(|X |17 − |X |241)

∣∣∣∣∣∣∣
17

· 241︸︷︷︸
111100012

.

(36)

Although there are complex modulo operations in (36),
since they are performed modulo 17, the MOMA modulo
24 + 1 by Piestrak (1994) can be used.

3.2.7. Conversion for 214 − 1. 214 − 1 has three fac-
tors: 3, 43 and 127. Thus the conversion is done in two
steps. In the first step the residue modulo 3 · 43 = 129 is
computed according to

|X |129

= |X |43 +

∣∣∣∣∣∣∣
∣∣43−1

∣∣
2︸ ︷︷ ︸

1

·(|X |3 − |X |43)

∣∣∣∣∣∣∣
3

· 43.
(37)

Next, the final value modulo 214 − 1 is computed from
|X |129 and |X |127 using Eqn. (28).

3.2.8. Conversion for 214 + 1. 214 +1 = 5 · 29 · 113;
thus the conversion is done in two steps. The chosen se-
quence of equations allows doing in the second step cal-
culations on large numbers modulo a small number with a
low period. First, the residue modulo 3277 = 29 · 113 is
computed according to

|X |3277 = |X |113

+

∣∣∣∣∣∣∣
∣∣113−1

∣∣
29︸ ︷︷ ︸

19

·(|X |29 − |X |113)

∣∣∣∣∣∣∣
29

· 113.

(38)

Both 29 and 113 have the same periods and half-periods
equal to 28 and, respectively, 14. Thus for the first step of
the conversion the equation with an operation modulo a
smaller number is chosen. The final value modulo 214 + 1
is computed according to

|X |214+1 = |X |3277

+

∣∣∣∣∣∣∣
∣∣3277−1

∣∣
5︸ ︷︷ ︸

3

·(|X |5 − |X |3277)

∣∣∣∣∣∣∣
5

· 3277.

(39)

3.2.9. Conversion for 215 − 1. The residue modulo
215 − 1 is determined in two steps. In the first step the
residue modulo 7 · 151 = 1057 is computed as

|X |1057 = |X |151

+

∣∣∣∣∣∣∣
∣∣151−1

∣∣
7︸ ︷︷ ︸

2

·(|X |7 − |X |151)

∣∣∣∣∣∣∣
7

· 151.
(40)

182 T. Tomczak

Next, the residue modulo 215 − 1 is

|X |215−1 = |X |1057

+

∣∣∣∣∣∣∣
∣∣1057−1

∣∣
31︸ ︷︷ ︸

21

·(|X |31 − |X |1057)

∣∣∣∣∣∣∣
31

· 1057︸︷︷︸
100001000012

.

(41)

All complex operations in Eqns. (40) and (41) are com-
puted modulo 2k ± 1. Since the binary representation of
1057 is 100001000012 and the residue modulo 31 occu-
pies 5 bits, the multiplication of a residue modulo 31 by
1057 can be implemented as a concatenation of 3 residues
modulo 31.

3.2.10. Conversion for 215 + 1. The three factors of
215 + 1 imply two-level conversion. The first step to find
|X |215+1 is a calculation of the residue modulo 11 ·331 =
3641 as

|X |3641 = |X |331

+

∣∣∣∣∣∣∣
∣∣331−1

∣∣
11︸ ︷︷ ︸

1

·(|X |11 − |X |331)

∣∣∣∣∣∣∣
11

· 331.

(42)

Knowing |X |3641, the residue modulo 215 + 1 is given as

|X |215+1 = |X |3641

+

∣∣∣∣∣∣∣
∣∣3641−1

∣∣
9︸ ︷︷ ︸

2

·(|X |9 − |X |3641)

∣∣∣∣∣∣∣
9

· 3641.

(43)

In both the equations calculations are performed mo-
dulo very small moduli. Additionally, in (43) the residues
for large numbers can be computed efficiently using an
MOMA modulo 23+1. The implementation of Eqns. (42)
and (43) requires also multiplications by relatively large
constants, but owing to the low width of residues modulo
9 and 11, those multiplications can be implemented with
small LUTs of size 24 × 12 bits.

3.2.11. Conversion for 218 + 1. The factors of 218+1
can be grouped into pairs 5 ·13 = 65 and 37 ·109 = 4033.
One of the products is equal to 26 + 1, whereas the other
one is 212 − 26 + 20. The value of |X |218+1 is computed
by the two-level circuit. The first level computes residues
modulo 65 according to Eqns. (29) or (30) and modulo

︷ ︸︸ ︷|X |65

︷ ︸︸ ︷|X |65
︷ ︸︸ ︷|X |65

subtract copy

Fig. 6. Idea of the multiplication of residue modulo 65 by
4033 = 212 − 26 + 1. Squares denote single bits of
the residue and result. The least significant bit is on the
right hand side.

4033 from

|X |4033 = |X |109

+

∣∣∣∣∣∣∣
∣∣109−1

∣∣
37︸ ︷︷ ︸

18

·(|X |37 − |X |109)

∣∣∣∣∣∣∣
37

· 109.

(44)

The second version of equation for |X |4033 (not shown)
requires calculations modulo 109. The calculations mo-
dulo 109 are more complex than modulo 37 because 109
requires circuits operating on larger operands (seven bits
instead of six) and the periodicity property cannot be used
due to large P (A) and HP(A). Additionally,

∣∣37−1
∣∣
109

=
56 is wider than 18, which complicates multiplication by
the multiplicative inverse.

Next, the value of |X |218+1 can be computed from

|X |218+1 = |X |4033

+

∣∣∣∣∣∣∣
∣∣4033−1

∣∣
65︸ ︷︷ ︸

22

·(|X |65 − |X |4033)

∣∣∣∣∣∣∣
65

· 4033︸︷︷︸
1111110000012

.

(45)

Equation (45) allows using the MOMA modulo 65, which
performs operations according to (27), for computations
in the right addend.

Multiplication by 4033 can be implemented as a 12-
bit subtraction due to a low width of residue modulo 65
and a special form of constant 4033 = 212 − 26 + 20.
The idea is shown in Fig. 6. Notice that the result requires
at most 18 bits, because 4033 · 65 < 218. The six least
significant bits of the result are equal to the bits of residue
modulo 65.

3.2.12. Conversion for 224 + 1. 224+1 has three fac-
tors. Thus conversion according to Eqn. (18) requires two

Hierarchical residue number systems with small moduli and simple converters 183

steps. In the first one, the residue modulo 97·673 = 65281
is computed as

|X |65281 = |X |673

+

∣∣∣∣∣∣∣
∣∣673−1

∣∣
97︸ ︷︷ ︸

16

·(|X |97 − |X |673)

∣∣∣∣∣∣∣
97

· 673.

(46)

In a circuit based on (46), the residue generator may
be necessary to compute residues modulo 97 for |X |673
and/or for the difference. However, since

∣∣673−1
∣∣
97

is a
power of 2 (here, equal to 16), the multiplication of the
difference can be implemented as a left shift by four bits.

After computing |X |65281, the residue modulo 224 +
1 is

|X |224+1 = |X |65281

+

∣∣∣∣∣∣∣
∣∣65281−1

∣∣
257︸ ︷︷ ︸

86

·(|X |257 − |X |65281)

∣∣∣∣∣∣∣
257

· 65281︸ ︷︷ ︸
11111111000000012

.

(47)

Multiplication by 65281 = 216 − 28 + 20 can
be implemented as subtraction in a way similar to that
presented in Fig. 6. The only operation modulo in
Eqn. (47) is a computation of residue modulo 257 for
86 · (|X |257 − |X |65281), which can be implemented as
two MOMAs for 8-bit operands. The first MOMA com-
putes ||X |257 − |X |65281|257 according to Eqn. (27). The
second MOMA realizes multiplication by 86 modulo 257.
There is also possible the use of one MOMA, which can
realise subtraction and multiplication by 86 as a sum of
shifted bit fields taken from |X |62581 and |X |257 as shown
in Fig. 7 (which does not contain additional constants
equal to 2 defined by (27)). All bits set to 1 shown in Fig. 7
and additional constants can be replaced by cumulative
correction equal to sum modulo 257 of all constant values.
For the case shown in Fig. 7, cumulative correction (in-
cluding bits set to ones) is equal to |252+248+224+128+
1+254+3+252+15+240+63+192+12 ·2|257 = 97.

3.2.13. Conversion for 230 + 1. The reverse conver-
sion for 230+1 is the most complex task among those pre-
sented. In the first step, the residues modulo 25 · 1321 =
33025 = 215 + 28 + 1 and 13 · 41 · 61 = 32513 =
215 − 28 + 1 are computed, whereas in the second one
the residue modulo 230 + 1 is found.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

|X |257 · 86

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

|X |65281 · 86

Fig. 7. Input words to the MOMA modulo 257 comput-
ing

∣∣86 · (|X|257 − |X|65281)
∣∣
257

. The words are con-
structed according to Eqn. (27). White squares denote
unchanged bits, crossed squares denote complemented
bits, gray squares denote bits which are wrapped, and
black dots denote bits equal to 1. The least significant
bits are on the right hand side. Twelve constants which
are equal to 2 for each complemented bit field are not
shown.

The residue modulo 33025 is computed as

|X |33025 = |X |1321

+

∣∣∣∣∣∣∣
∣∣1321−1

∣∣
25︸ ︷︷ ︸

6

·(|X |25 − |X |1321)

∣∣∣∣∣∣∣
25

· 1321.

(48)

The residue modulo 32513 is determined by the
residues for factors 13, 41 and 61. Thus the reverse conver-
sion according to (18) requires a two-level circuit. There
are two forms of Eqn. (18), which result in a similar com-
plexity. In the first one, the residue modulo 41 ·61 = 2501
is computed, whereas in the second case the residue mo-
dulo 13 · 61 = 793 is found first.

The first method of reverse conversion is described
by

|X |2501

= |X |41 +

∣∣∣∣∣∣∣
∣∣41−1

∣∣
61︸ ︷︷ ︸

3

·(|X |61 − |X |41)

∣∣∣∣∣∣∣
61

· 41,

|X |32513

= |X |2501 +

∣∣∣∣∣∣∣
∣∣2501−1

∣∣
13︸ ︷︷ ︸

8

·(|X |13 − |X |2501)

∣∣∣∣∣∣∣
13

· 2501.

(49)

184 T. Tomczak

The second method consists of the following steps:

|X |793

= |X |61 +

∣∣∣∣∣∣∣
∣∣61−1

∣∣
13︸ ︷︷ ︸

3

·(|X |13 − |X |61)

∣∣∣∣∣∣∣
13

· 61, (50)

|X |32513

= |X |793 +

∣∣∣∣∣∣∣
∣∣793−1

∣∣
41︸ ︷︷ ︸

3

·(|X |41 − |X |793)

∣∣∣∣∣∣∣
41

· 793.

Neither form allows efficient implementation using
the periodicity property. However, since operations are
computed modulo 13, 41 or 61, small LUTs can be used.

After the computation of residues modulo 33025 and
32513, the residue modulo 230 +1 is computed according
to the CRT,

|X |230+1

=
∣∣∣∣33025 · ∣∣33025−1

∣∣
32513

· |X |32513

+ 32513 · ∣∣32513−1
∣∣
33025

· |X |33025
∣∣∣∣
230+1

. (51)

After transformations of Eqn. (51),

|X |230+1

=
∣∣∣∣33025 · 16193 · |X |32513

+ 32513 · 16577 · |X |33025
∣∣∣∣
230+1

=
∣∣∣∣(215 + 28 + 1) · (214 − 28 + 26 + 1)

· |X |32513 + (215 − 28 + 1)

· (214 + 28 − 26 + 1) · |X |33025
∣∣∣∣
230+1

,

(52)

the final reverse conversion equation is

|X |230+1

=
∣∣∣∣(229 − 221 + 26 + 1) · |X |32513

+ (229 + 221 − 26 + 1) · |X |33025
∣∣∣∣
230+1

.

(53)

Equation (53) can be implemented using an MOMA
which computes a sum of shifted bit vectors represent-
ing |X |32513 and |X |33025. The reverse conversion based
on the CRT was used because the final addition mo-
dulo 230 + 1 can be efficiently done with MOMA adding
operands constructed in a way similar to that shown in
Fig. 7.

Table 4. Periods and half periods for factors of 2k ± 1.
Mi HP P Mi HP P

3 1 2 251 25 50
5 2 4 257 8 16
7 – 3 307 51 102
9 3 6 331 15 30

11 5 10 337 – 21
13 6 12 397 22 44
17 4 8 433 36 72
19 9 18 601 – 25
23 – 11 673 24 48
25 10 20 683 11 22
27 9 18 1321 30 60
29 14 28 1429 42 84
31 – 5 1613 26 52
37 18 36 1801 – 25
41 10 20 2113 22 44
43 7 14 2143 – 51
49 – 21 2731 13 26
53 26 52 2857 51 102
61 30 60 4051 25 50
73 – 9 5419 21 42
89 – 11 6529 51 102
97 24 48 8101 50 100

101 50 100 8191 – 13
103 – 51 11119 – 51
109 18 36 14449 42 84
113 14 28 38737 36 72
125 50 100 43691 17 34
127 – 7 65537 16 32
151 – 15 131071 – 17
157 26 52 268501 50 100
241 12 24

3.3. Conversion to the HRNS. Conversion from the
binary number system to the HRNS can be performed in
two steps. In the first one, the residues |X |2k±1 and |X |2k

are computed, in the second—the residues modulo factors
of 2k ± 1 for |X |2k±1 are calculated. The first step can be
efficiently performed using the periodicity property. How-
ever, this step is omitted for operands smaller than 2k, e.g.,
when the dynamic range of the HRNS allows performing
multiplication and many additions without overflow. This
situation is more likely for the HRNS with a small dy-
namic range, e.g., the HRNS constructed from the RNS
(26 − 1, 26, 26 + 1) allows accumulating ≈ 26 results of
multiplication of two 6-bit operands.

The calculation of residues modulo factors of
|X |2k±1 can be done with any residue generator. Addi-
tionally, when the periods or half periods for different fac-
tors of 2k ± 1 are equal (e.g., P (3) = HP(5) = 2 or
P (19) = P (27) = 18), the residue generators for this fac-
tors may share the same hardware, which allows further
area reduction. The periods and half periods for factors of
2k ± 1 are listed in Table 4.

Hierarchical residue number systems with small moduli and simple converters 185

Hardware sharing may be carried out in two cases.
First, when for the numbers M1 and M2 HP(M1) =
HP (M2) or P (M1) = r · P (M2) for r = 1, 2, 3,
Then, when residues modulo M1 and M2 are calculated
for the same input number Xi, two generators modulo
M1 and M2 can have a common MOMA calculating
|Xi|2HP(M1)+1 or, respectively, |Xi|2r·P (M2)−1. Residue
generators have common input when moduli M1 and M2

are factors of the same number 2k ± 1, or when the input
integer X is smaller than 2k − 1.

As an example consider the top level base (218 −
1, 218, 218 + 1). The number 218 − 1 has the factor of
7, and the number 218 + 1 has the factors 5 and 13. Since
P (13) = 4 · P (7) = 3 · P (5), if X < 218 − 1, we can
use one adder modulo 212 − 1, which reduces X to a 12-
bit number. Then the residues modulo 5, 7 and 13 can be
computed for the 12-bit number. Even if X > 218−1, the
reduced 12-bit vector can be used as input for generators
modulo 5 and 13, which are factors of the same modulus.

The second case when the periodicity property can
simplify residue generators is for HP(M1) = r · P (M2).
In this case, the residues modulo 2HP(M1) + 1 and
2r·P (M2) − 1 are computed according to Eqns. (12) and
(13). First, the input number Xi has to be partitioned into
HP(M1)-bit wide fields Ba. Next, three multi-operand
adders should be used for the computation of

∑
a even Ba,∑

a odd Ba and
∑

a odd Ba. The sum
∑

a odd Ba can be
computed modulo 2HP(M1) + 1. Finally, the residues
|Xi|2HP(M1)+1 and |Xi|2r·P (M2)−1 can be computed ac-
cording to Eqns. (12) and (13). In such implementation
the computation of

∑
a even Ba is common for both cir-

cuits, which results in hardware savings.
As an example consider the top level base (230 −

1, 230, 230 + 1). The number 230 − 1 has the factors
7 and 9, the number 230 + 1 has the factor of 13.
Now we have HP(13) = P (9) = 2 · P (7) = 6.
If the converted number X has the 45-bit binary repre-
sentation, then three multi-operand adders can be used.
The first adder computes the sum of four 6-bit wide
fields x5 . . . x0, x17 . . . x12, x29 . . . x24, x41 . . . x36, the
second one computes the sum of four fields x11 . . . x6,
x23 . . . x18, x35 . . . x30, x44 . . . x42 and the third one can
be an MOMA modulo 26 + 1 computing the sum of
four fields x11 . . . x6, x23 . . . x18, x35 . . . x30, x44 . . . x42.
Then, |X |7 can be computed as a sum modulo 7 of out-
puts from the first and the second multi-operand adder,
|X |9 can be computed as a sum modulo 9 of outputs of
the same adders, and |X |13 can be computed as a sum
modulo 13 of outputs from the first and the third multi-
operand adder.

4. Implementation of reverse converters

In this section, reverse converter implementations for the
proposed HRNS are presented. The circuits were de-

scribed in VHDL and simulated with Cadence IUS 0611.
After functional simulation the circuits were synthesized
with Cadence Encounter RTL Compiler, version 07.20.
The FreePDK45nm library and design flow was used
(Stine et al., 2005).

The converters proposed in this paper consist of two
levels. The top level is responsible for conversion be-
tween a binary number and a representation in the RNS
(2k−1, 2k, 2k +1), the bottom level does calculations be-
tween residues modulo 2k ± 1 and the RNS with the base
consisting of factors of 2k±1. For converters from the bot-
tom level RNS to residues modulo 2k ± 1, two implemen-
tations were compared: the circuits based on equations
presented in Section 3.2 and the circuits built according to
the CRT. The conversion from the RNS (2k−1, 2k, 2k+1)
to the binary number system was performed with two dif-
ferent architectures: the circuits presented by Wang et al.
(2002) and by Bi et al. (2004).

The VHDL codes were written to maximize the use
of optimisation algorithms built into the VHDL compiler.
During an automated synthesis process, the VHDL com-
piler constructs the structures of inferred logic blocks
(e.g., adders, multipliers, CSA trees) on the basis of pa-
rameters of supplied library cells to meet area and de-
lay requirements. An example of the inferred circuit is
a carry propagate adder (CPA). The same VHDL code
results in different adder structures depending on area
and time constraints. In this paper, two sets of synthesis
constraints were applied. In the first case, no time con-
straints were imposed, therefore the circuits were synthe-
sized to achieve the smallest area, i.e., all adders were syn-
thesized as ripple-carry adders (RCAs). The second con-
straints set resulted in the fastest circuit, i.e., all adders
were synthesized to achieve a minimal critical path delay.
Detailed analysis of automatically generated adder struc-
tures showed that adders were constructed as hybrid struc-
tures. The part for less significant bits was a typical RCA
to keep a small area, but for more significant bits fast carry
propagation structures were used.

The second example of the inferred circuit is a CSA
tree, which can be automatically built by RTL Compiler.
The only designer task is to compose a chain of adders in
the way which would allow doing many additions in par-
allel. Compiler generated CSAs usually have a better area
and delay than structures made by hand. The main reason
is that, for a hand-made CSA, it is difficult to consider
parameters of individual cells from the library. Moreover,
the structure of a CSA can be automatically tuned by the
compiler to meet time constraints. The VHDL compiler
can also merge a cascade of arithmetic operations into one
CSA with all intermediary signals transformed to CSA
form and with only one final CPA adder.

It should be noticed that it is difficult to write the
VHDL code which can exploit compiler optimisations and
at the same time creates MOMA structures identical to

186 T. Tomczak
x

1
3

1

x
5 0

x
5 2

x
1
3

0

x
1
3

2

x
1
3

3

x
5 1

FAFA

CPA

x5
0

x5
2

x5
1

x13
0x13

1

x13
3 x13

2+

+

(a) (b)

Fig. 8. Two implementations of operation ||X|5 − |X|13|5:
strictly following Piestrak (1994) (a), VHDL descrip-
tion allowing automatic optimisations (b). Here xM

j de-
note the j-th bit of |X|M . White rectangles denote un-
changed bits, crossed rectangles denote complemented
bits and gray rectangles denote bits, which are wrapped.
The least significant bits are on the right side. Constants
equal to 2 for each complemented bit field are not shown.

those presented by Piestrak (1994). An example is shown
in Fig. 8, where the two methods compute the result of the
operation ||X |5 − |X |13|5 used in Eqn. (29). The circuit
from Fig. 8(a) is built according to Piestrak (1994) and
implemented in structural VHDL by instantiations of full-
adder cells. The method from Fig. 8(b) is implemented in
VHDL as two adders using the + operator. The first adder
computes the 4-bit sum, whereas the second one adds 2-
bit fields from the computed sum. Due to different struc-
tures, the circuits differ with cumulative correction, which
equals |2 + 2 + 2 + 2 + 2|5 = 0 and |2 + 2 + 2 + 2|5 = 3
for Figs. 8(a) and (b), respectively.

To check the area and the critical path delay of cir-
cuits from Fig. 8, they were used in converters built ac-
cording to Eqn. (29). The area and the critical path de-
lay for the converter with the circuit from Fig. 8(a) were
177.40 µm2 and 899 ps for the smallest version and
286.27 µm2 and 553 ps for the fastest version. The area
and the critical path delay for the converter with the cir-
cuit from Fig. 8(b) were 169.89 µm2 and 858 ps for the
smallest version and 347.28 µm2 and 548 ps for the fastest
version. Thus, the version from Fig. 8(b) allows building
smaller and faster circuits and additionally leaves more
place for compiler optimisations. In this work, all MO-
MAs are described in the way shown in Fig. 8(b).

In residue arithmetic circuits there often occur com-
plex computations, e.g., residue computations for moduli,
which have large periods. One of the most widely known
methods for the implementation of complex arithmetic
operations on small arguments is the use of ROM-based
LUTs. Proper implementation of ROM requires designing
layout masks by hand or using automated generators sup-
plied with a standard cell library. Unfortunately, for many
free standard cell libraries there are no such generators.
Moreover, after designing the layout mask, a simulation

x
2

k
+

1
k

x
2

k
+

1
k
−

1

x
2

k
+

1
k
−

2

x
2

k
+

1
0

x
2

k
+

1
k

x
2

k
+

1
0

x
2

k
−

1
0

x
2

k
−

1
1

x
2

k
+

1
1

x
2

k
+

1
k
−

1

x
2

k
−

1
k
−

1

|+|2k−1
multiplication by 2k−1

modulo 2k − 1

multiplication
by 2k + 1

x
2
2

k
−

1
0

x
2
2

k
−

1
k
−

2

x
2
2

k
−

1
k
−

1

x
2
2

k
−

1
k

x
2
2

k
−

1
2
k
−

2

x
2
2

k
−

1
2
k
−

1

FAFAFA HAHAOR

Fig. 9. Circuit to compute residue 22k −1 from residues 2k ±1.
xa

j denote the j-th bit of binary representation of |X|a.

is necessary to find the delay and power of the created
memory. Simulated parameters are then used to approxi-
mate full circuit characteristics. This process is complex
and time consuming, especially when many ROMs are
needed.

The reverse converters compared in this work require
many LUTs. To avoid a long time development process, in
this comparison ROMs are described in a high level lan-
guage (VHDL) as combinatorial circuits consisting of a
row decoder, a column decoder and a connection matrix.
VHDL codes for ROMs are generated automatically based
on ROM data. The area and time of generated circuits are
much better than for strictly combinatorial implementa-
tions of the ROM. The test synthesis of the ROM consist-
ing of 210 × 6 bits gives the following results: the pure
combinatorial implementation has the area 4010 µm2 and
the delay 1.8 ns (20 logic levels), the implementation with
a row and column decoder results in the area 1079 µm2

and delay 0.769 ns (6 logic levels). The above generated
ROMs are used in both converters based on the proposed
equations and converters according to the CRT.

4.1. Conversion circuits. For the proposed HRNS
class, it is difficult to give a general reverse converter
structure, because for each k the factors of 2k ± 1 can be
grouped in many ways. Therefore, in this section, synthe-
sized reverse converter circuits are individually described.

Despite the circuit differences, in many of the pro-
posed conversion circuits there is one common operation:
the calculation of the residue modulo 22k−1 from residues
modulo 2k ± 1. The circuit used in this paper implements

Hierarchical residue number systems with small moduli and simple converters 187

Eqn. (28), as shown in Fig. 9. Its main advantage is the
lack of multipliers, which are replaced with a left cyclic
rotation and a concatenation.

The first operation of the circuit from Fig. 9 is the
calculation of

∣∣|X |2k+1

∣∣
2k−1

. Since |X |2k+1 ≤ 2k, the

residue modulo 2k − 1 can be computed by OR-ing the
least and the most significant bits of |X |2k+1, because for
a number less than 2k + 1 only one of these bits can be
equal to 1. Next, the subtraction is replaced with the ad-
dition of the additive inverse of

∣∣|X |2k+1

∣∣
2k−1

modulo

2k − 1, which is nothing else but∣∣∣2k − 1 − ∣∣|X |2k+1

∣∣
2k−1

− (
2k − 1

)∣∣∣
2k−1

and can be computed as the bit by bit complementation of∣∣|X |2k+1

∣∣
2k−1

. If the output of the adder modulo 2k−1 at
the top of Fig. 9 is without double zero representation, the
rest of the circuit can be very simple, because the remain-
ing multiplications from Eqn. (28) can be implemented
with simple bit operations as shown in the middle of Fig.
9. Thus, depending on the required area and speed, the
adder can be implemented as RCA with EAC and an ad-
ditional double-zero elimination circuit (Biernat, 2007) or
as a parallel prefix adder, e.g., the one presented by Zim-
mermann (1999). The final operation is the addition of the
number |X |2k+1 to

∣∣2k−1 · (|X |2k−1 − |X |2k+1

) ·∣∣
2k−1

· (2k + 1
)

implemented with the adder at the bottom of Fig. 9. The
final adder can be realised with any architecture (e.g., as
a parallel prefix adder), but in Fig. 9 the RCA is used to
show that the most significant k − 1 cells of the adder are
used only for carry propagation. Thus, the total area of
the final adder can be lowered comparing to a full 2k-bit
adder.

The circuits based on the architecture shown in Fig. 9
are used for the reverse conversion for moduli 26−1, 212−
1, 218 − 1, 224 − 1 and for 230 − 1. Converters for other
moduli will be described below.

The converter for 26 + 1 is based on Eqn. (30).
First, the two 2-bit fields from residue |X |5 and two
2-bit fields of residue |X |13 are added using an MOMA
modulo 26 + 1 of Fig. 8(b). The constant, cumulative cor-
rection (here equal to 3) required in the MOMA is not
added in this step to reduce the result width. The 3-bit
output from the MOMA is next connected with an input
of a combinatorial circuit synthesized using the truth ta-
ble. The realized function is the addition of correction re-
quired in the MOMA and all necessary computations to
obtain |2 · (|X |5 − |X |13)|5 · 13. The last step is the addi-
tion of |X |13 to get the final result of |X |26+1.

The converter for 29 − 1 is built according to
Eqn. (31). First, the difference |X |7 − |X |73 is com-
puted using an MOMA as a 4-bit number congruent mo-
dulo 7 to |X |7 − |X |73. The rest of the operations from

|5 · (|X |7 − |X |73)|7 · 73 are computed using the 4-input
combinatorial circuit, whose output is then added to |X |73
to calculate |X |511 = |X |73 + |5 · (|X |7 − |X |73)|7 · 73.

The converter for 29 + 1 is built according to
Eqn. (32). Since both P (19) = 18 and HP(19) = 9
are large compared with an operand width (5 bits), the
converter consists of a subtractor computing |X |19 −
|X |27, 26 × 5 bit LUT for the rest of operations in
|12 · (|X |19 − |X |27)|19, the final multiplier by 27 and an
8-bit adder.

The converter for 210 − 1 is built according to
Eqns. (34) and (28). First, the difference ||X |3 − |X |11|3
is computed using MOMA modulo 22 − 1 adding 2-bit
wide fields of |X |3 and |X |11. The 3-bit wide MOMA
output is then connected to inputs of a small (3-input, 5-
output) combinatorial circuit performing the rest of oper-
ations from (34) except the addition of |X |11. The com-
binatorial circuit is synthesized using a truth table. The
residue modulo 33 is obtained after adding |X |11 to the
output of the combinatorial circuit. Next, the circuit from
Fig. 9 is used to compute the final residue modulo 210 − 1
from |X |31 and |X |33.

The converter modulo 210 + 1 is built according to
Eqn. (35). First, the difference |X |25 − |X |41 is computed
as a 7-bit U2 number. Next, the rest of operations from
|11 · (|X |25 − |X |41)|25 are computed using a 27 × 5 bit
ROM. The final residue modulo 210 + 1 is obtained after
the multiplication of ROM output by constant 41 and the
addition of |X |41.

The converter for 212 + 1 is built according to
Eqn. (36). First, the value of |6 · (|X |17 − |X |241)|17 is
computed using an MOMA modulo 17. Next, a multiplier
by constant 241 is used, and the final addition of multiplier
output and |X |241 is done using a 13-bit adder.

The converter for 214 − 1 is built according to
Eqns. (37) and (28). First, the difference ||X |3 − |X |43|3
is computed using an MOMA modulo 22 − 1. Then, it
is multiplied by constant 43, and |X |3 is added to get
|X |129. The residue modulo 214 − 1 is finally computed
from |X |127 and |X |129 using the circuit of Fig. 9.

The converter for 214 + 1 is built according to
Eqns. (38) and (39). Equation (38) is implemented as a
three-level circuit. First, the difference |X |29 −|X |113 are
computed as an 8-bit U2 number. Next, the rest of calcu-
lations in |19 · (|X |29 − |X |113)|29 is performed using a
28 × 5 bit ROM. The ROM output is then multiplied by
constant 113 and |X |113 is added to the multiplier output
to get |X |3277. After obtaining |X |3277, the circuit based
on (39) is used. First, it computes ||X |5 − |X |3277|5 using
an MOMA consisting of two parts. The first part performs
computations modulo 24−1, the second part reduces 5-bit
output from the first part to 3-bit number modulo 22 + 1
by adding 2-bit wide fields of the 5-bit output. No neces-
sary corrections resulting from (24) are built into the CSA
tree forming an MOMA, thus the resulting a 3-bit vector

188 T. Tomczak

is next encoded using 3-input 3-output combinatorial cir-
cuit, which is synthesized using the truth table. Finally,
the combinatorial circuit output is multiplied by constant
3277, and |X |3277 is added to the multiplier output to get
the residue modulo 214 + 1.

The converter for 215 − 1 is built according to
Eqns. (40) and (41). First, the difference |X |7 − |X |151
is computed using an MOMA as a 4-bit number congru-
ent modulo 7 to |X |7 − |X |151. Next, multiplication by
2 modulo 7 and the multiplication by 151 are done us-
ing a 4-input combinatorial circuit synthesized according
to a suitable truth table. The residue |X |1057 is obtained
after the addition of |X |151 to the output of the combina-
torial circuit using a 10-bit adder. In the next stage, the
difference |X |31 − |X |1057 is computed using an MOMA
modulo 31 as a 7-bit number congruent modulo 31 to
|X |31 − |X |1057. The following multiplication by 21 mo-
dulo 31 is calculated using the 7-bit input 5-bit output
ROM. Since 1057 = 100001000012, the multiplication
of |21 · (|X |31 − |X |1057)|31 by 1057 is implemented as
a concatenation of three ROM outputs. The final addition
of the concatenation result and |X |1057 is done with a 15-
bit adder, which generates the unbiased result.

The converter for 215 + 1 is based on Eqns. (42)
and (43). The difference ||X |11 − |X |331|11 is computed
using an MOMA as a 6-bit number congruent modulo
2HP(11) + 1 = 25 + 1 to |X |11 − |X |331. The 6-bit wide
MOMA output feeds then the ROM, which calculates
the rest of operations from |2 · (|X |11 − |X |331)|11 · 331.
The residue |X |3641 is obtained after the addition of 12-
bit ROM output (the result of the multiplication of a
residue modulo 11 by 331) and |X |331. Next, an MOMA
modulo 9 is used to calculate a 4-bit number congru-
ent to ||X |9 − |X |3641|9. Then, the 4-bit MOMA output
feeds a combinatorial circuit which calculates the value of
|2 · (|X |9 − |X |3641)|9 · 3641. The final result is obtained
after the addition of |X |3641 using a 15-bit adder.

The converter for 218 + 1 is built according to
Eqns. (30), (44) and (45). For the residue modulo 26 + 1,
the circuit described before is used. The residue modulo
37 · 109 = 4033 is computed by the circuit based on (44).
The first level computes the difference |X |37 − |X |109 as
an 8-bit U2 vector using a 7-bit binary subtractor. Next,
the difference is partitioned into two nibbles, and two 24 ·6
bit ROMs are used to multiply low and high nibbles by 18
modulo 37. The multiplication results are then added in
an adder modulo 37, the result of addition is multiplied by
109 and, finally, |X |109 is added to get |X |4033. The ob-
tained residue modulo 4033 is then subtracted from |X |65
using a CSA that implements Eqn. (27). Next, a second
CSA is used to multiply the result by 22 modulo 65. The
multiplication result is then multiplied by 4033. The final
residue modulo 218 + 1 is obtained after the addition of
|X |4033 to the result of the multiplication by 4033.

The converter for 224 + 1 is based on Eqns. (46) and

0
1
2
3
4
5
6
7
8
9

10 20 30 40 50 60 70 80 90

N
um

be
r

of
ga

te
s

[1
03

]

Dynamic range [bit]

RNS3
RNS4
RNS5

HRNS small
HRNS fast

Fig. 10. Size in unit gates of reverse converters for RNS3:
the smallest implementation for the 3-moduli RNS
(2k − 1, 2k, 2k + 1), RNS4: the 4-moduli RNS (2k −
1, 2k, 2k + 1, 22k+1 − 1), RNS5: the 5-moduli RNS
(2k − 1, 2k, 2k + 1, 2k−1 − 1, 2k+1 − 1) and for
fast HRNS—the fastest and small HRNS—the smallest
implemented converters for the proposed HRNS.

(47). First, the difference |X |97 − |X |673 is computed as
an 11-bit U2 vector. Next, the values of two 4-bit fields
containing eight most significant bits of the vector are
multiplied by 16 modulo 97 with two 4-input ROMs, one
ROM for each field. For the rest of the vector (three least
significant bits), the multiplication by 16 modulo 97 is
done using a 3-input combinatorial circuit. The three re-
sults of multiplication are then added using an MOMA
modulo 97. Next, the result of the modulo addition is
multiplied by 673, and |X |673 is added to get |X |65281.
Having obtained |X |65281, the residue modulo |X |224+1

is computed according to Eqn. (47). First, the difference
|X |257 − |X |65281 is computed from (27) as a 10-bit vec-
tor congruent modulo 257 to ||X |257 − |X |65281|257. The
result is then multiplied by 86 modulo 257 by adding ro-
tated and/or complemented bit fields in a CSA tree built
on the basis of the periodicity property. The CSA output
represents the value of |86 · (|X |257 − |X |65281)|257. The
residue modulo 224+1 is obtained after the multiplication
of the CSA output by 65281 and the addition of |X |65281
to the result of multiplication by 65281.

The converter for 230 +1 is based on Eqns. (53), (49)
and (48). First, the circuits that realize Eqns. (49) and (48)
in parallel compute residues modulo 32513 and 33025,
which are then multiplied by constants (229−221+26+1)
and (229 +221−26 +1) and added with an MOMA to get
the residue modulo 230 + 1 (as shown in Eqn. (53)).

The circuit computing residue modulo 32513 is built
according to Eqn. (49). In the first step, the difference
|X |61 − |X |41 is computed as a U2 vector. The value en-
coded in three most significant bits of the vector is then

Hierarchical residue number systems with small moduli and simple converters 189

multiplied by 3 modulo 61 using a 3-input combinatorial
circuit. The output from the circuit is added modulo 61
to the four remaining bits of the difference multiplied by
3 giving the value of |3 · (|X |61 − |X |41)|61. |X |2501 is
obtained after the multiplication of this value by 41 and
the addition of |X |41. The next step is to find the residue
modulo 32513. First, the value of 8 · (|X |13 − |X |2501) is
computed using a CSA according to Eqn. (27). The result
is an 8-bit number congruent modulo 2HP(13)+1 = 26 +1
to |8 · (|X |13 − |X |2501)|13. Next, the four most signif-
icant bits of the result are reduced modulo 13 using a 4-
input ROM, and the obtained value is added to the remain-
ing four bits with an adder modulo 13. The adder output
is multiplied by 2051, and |X |2501 is added to the multi-
plication result to get the final residue modulo 32513.

The residue modulo 33025 is computed according to
Eqn. (48) in the parallel channel to the circuit computing
|X |32513. First, the difference |X |25−|X |1321 is computed
as a 12-bit U2 number which is partitioned into three 4-bit
wide fields, which are multiplied by 6 modulo 13 using
three 4-input ROMs. The ROM outputs are added with
an adder modulo 25, whose output is multiplied by 1321.
Finally, |X |1321 is added to the multiplication result to get
the residue modulo 33025.

Table 5. Size in standard unit-gates of converters from the RNS
(2k − 1, 2k, 2k + 1) and of the proposed HRNS con-
verters. The overhead in the last two columns is defined
as the difference between the number of gates required
for HRNS converters and for the RNS converter.

Range RNS HRNS Overhead
[bit] fast small fast small fast small

18 504 243 628 393 124 150
27 712 366 1102 693 390 327
30 836 401 1293 815 457 414
36 947 502 1694 1025 747 523
42 1095 586 2119 1348 1024 762
45 1220 628 2591 1487 1371 859
54 1507 754 3380 2163 1873 1409
72 2050 1006 4889 2934 2839 1928
90 2796 1258 8146 5013 5350 3755

4.2. Implementation results. The area and critical
path delay of the synthesized circuits are reported in
Tables 6 and 7. First, the two implementations of the
first step of reverse conversion are compared: the cir-
cuits proposed in this paper and converters based on the
CRT. Next, full reverse converters are built by adding
circuits that realize the conversion from the 3-moduli
RNS

(
2k − 1, 2k, 2k + 1

)
. The converters for the RNS(

2k − 1, 2k, 2k + 1
)

were chosen from two implementa-
tions: converters presented by Bi et al. (2004) and by
Wang et al. (2002). Since the area differences between
these two circuits are small (Table 7), the faster circuit was

used. For full, two step conversion, the comparison with
CRT implementation was not done, because the converters
for the RNS

(
2k − 1, 2k, 2k + 1

)
are superior in terms of

the area and delay compared to general converters based
on CRT due to the lack of ROMs and the multi-operand
adder modulo the RNS dynamic range.

The parameters from Table 6 show that for the pro-
posed HRNS class very efficient converters can be built
on the basis of the proposed equations. In all cases the
converters proposed in this paper are much smaller and
faster than implementations based on the CRT. Thus, the
proposed HRNS allows significant lowering the moduli
width with low conversion overhead compared to generic
converters based on the CRT.

Compared with converters for the RNS(
2k − 1, 2k, 2k + 1

)
by Wang et al. (2002), our con-

verters require additional hardware resources. However,
the total efficiency of the residue circuit depends on
arithmetic operations performance. Thus, the converter
overhead is compared with area savings for multipliers,
reported earlier in Table 3. The complexity of converters
is computed with a unit-gate model as in Section 3.1.
Due to irregular structures of HRNS converters, the area
of all converters is computed on the basis of netlists
generated by the Cadence RTL compiler. Each converter
was synthesized in two versions: the smallest and the
fastest, thus for each converter two netlists exist. For each
netlist the number of the employed library cells of every
type was extracted. Next, for each cell type the number of
basic gates was assigned based on the realised function,
e.g., for the AOI21X1 cell (not ((A and B) or C)) the
assumed area was 2. The buffers and inverters were not
taken into account. The computed converters area in unit
gates is shown in Table 5.

The comparison of the area overhead from Table 5
and multiplier area savings from Table 3 shows that only
in two cases (for 45- and 27-bit dynamic range) that the
additional converter area is larger than the area savings in
one multiplier. Thus, despite additional conversion cost,
the proposed HRNS allows reducing the total area due to
significant decrease in the multiplier area comparing to the
RNS

(
2k − 1, 2k, 2k + 1

)
.

The HRNS converter area was also compared with
the areas of converters for the 4-moduli RNS (2k −
1, 2k, 2k + 1, 22k+1 − 1) and the 5-moduli RNS (2k −
1, 2k, 2k + 1, 2k − 1 − 1, 2k+1 − 1) presented by Mola-
hosseini et al. (2010) and Cao et al. (2007). According to
Molahosseini et al. (2010), the area of the 4-moduli con-
verter was assumed to be 74k + 14 and the area for the
5-moduli converter was 5 5

6k2 + 162 1
6k + 7

6a − 7, where
a = k − 4, 9k − 12 and 5k − 8 for k = 6i − 2, 6i and
6i + 2, respectively. The results are shown in Fig. 10.

HRNS converters are larger than those for the 3-
and the 4-moduli RNS. However, the smallest version of
HRNS converters requires less gates than converters for

190 T. Tomczak

Table 6. Area [µm2] and critical path delay [ns] for output converters from the RNS defined by factors of 2k ± 1.

RNS range
CRT converters Proposed converters

smallest fastest smallest fastest
area delay area delay area delay area delay

26 − 1 555.65 1.522 690.34 1.078 100.90 0.978 213.06 0.423
26 + 1 527.02 1.448 643.88 0.940 169.89 0.858 347.28 0.548
29 − 1 1543.06 3.353 2125.93 2.004 208.84 1.333 460.38 0.654
29 + 1 1312.63 2.617 1717.17 1.586 485.26 1.702 665.47 0.935
210 − 1 1134.30 2.680 1724.68 1.442 322.41 2.162 694.56 1.013
210 + 1 1505.98 3.130 2294.88 1.854 603.52 1.873 890.26 1.143
212 − 1 1608.29 3.439 2605.08 1.703 482.91 2.522 1018.85 1.256
212 + 1 1816.19 5.138 3088.93 2.265 405.84 2.160 970.04 1.060
214 − 1 1841.06 4.339 3295.42 1.925 447.71 3.248 1085.96 1.348
214 + 1 2401.88 5.352 4065.55 2.386 1033.40 4.481 2033.95 2.235
215 − 1 2459.13 5.066 4371.53 2.116 788.89 4.094 1786.16 2.067
215 + 1 2278.92 6.141 4025.66 2.544 831.60 4.605 1824.64 1.986
218 − 1 3509.89 6.022 5863.43 2.515 1006.18 3.951 2055.53 1.658
218 + 1 3227.85 6.704 5872.35 2.586 1512.08 5.739 3381.78 2.665
224 − 1 4547.05 7.250 7732.19 2.527 1352.52 5.013 3251.78 1.978
224 + 1 4440.99 8.817 8804.07 3.168 2135.78 7.216 4276.73 3.034
230 − 1 5840.91 8.035 10954.40 2.504 2257.80 8.464 5848.89 2.862
230 + 1 6412.98 10.043 11075.48 3.257 4524.52 8.103 8307.55 3.527

Table 7. Area [µm2] and critical path delay [ns] for output converters from the RNS (2k − 1, 2k, 2k + 1) and for full converters from
the proposed HRNS.

k
Converter (Wang et al., 2002) Converter (Bi et al., 2004) Proposed converter
smallest fastest smallest fastest smallest fastest

area delay area delay area delay area delay area delay area delay

6 426.1 2.35 1162.0 0.67 508.7 2.71 1334.2 1.07 695.0 3.01 1571.7 1.28
9 637.3 3.22 1780.5 0.82 800.6 3.56 2049.0 1.13 1337.5 4.38 2926.6 1.74
10 686.1 3.30 2084.6 0.85 867.7 3.92 2447.4 1.17 1605.9 5.32 3379.4 2.03
12 788.9 4.48 2355.0 0.92 1032.9 4.41 2787.2 1.30 1724.7 6.32 4166.5 2.20
14 915.1 5.22 2725.7 0.99 1204.2 5.33 3444.7 1.31 2353.5 9.15 5525.1 3.22
15 980.4 5.57 3057.0 1.01 1300.0 5.77 3703.3 1.35 2621.0 9.47 6800.2 2.97
18 1175.6 6.80 3833.7 1.05 1551.0 6.83 4802.8 1.45 3822.5 11.52 8591.9 3.73
24 1570.3 8.96 5182.5 1.15 2090.3 9.32 6092.9 1.59 4987.2 14.99 12209.8 4.11
30 1949.9 11.10 6878.5 1.21 2610.7 11.37 8293.9 1.66 8976.3 19.15 20232.5 4.76

the 5-moduli RNS, although the number of moduli in the
HRNS is equal to 5 for dynamic ranges less than 230 and
larger than 5 for all RNSs with the dynamic range ≥ 230.
For example, the converter for the 90-bit HRNS with 12
moduli takes almost the same area as the converter for the
5-moduli RNS with the same dynamic range. This result
shows that converters for the proposed HRNS have much
better area characteristics than highly optimized convert-
ers for RNSs with moduli of the form 2k and 2k ± 1.

The fastest HRNS converters are larger than those for
the 5-moduli RNS, but for many HRNSs there are no 5-
moduli RNSs with similar dynamic ranges. Moreover, for
some 5-moduli RNSs with a similar dynamic range the
area overhead of the fastest HRNS converter can be off-
set by replacing 5-moduli multipliers with HRNS mul-
tipliers. For example, for the 90-bit dynamic range the

fastest HRNS converter is larger by 3169 logic gates and
the HRNS multiplier is smaller by 2522 logic gates. Thus,
the converter area overhead can be off-set by only two
multipliers.

It is worth noting that for the 90-bit dynamic range
the area of the smallest converter for the proposed HRNS
is similar to that of the converter for the 5-moduli RNS.
Thus, with comparable conversion cost, the HRNS offers
much more parallelism (12 moduli instead 5). This also
proves that the proposed idea of the multi-level HRNS
with a very simple top-level converter based on moduli
2k, 2k ± 1 results in a large dynamic range and a high
degree of parallel processing, allowing high performance
of the arithmetic circuit while maintaining low converter
cost.

Hierarchical residue number systems with small moduli and simple converters 191

5. Conclusion

In this work, the analysis of the hierarchical residue num-
ber system with the top level RNS (2k−1, 2k, 2k +1) was
presented, and detailed reverse converters structures were
given. The HRNS is constructed by representing residues
modulo 2k±1 in RNSs with the base consisting of factors
2k ± 1. The analysis of estimated multipliers area showed
that the proposed HRNS results in reducing the multipli-
ers area up to 49% compared to multipliers for the RNS
(2k−1, 2k, 2k +1) and up to 48% over the 4-moduli RNS
presented by Molahosseini et al. (2010). The HRNS mul-
tipliers area is comparable to or smaller up to 20% than the
area of the multipliers for the 5-moduli RNS presented by
Cao et al. (2007). Additionally, the HRNS can be used for
dynamic ranges for which the 5-moduli RNS cannot be
constructed.

The proposed reverse converters are larger than those
for the 3-moduli general RNS (2k−1, 2k, 2k+1), although
in all cases but two the converter area overhead is off-set
by single multiplier area savings. The proposed convert-
ers can be built as circuits smaller than converters for the
5-moduli general RNS by Cao et al. (2007) while in the
HRNS more moduli can be used (up to 12), allowing ad-
ditional savings on arithmetic circuits. Another advantage
of the proposed HRNS is the possibility to perform com-
plex arithmetic operations (e.g., sign detection) after par-
tial conversion to the RNS

(
2k − 1, 2k, 2k + 1

)
. The only

limitation of the presented HRNS class is the number of
dynamic ranges, but the proposed idea of replacing mo-
duli 2k ± 1 with their factors can also be applied to other
RNS sets, although some more research is required.

Acknowledgment

The author is greatly indebted to Prof. Janusz Biernat for
his strong support during the creation of this work, to Dr.
Piotr Patronik for stimulating conversations and a lot of
helpful comments, and to the anonymous reviewers for
many detailed remarks concerning the overall quality of
the paper.

References

Akus̆skij, I.J. and Judickij, D.I. (1968). Machine Arith-
metic in Residual Classes, Sovetskoje Radio, Moscow,
(in Russian).

Bi, S., Wang, W. and Al-Khalili, A. (2004). Modulo deflation in
(2n + 1, 2n, 2n − 1) converters, Proceedings of the 2004
International Symposium on Circuits and Systems, ISCAS
’04, Vancouver, BC, Canada, Vol. 2, pp. 429–432.

Biernat, J. (2007). Architecture of Residue Arithmetic Circuits,
Exit, Warsaw, (in Polish).

Cao, B., Chang, C.-H. and Srikanthan, T. (2003). An
efficient reverse converter for the 4-moduli set

(
2n − 1, 2n, 2n + 1, 22n + 1

)
based on the new Chi-

nese remainder theorem, IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications
50(10): 1296–1303.

Cao, B., Chang, C.-H. and Srikanthan, T. (2007). A residue-
to-binary converter for a new five-moduli set, IEEE
Transactions on Circuits and Systems I: Regular Papers,
54(5): 1041–1049.

Chokshi, R., Berezowski, K.S., Shrivastava, A. and Piestrak,
S.J. (2009). Exploiting residue number system for power-
efficient digital signal processing in embedded processors,
Proceedings of the 2009 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems,
CASES ’09, Grenoble, France, pp. 19–28.

Conway, R. and Nelson, J. (2004). Improved RNS FIR filter
architectures, IEEE Transactions on Circuits and Systems
II: Express Briefs 51(1): 26–28.

Hiasat, A.A. (2000). New efficient structure for a modu-
lar multiplier for RNS, IEEE Transactions on Computers
49(2): 170–174.

Mohan, P.V.A. (2001). Comments on “Breaking the 2n-bit carry
propagation barrier in residue to binary conversion for the
[2n − 1, 2n, 2n + 1] moduli set”, IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Appli-
cations 48(8): 1031.

Mohan, P.V. (2002). Residue Number Systems: Algorithms and
Architectures, Kluwer Academic Publishers, Norwell, MA.

Molahosseini, A., Navi, K., Dadkhah, C., Kavehei, O. and
Timarchi, S. (2010). Efficient reverse converter designs for
the new 4-moduli sets 2n − 1, 2n, 2n + 1, 22n+1 − 1 and
2n − 1, 2n + 1, 22n, 22n + 1 based on new CRTs, IEEE
Transactions on Circuits and Systems I: Regular Papers
57(4): 823–835.

Piestrak, S.J. (1994). Design of residue generators and multi-
operand modular adders using carry-save adders, IEEE
Transactions on Computers 43(1): 68–77.

Piestrak, S.J. (1995). A high-speed realization of a residue to bi-
nary number system converter, IEEE Transactions on Cir-
cuits and Systems II: Analog and Digital Signal Processing
42(10): 661–663.

Piestrak, S. and Berezowski, K. (2008a). Design of residue
multipliers-accumulators using periodicity, Proceedings of
the IET Irish Signals and Systems Conference, ISSC 2008,
Galway, Republic of Ireland, pp. 380–385.

Piestrak, S.J. and Berezowski, K.S. (2008). Architecture of ef-
ficient RNS-based digital signal processor with very low-
level pipelining, Proceedings of the IET Irish Signals and
Systems Conference, ISSC 2008, Galway, Republic of Ire-
land, pp. 127–132.

Skavantzos, A. and Abdallah, M. (1999). Implementation is-
sues of the two-level residue number system with pairs of
conjugate moduli, IEEE Transactions on Signal Process-
ing 47(3): 826–838.

Soderstrand, M.A., Jenkins, W.K., Jullien, G.A. and Taylor, F.J.
(Eds.) (1986). Residue Number System Arithmetic: Mod-
ern Applications in Digital Signal Processing, IEEE Press,
Piscataway, NJ.

192 T. Tomczak

Stine, J. E., Grad, J., Castellanos, I., Blank, J., Dave, V., Prakash,
M., Iliev, N. and Jachimiec, N. (2005). A framework for
high-level synthesis of system-on-chip designs, Proceed-
ings of the International Conference on Microelectronic
Systems Education, Anaheim, CA, USA, pp. 11–12.

Tomczak, T. (2008). Fast sign detection for RNS (2n −
1, 2n, 2n +1), IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications 55(6): 1502–
1511.

Wang, W., Swamy, M.N.S., Ahmad, M.O. and Wang, Y.
(2000). A high-speed residue-to-binary converter for three-
moduli

(
2k, 2k − 1, 2k−1 − 1

)
RNS and a scheme for

its VLSI implementation, IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing
47(12): 1576–1581.

Wang, W., Swamy, M.N.S., Ahmad, M.O. and Wang, Y. (2003).
A study of the residue-to-binary converters for the three-
moduli sets, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 50(2): 235–243.

Wang, W., Swamy, M.N.S. and Ahmad, M.O. (2004). RNS
application for digital image processing, Proceedings of
the 4th IEEE International Workshop on System-on-Chip
for Real-Time Applications, IWSOC’04, Banff, Alberta,
Canada, pp. 77–80.

Wang, Y. (2000). Residue-to-binary converters based on new
chinese remainder theorems, IEEE Transactions on Cir-
cuits and Systems II: Analog and Digital Signal Processing
47(3): 197–205.

Wang, Y., Song, X., Aboulhamid, M. and Shen, H. (2002).
Adder based residue to binary number converters for (2n−
1, 2n, 2n + 1), IEEE Transactions on Signal Processing
5(7): 1772–1779.

Wang, Z., Jullien, G.A. and Miller, W.C. (2000). An improved
residue-to-binary converter, IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications,
47(9), pp. 1437–1440.

Wnuk, M. (2008). Remarks on hardware implementation of
image processing algorithms, International Journal of Ap-
plied Mathematics and Computer Science 18(1): 105–110,
DOI: 10.2478/v10006-008-0010-2.

Yassine, H.M. (1992). Hierarchical residue numbering system
suitable for VLSI arithmetic architectures, Proceedings of
the IEEE International Symposium on Circuits and Sys-
tems, ISCAS ’92, San Diego, CA, USA, pp. 811–814.

Zimmermann, R. (1998). VHDL library of arithmetic units, Pro-
ceedings of the 1st International Forum on Design Lan-
guages, FDL’98, Lausanne, Switzerland,
http://www.iis.ee.ethz.ch/~zimmi
/publications/arith_lib_fdl.ps.gz.

Zimmermann, R. (1999). Efficient VLSI implementation of mo-
dulo (2n ± 1) addition and multiplication, Proceedings of
the 14th IEEE Symposium on Computer Arithmetic, Ade-
laide, Australia, pp. 158–167.

Tadeusz Tomczak received his M.Sc. and Ph.D.
degrees in computer science from the Institute
of Computer Engineering, Control and Robotics,
Wrocław University of Technology, Poland, in
2002 and 2007, respectively. Currently he is with
the same university. His research interests in-
clude fast computation hardware, parallel com-
puting including massively parallel processors,
and computationally intensive algorithms.

Received: 31 December 2009
Revised: 28 July 2010

http://www.iis.ee.ethz.ch/~zimmi
/publications/arith_lib_fdl.ps.gz.

	Introduction
	RNS basics
	Periodicity property
	Reverse conversion

	New HRNS class
	Multiplier's complexity
	Conversion from the HRNS
	Conversion for 2^6 + 1
	Conversion for 2^9 − 1
	Conversion for 2^9 + 1
	Conversion for 2^10 − 1
	Conversion for 2^10 + 1
	Conversion for 2^12 + 1
	Conversion for 2^14 − 1
	Conversion for 2^14 + 1
	Conversion for 2^15 − 1
	Conversion for 2^15 + 1
	Conversion for 2^18 + 1
	Conversion for 2^24 + 1
	Conversion for 2^30 + 1

	Conversion to the HRNS

	Implementation of reverse converters
	Conversion circuits
	Implementation results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

