
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 1, 57–68
DOI: 10.2478/v10006-011-0004-3

APPLICATION OF AGENT–BASED SIMULATED ANNEALING AND TABU
SEARCH PROCEDURES TO SOLVING THE DATA

REDUCTION PROBLEM

IRENEUSZ CZARNOWSKI, PIOTR JĘDRZEJOWICZ

Department of Information Systems
Gdynia Maritime University, Morska 83, 81–225 Gdynia, Poland

e-mail: {irek,pj}@am.gdynia.pl

The problem considered concerns data reduction for machine learning. Data reduction aims at deciding which features
and instances from the training set should be retained for further use during the learning process. Data reduction results
in increased capabilities and generalization properties of the learning model and a shorter time of the learning process.
It can also help in scaling up to large data sources. The paper proposes an agent-based data reduction approach with
the learning process executed by a team of agents (A-Team). Several A-Team architectures with agents executing the
simulated annealing and tabu search procedures are proposed and investigated. The paper includes a detailed description of
the proposed approach and discusses the results of a validating experiment.

Keywords: data reduction, machine learning, A-Team, optimization, multi-agent system.

1. Introduction

Learning from examples remains the most important pa-
radigm of machine learning. It is understood as the pro-
cess of finding a model (or a function) that describes and
distinguishes data classes or concepts, for the purpose of
being able to use the model to predict the class of objects
whose class labels are unknown (Talukdar et al., 1996).
The process of finding a classification model is also called
the learning process or the learning classifier and the final
model is, in short, called the classifier. Training classifiers
is also considered a basic task in many application areas,
including, for example, data mining, pattern recognition
and computer vision.

Research in the field of machine learning resulted
in the development of numerous approaches and algori-
thms for identifying classes (clustering), discovering asso-
ciations and predicting new, unknown objects (classifica-
tion). The last one, i.e., the classification problem, is con-
sidered here. One of the recent focuses of such research
includes methods of selecting relevant information. Data
reduction techniques are approaches to lower the quantity
of information. In practice, this means that these appro-
aches are concerned with selecting informative instances
and, finally, with producing a minimal set of instances or
prototypes to represent a training set and presenting the

reduced dataset to a machine learning algorithm (Wilson
and Martinez, 2000a). It is obvious that removing some in-
stances from the training set reduces the time and memory
complexity of the learning process (Hart, 1968). Data re-
duction performed without losing extractable information
is also considered an approach to increase the effective-
ness of the learning process when the available datasets
are large, such as those encountered in data mining, text
categorization, financial forecasting, the mining of multi-
media databases and meteorological, financial, industrial
or science repositories (Kim and Oommen, 2003).

Selecting relevant data is also one of approaches to
data mining, when data are stored in separated and phy-
sically distributed repositories. Moving all of the data to
a central site and building a single global learning model
may not be feasible due to restricted communication ban-
dwidth among sites or high expenses involved. The se-
lection of relevant data in distributed locations and then
moving only the local patterns can eliminate or reduce the
above restrictions and speed up the distributed learning
process (Czarnowski, 2010).

Data reduction is often called editing, condensing,
filtering, etc, and that depends on the object of reduction.
Data reduction can be achieved by selection of instances,
or attributes/features, or by simultaneous reduction in both

{irek,pj}@am.gdynia.pl

58 I. Czarnowski and P. Jędrzejowicz

dimensions (Bhanu and Peng, 2000). Since instance selec-
tion and feature selection are known to belong to the NP-
hard problem class (Hamo and Markovitch, 2005; Kohavi
and John, 1997), none of the approaches proposed so far
can be considered superior nor guaranteeing satisfactory
results in terms of learning error reduction or increased
efficiency of the learning process. Hence, searching for
robust and efficient approaches to data reduction is still a
lively field of research. This paper focuses on data reduc-
tion through simultaneous instance and feature selection.

The main contribution of the paper is proposing and
evaluating through a computational experiment an appro-
ach to data reduction with the learning process executed
by a team of agents, and discussing its alternative architec-
tures. The investigated architectures are based on various
combinations of agents working within an A-Team and
executing the simulated annealing and tabu search proce-
dures.

The goal of the paper is to establish experimentally
how the cooperation of agents within different team ar-
chitectures can influence the learning performance of the
classifier developed using the obtained reduced dataset.
The proposed agent-based approach is compared with that
where the data reduction problem is solved using standard
simulated annealing and tabu search algorithms. The per-
formance of the proposed algorithms is evaluated experi-
mentally using several UCI datasets (Asuncion and New-
man, 2007). The obtained results are also compared with
some state-of-the-art approaches to data reduction.

The paper is organized as follows. Section 2 contains
the formulation of the data reduction problem and briefly
overviews data reduction algorithms. Section 3 gives so-
me details on simulated annealing, tabu search, and agent-
based population learning algorithms. Section 4 expla-
ins main features of the proposed implementation of the
agent-based data reduction algorithm. Section 5 provides
details on the computational experiment setup and discus-
ses its results. Finally, the last section contains conclu-
sions and suggestions for future research.

2. Data reduction

2.1. Problem formulation. The problem of learning
from data can be formulated as follows. Given a dataset
D, a set of hypothesis H , a performance criterion P , the
learning algorithm L outputs a hypothesis h ∈ H . The da-
ta D consist of N training examples, also called instances.
Each example is described by a set A of n features.

The goal of learning is to find L producing h ∈ H to
optimize the performance criterion P . In the pattern clas-
sification application, h is a classifier that has been indu-
ced based on the set D.

The learning process can be reinforced by data pre-
processing of which data reduction is an important part.
The data reduction process aims at finding patterns or re-

gularities within certain features, allowing inducing the
so-called prototypes or reference vectors. The ultima-
te goal of data reduction, also called prototype reduc-
tion (Nanni and Lumini, 2009), is to reduce the size
of the training dataset without losing extractable infor-
mation. A lot of research work confirms that data re-
duction through instance or feature or instance and fe-
ature selection can play a pivotal role in building ro-
bust learning models (Bhanu and Peng, 2000; Dash and
Liu, 1997; Hart, 1968; Kirkpatrick et al., 1983; Kuncheva
and Bezdek, 1998; Wilson and Martinez, 2000a).

It can be stipulated that data reduction should be con-
sidered the problem of finding an optimal subset of proto-
types. In the formal manner, the problem of data reduction
can be formulated as follows. Given a learning algorithm
L, and a dataset D with features described by a feature set
A, the optimal prototype dataset, Sopt, is a subset of the
dataset D, where each example is described by a set of
A′ ⊂ A, such that the performance criterion of the lear-
ning algorithm L is maximized. Commonly used perfor-
mance criteria include the accuracy of classification, the
complexity of the hypothesis, classification cost or classi-
fication error.

With respect to learning from data, when a data re-
duction process is carried out, the task of the learner L is
to output the hypothesis h ∈ H that optimizes the perfor-
mance criterion P using the dataset S which is a subset of
the set D, such that |S| < |D| (ideally S = Sopt), where
each example x ∈ S is described by a set A′ of m features,
where m < n.

2.2. Data reduction algorithms. Data reduction algo-
rithms can be divided into two categories: prototype se-
lection and prototype extraction. Prototype selection is a
technique of choosing an optimal set of reference vectors
from the original set, whereas prototype extraction me-
ans constructing an entirely new set of instances smaller,
with respect to its dimensionality, than the original data-
set (Bezdek and Kuncheva, 2001). This paper deals with
prototype selection.

Data reduction can be carried out in the feature or
instance space or in both of these spaces simultaneously.
Instance selection methods can be classified on the basis
of several different criteria. Raman (2003) points out that
instance selection methods can be grouped into three clas-
ses: filter methods, wrapper methods, and embedded me-
thods. Filtering is based on random search, random sam-
pling or genetic algorithms. In this case, selected instan-
ces are tested to find out whether they come from the same
distribution as the original entry dataset and whether the
current reduced dataset is sufficient to produce the desired
classifier. Wrapper methods include boosting, where the
distribution of data is modified (Raman, 2003). The win-
dowing technique (Quinlan, 1993) belongs also to wrap-
per methods. Lazy learners, like the k nearest neighbors

Application of agent-based simulated annealing and tabu search procedures. . . 59

method, belong to embedded methods. In this class of
methods the instance selection strategy is integrated with
their learning scheme (Raman, 2003).

Wilson and Martinez (2000a) suggested that instan-
ce selection methods can be categorized into incremental
search, decremental search and batch search. Incremental
search begins with an empty set of prototypes and adds
each instance to the reduced set if it fulfills some crite-
rion (example approaches include CNN (Hart, 1968), the
IB family (Aha et al., 1999) or SNN (Ritter et al., 1975)).
Decremental search begins with S = D and successfully
removes instances from S (example approaches include
ENN (Wilson and Martinez, 2000b) or the DROP fami-
ly (Wilson and Martinez, 2000b)). Finally, in the batch
search mode, instances fulfilling the removal criteria are
removed at one go.

Bezdek and Kuncheva (2001) group instance selec-
tion into three categories: condensation, error-edition, and
search methods. The object of condensation methods is
to find a consistent reference set. The original condensa-
tion method is CNN. Error-edition methods rely on the
assumption that points from different classes that are clo-
se to apparent boundaries between them contain “noise”
and should be removed from the original dataset. This ca-
tegory includes, for example, the DROP algorithm family.
The last category includes search methods that can achie-
ve the same goal by criterion-driven combinational opti-
mization. This group includes local search heuristics, ta-
bu search, and metaheuristics, like for example, particle
swarm optimization, simulated annealing, genetic algori-
thms or evolutionary algorithms (e.g., Kuncheva and Bez-
dek, 1998; Nanni and Lumini, 2009; Skalak, 1994; Song
and Lee, 1996).

The feature selection approaches can be grouped in-
to two main classes: filter and wrapper methods. The for-
mer choose the best attribute set optimizing some assu-
med evaluation function, like, for example, distance, in-
formation value, dependency or consistency (Dash and
Liu, 1997). A distinctive feature of filter methods is that
they remove irrelevant features before the data are pre-
sented to the learning algorithm (Raman, 2003). Wrapper
methods use the performance of the learning algorithm as
the evaluation function and the classifier error rate is con-
sidered as the feature selection criterion. Other approaches
attempt to evaluate, rank and select some subsets of featu-
res generated by heuristic, random or genetic search. A
detailed discussion of feature selection approaches can be
found in the works of Dash and Liu (1997), Kohavi and
John (1997), Raman (2003) or Zongker and Jain (1996).

In the case of simultaneous reduction in both discus-
sed dimensions some sophisticated heuristics or random
search techniques are used. An example of the heuristic
approach to data reduction can be found in the research
by Raman (2003), who combines the SCRAP feature se-
lection algorithm and LASER instance selection. The for-

mer is a sequential search filter and the latter an embedded
instance method. It is also shown that such combination
can yield maximum improvement to prediction accuracy
of the learner compared with the case when only one di-
mension is reduced. Skalak (1994) proposes a random
mutation hill climbing algorithm for selecting the most
accurate of a prototype set. The algorithm uses a repre-
sentation that records both the instances and features in
a single binary string. The length of the string is adequ-
ate to the number of bits required to represent the selected
prototypes and to the number of features. Within such a
representation the i-th bit records whether to use the corre-
sponding instance or feature. The search mechanism is ba-
sed on the fact that the mutation of the bit vector changes
the selection of the instances or features. At each iteration
of the algorithm only one bit is muted. The idea of data
reduction by the genetic algorithm is discussed by Roz-
sypal and Kubat (2003). In this approach each solution is
described by two chromosomes, one representing the se-
lected instances and the other representing the selected fe-
atures. Each chromosome consists of integers which point
to selected instances or features. Such encoding is more
flexible in a domain with many instances as opposed to a
binary chromosome representation proposed by Kuncheva
and Jain (1999).

Another approach to data reduction is proposed in the
work of Czarnowski and Jędrzejowicz (2010), where da-
ta reduction in both of the discussed dimensions is inte-
grated with the learning process. Similar ideas are inve-
stigated by Aksela (2007), Bhanu and Peng (2000), Bull
(2004) or Sahel et al. (2007). Integration of data reduc-
tion with the learning process may require introduction of
some adaptation mechanisms as exemplified by the idea
of learning classifier systems (Bull, 2004). Unfortunately,
integrating the data reduction and classifier construction
stages leads to a considerable enlargement of the decision
space and hence the complexity of the problem. One po-
ssible way of dealing with such complexity was proposed
by Czarnowski and Jędrzejowicz (2010). Considering that
feature and instance selection are themselves computatio-
nally difficult, obtaining effective solutions in the case of
the discussed integrative approaches requires application
of some sophisticated metaheuristics and local search ran-
dom techniques executed in parallel computational envi-
ronments.

3. Simulated annealing, tabu search and
an agent-based population learning
algorithm for data reduction

3.1. Simulated annealing. The idea of using simulated
annealing (SA) was proposed by Kirkpatrick et al. (1983).
SA is a local search technique simulating the physical pro-
cess of “annealing”. In contrast to other metaheuristics as,
for example, population based techniques, in the SA a sin-

60 I. Czarnowski and P. Jędrzejowicz

gle solution is maintained. SA starts with a random solu-
tion and next, at each step during neighbourhood search, a
move is made. Moves are controlled by some probability
function. The acceptance of a downhill move depends on
the magnitude of the decrease in the objective function va-
lue and the search time. The pseudocode of the basic SA
algorithm is shown as Algorithm 1. More details of this
algorithm and its applications can be found in the work
of Aarts and van Laarhoven (1987).

Algorithm 1
Simulated annealing algorithm

1. Set an initial temperature T0 and a low
temperature TL;
2. Set the number of iterations I;
3. Set the control temperature Ti := T0;
4. Set i := 0;
5. Form an initial solution s;
6. Calculate the fitness of s : f(s);
7. While (i < I)
8. Execute a move producing a new solution s′;
9. Calculate the fitness of s′: f(s′);
10. If (s′ is better than s) then s := s′;
11. Else
12. Generate a random number d in the interval (0, 1);
13. If (d < exp(mod (f(s) − f(s′))/Ti))

then s := s′;
14. End if
15. Update the control temperature Ti := f(T0, TL, i);
16. i := i + 1;
17. End while.

3.2. Tabu search. Tabu search (TS) is a heuristic local
search introduced by Glover (1989; 1990). It is an inte-
resting alternative to randomized methods and enhances
the performance of the local search method. TS operates
on one solution called the current one. It starts with a ran-
dom solution or a solution generated by some other tech-
nique implemented with a view of producing the initial
solution. Next, at each step, the TS algorithm performs
a move which replaces the current solution with its ne-
ighbor from a neighborhood. A move is defined by a ne-
ighborhood function that with each solution associates a
set of neighbor solutions. A move can take place only if
it is not on the tabu list. The tabu list is a short memory
structure used to prevent cycling and to escape from lo-
cal optima. Each executed move is placed on the tabu list
for a number of iterations called the tabu tenure. Finally, a
new solution is reached from the current solution. This
is repeated over and over until some stopping criterion
is satisfied. TS has been successfully applied to a varie-
ty of difficult combinatorial optimization problems (e.g.,
Glover and Laguna, 1993). The pseudocode of the basic
tabu search algorithm is shown as Algorithm 2. More de-

tails of this algorithm and its applications can be found in
the work of Glover and Laguna (1993).

Algorithm 2
Tabu search algorithm

1. Set i := 0;
2. Set the number of iterations I;
3. Initiate the list of tabu active moves consisting of moves
which are not on tabu list TM := ∅;
4. Set the tabu tenure t;
5. Form an initial solution s;
6. While (i < I)
7. Execute a move producing a new solution s′;
8. If (s′ is better than s) then s := s′;
9. End if
10. Update TM and remove the moves older than t
from the tabu list;
11. i := i + 1;
12. End while.

3.3. Agent-based population learning algorithm.
The A-Team architecture has served as a problem-solving
paradigm used to design the proposed population learning
algorithm. The A-Team concept was originally introduced
by Talukdar et al. (1996). The concept of the A-Team was
motivated by several approaches like blackboard systems
and evolutionary algorithms, which proved to be able to
successfully solve some difficult combinatorial optimiza-
tion problems. Within an A-Team, agents achieve an im-
plicit cooperation by sharing a population of solutions to
the problem to be solved. Following evolutionary algori-
thms, such solutions form a population consisting of indi-
viduals.

An A-Team can also be defined as a set of agents
and a set of memories, forming a network in which every
agent remains in a closed loop. Each agent possesses some
problem-solving skills and each memory contains a popu-
lation of temporary solutions to the problem at hand. This
also means that such an architecture can deal with seve-
ral searches conducted in parallel. In each iteration of the
process of searching for the best solution, agents coopera-
te to construct, find and improve solutions which are read
from the shared, common memory. All agents can work
asynchronously and in parallel.

The main functionality of the agent-based population
learning approach includes organizing and conducting the
process of searching for the best solution. It involves a
sequence of the following steps:

• Generation of the initial population of solutions to be
stored in the common memory.

• Activation of optimizing agents which apply solution
improvement algorithms to solutions drawn from the

Application of agent-based simulated annealing and tabu search procedures. . . 61

common memory and store them back after the at-
tempted improvement applying some user defined re-
placement strategy.

• Continuation of the reading–improving–replacing
cycle until a stopping criterion is met. Such a cri-
terion can be defined either or both as a predefined
number of iterations or a limiting time period during
which optimizing agents do not manage to improve
the current best solution. After computation has been
stopped, the best solution achieved so far is accepted
as the final one.

More information on the population learning algori-
thm with optimization procedures implemented as agents
within an asynchronous team of agents (A-Team) can be
found in the work of Barbucha et al. (2009), where also
several A-Team implementations are described.

4. A-Team with simulated annealing and
tabu-search optimizing agents

Data reduction and learning from examples are compu-
tationally difficult combinatorial optimization problems
(see, e.g., Hamo and Markovitch, 2005; Kohavi and John,
1997). The proposed approach, integrating features such
as heuristics like evolutionary computation (Michalewicz,
1996), local search algorithms (Glover and Laguna, 1993),
or the population learning algorithm (Jędrzejowicz, 1999),
has the ability to solve such a combinatorial optimiza-
tion problem. The paper proposes several A-Team archi-
tectures in which optimizing agents execute the simula-
ted annealing and tabu search procedures with a view to
solve instances of the data reduction problem. The ap-
proach is named ABRA (Agent-Based Data Reduction
Algorithm). To implement it, one has to set and define the
following:

• solution representation format,

• initial population of individuals,

• fitness function,

• neighborhood search procedure,

• replacement strategy implemented for managing the
population of individuals.

4.1. Solution representation format. In the discussed
case the shared common memory is used to store a popu-
lation of solutions to the data reduction problem. A poten-
tial solution is represented by a string consisting of two
parts. Its first part represents numbers of the selected refe-
rence instances. The second part includes numbers of the
selected features.

4.2. Initial population. The initial population of so-
lutions is generated randomly. When it is generated, the
instances are grouped into clusters using an instance gro-
uping procedure. The instance grouping procedure uses
the values of the similarity coefficient computed as in the
work of Czarnowski and Jędrzejowicz (2004) to identify
clusters of instances.

To show the instance grouping procedure in a for-
mal manner, the following notation has to be introduced.
Let x denote a training example, N the number of in-
stances in the set D and n the number of features. The
total length of each instance (i.e., the training example)
is equal to n + 1, where the element numbered n + 1
contains the class label. The class label of each example
can take any value from a finite set of decision classes
C = {cl : l = 1, . . . , k}, which has cardinality k. Also,
let X = {xij : i = 1, . . . , N ; j = 1, . . . , n + 1} denote
the matrix of n + 1 columns and N rows containing va-
lues of all instances from D. The detailed pseudo-code of
the procedure producing clusters of instances is shown as
Algorithm 3.

Algorithm 3
Instance grouping procedure

Input: X , the matrix containing the values of all instances
from D.
Output: clusters from which prototypes can be selected.
1. Transform data instances: each {xij} for i = 1, . . . , N
and j = 1, . . . , n is normalized into interval [0, 1] and then
rounded to the nearest integer, that is, 0 or 1;
2. Determine

sj =
N∑

i=1

xij , (1)

where j = 1, . . . , n.
3. For instances from X , belonging to the class cl (where
l = 1, . . . , k), compute the value of its similarity coeffi-
cient Ii:

∀x:xi,n+1=cl
Ii =

n∑

j=1

xijsj , (2)

where i = 1, . . . , N.
4. Map input vectors from X with the same value of the
similarity coefficient Ii into clusters.
5. Let Y1, . . . , Yt denote the obtained clusters such that
D =

⋃t
i=1 Yi and ∀i�=j:i,j=1,...,t Yi ∩ Yj = ∅.

Random selections of instances from such clusters
produced by Algorithm 3 constitute the main step of the
first stage of generating the initial population of individu-
als. The number of selected instances is equal to the num-
ber of initialized clusters, which means that in a feasible
solution each cluster is represented by a single instance
from the training set.

62 I. Czarnowski and P. Jędrzejowicz

The second part of a string representing the solution
to the data reduction problem and containing numbers of
the selected features is, at this stage, generated random-
ly. To assure the required diversity, the initial solutions
are drawn in such a way that random individuals represent
different numbers of features. The discussed part of the
string has a length of minimum 1 and maximum n.

4.3. Fitness function. Each solution from the popula-
tion is evaluated and the value of its fitness is computed.
The fitness function is the predictive accuracy on the data-
set, which is constructed taking into account the instances
and features as indicated by the solution, using the lear-
ning algorithm.

4.4. Optimizing agents. In the proposed approach the-
re are two kinds of optimizing agents operating on indivi-
dual solutions. These are SA and TS agents. Each opti-
mizing agent tries to improve the quality of the obtained
solutions by applying the respective SA or TS algorithm,
aiming at finding a better solution.

SA optimizing agents use the following three moves
to explore the neighborhood of the solution:

• Instance replacement procedure (IRP): the move is
defined as replacing a randomly selected instance
from a randomly chosen cluster with some other ran-
domly chosen instance thus far not included within
the solution. The pseudocode of the IRP is shown as
Algorithm 4.

Algorithm 4
Instance replacement procedure

Input: s, individual representing a solution; L, list of num-
bers of instances not in s; t, number of clusters in s.
Output: s′, modified solution.
1. Set k by drawing it at random from {1, 2, . . . , t};
2. Identify r which is an instance number representing the
k-th cluster of s;
3. Set r′ by drawing it at random from L;
4. Replace the instance numbered r by the instance num-
bered r′ within the k-th cluster of s thus producing indivi-
dual s′.

• Feature replacement procedure (FRP): the move is
defined as replacing a randomly selected feature with
some other random feature thus far not included wi-
thin the solution. The pseudocode of the FRP is
shown as Algorithm 5.

Algorithm 5
Feature replacement procedure

Input: s, individual representing a solution; M , list of
numbers of features in s; M ′, list of numbers of featu-
res not in s.

Output: s′, modified solution.
1. Set f by drawing it at random from M ;
2. Set f ′ by drawing it at random from M ′;
3. Replace f in s by f ′ thus producing s′.

• Feature adding/removing procedure (FARP): the mo-
ve is defined as adding a new feature so far not in-
cluded within the solution or removing a random-
ly selected feature from the solution. Operations of
adding or removing a feature are equally likely. The
pseudocode of the FARP is shown as Algorithm 6.

Algorithm 6
Feature adding/removing procedure

Input: s, individual representing a solution; M , list of
the numbers of features in s; M ′, list of the numbers of
features not in s.
Output: s′, modified solution.
1. Set h by drawing it at random from the set {0, 1};
2. If (h == 0) then
3. Set f ′ by drawing it at random from M ′;
4. Add f ′ to s producing s′;
5. Else
6. Set f by drawing it at random from M ;
7. Remove f from s producing s′;
8. End if.

The TS optimizing agents use the following two mo-
ves to explore the neighborhood of the solution:

• Instance exchange with the tabu list (IETL): the mo-
ve is defined as replacing a randomly selected instan-
ce from a randomly chosen cluster with some other
randomly chosen instance providing the exchange is
tabu active, and not on the tabu list. The pseudocode
of the IETL is shown as Algorithm 7.

Algorithm 7
Instance exchange with tabu list

Input: s, individual representing the current solution; L,
list of numbers of instances not in s; t, number of clusters
in s; TM , list of tabu active moves.
Output: s′, modified solution.
1. Set k by drawing it at random from {1, 2, . . . , t};
2. Identify r which is an instance number representing the
k-th cluster of s;
3. Set r′ by drawing it at random from L;
4. If (r′ /∈ TM) then
5. Replace the instance numbered r by the instance num-
bered r′ within the k-th cluster of s thus producing indivi-
dual s′;
6. Add r to TM ;
7. End if.

Application of agent-based simulated annealing and tabu search procedures. . . 63

• Feature selection with the tabu list (FSTL): the mo-
ve is defined as replacing, adding or removing a ran-
domly selected feature with some other random fe-
ature thus far not included within the current solution
providing the operation is tabu active and not on the
tabu list. The pseudocode of the FSTL is shown as
Algorithm 8.

Algorithm 8
Feature selection with tabu list

Input: s, individual representing the current solution; M ,
list of numbers of features in s; M ′, list of numbers of
features not in s; TM , list of tabu active moves.
Output: s′, modified solution.
1. Set h by drawing it at random from
the set {0, 1, 2};
2. If (h == 0) then
3. Set f ′ by drawing it at random from M ′;
4. If (f ′ /∈ TM) then
5. Add f ′ to s producing individual s′;
6. End if;
7. End if;
8. If (h == 1) then
9. Set f by drawing it at random from M ;
10. Remove f from s producing individual s′;
11. Add f to TM ;
12. End if;
13. If (h == 2) then
14. Set f ′ by drawing it at random from M ′;
15. If (f ′ /∈ TM) then
16. Set f by drawing it at random from M ;
17. Replace f in s by f ′ thus producing
individual s′;
18. Add f to TM ;
19. End if;
20. End if.

4.5. Replacement strategy. The proposed A-Team
uses a simple replacement strategy. Each optimizing agent
obtains a solution drawn at random from the population of
solutions (individuals). The solution returned by the opti-
mizing agent is merged with the current population repla-
cing the current worst solution.

5. Computational experiment

5.1. Computational experiment settings. To validate
the proposed approach, we decided to carry out a compu-
tational experiment. It aimed at answering the following
questions:

• Does ABRA perform better than the standard simula-
ted annealing approach?

• Does ABRA perform better than the standard tabu se-
arch approach?

• Does the choice of the A-Team architecture influence
the performance of the classification model?

In the reported research, the following A-Team con-
figurations have been considered:

• ABRA #1: one optimizing agent running the simula-
ted annealing algorithm using one of the neighbor-
hood search moves randomly drawn from the three
implemented procedures, that is the IRP, the FRP or
the FARP.

• ABRA #2: two optimizing agents—one running the
simulated annealing algorithm using the IRP neigh-
borhood search procedure and the other running the
simulated annealing algorithm using one of the ne-
ighborhood search moves randomly drawn from the
two implemented procedures, that is the FRP or the
FARP.

• ABRA #3: three optimizing agents, each running the
simulated annealing algorithm using the implemen-
tation of the IRP, the FRP and the FARP, respective-
ly.

• ABRA #4: one optimizing agent running the tabu se-
arch algorithm using one of the neighborhood func-
tions randomly drawn from the two implemented
procedures, that is, IETL or FSTL.

• ABRA #5: two optimizing agents—one running the
tabu search algorithm with the IETL move and the
second running the tabu search algorithm with the
FSTL move.

• ABRA #6: two optimizing agents—one running the
simulated annealing algorithm using one of the ne-
ighborhood search moves randomly drawn from the
three implemented procedures, that is, the IRP, the
FRP or the FARP and the other running the tabu se-
arch algorithm using one of the neighborhood func-
tions randomly drawn from the two implemented
procedures, that is, IETL or FSTL.

• ABRA #7: two optimizing agents—one running the
simulated annealing algorithm with the IRP move
and the other running the tabu search algorithm with
the FSTL move.

• ABRA #8: two optimizing agents—one running the
simulated annealing algorithm with the neighborho-
od search moves, that is, the FRP or the FARP, the
other running the tabu search algorithm with the
IETL move.

In each of the above cases, random drawing (if ap-
plicable) takes place at each iteration, that is, each time a
solution to be improved has been forwarded to an optimi-
zing agent.

64 I. Czarnowski and P. Jędrzejowicz

5.2. Dataset choice and the experiment plan. Da-
tasets used in the experiment were obtained from the
UCI Machine Learning Repository (Asuncion and New-
man, 2007). They include Cleveland heart disease (303
instances, 13 attributes, 2 classes, the best reported clas-
sification accuracy 90% (DataSet, 2009)), credit appro-
val (690, 15, 2, 86.9% (DataSet, 2009)), Wisconsin bre-
ast cancer (699, 15, 2, 97.5% (Asuncion and New-
man, 2007)), and the sonar problem (208, 60, 2, 87.1%
(DataSet, 2009)).

Each benchmarking problem was solved 30 times,
and the experiment plan involved three repetitions of the
10-cross-validation scheme. The reported values of the
quality measure were averaged over all runs. The quality
measure in all cases was the correct classification ratio. In
the 10-cross-validation scheme, for each fold, the training
dataset was reduced using the proposed approach.

During the experiment the population size for each
investigated A-Team architecture was set to 20. The pro-
cess of searching for the best solution was stopped either
after 100 iterations or earlier in case there was no improve-
ment of the current best solution for one minute of compu-
tation. The values of these parameters were set arbitrarily.

In the case of the simulated annealing algorithm, the
initial temperature T0 and the low temperature TL were
set following the suggestions of Aarts and van Laarhoven
(1987). The control temperature was calculated as Ti+1 =
Ti/(1 + αTi), where i is the iteration number, α = (T0 −
TL)/(IT0TL), and I is the number of SA iterations.

The tabu tenure for instance selection procedures was
set to 15, 30, 35, 10 iterations, respectively, for heart, cre-
dit, cancer and sonar problems. These values were calcula-
ted as about 5% of the number of instances in the original,
non-reduced dataset. In the case of the feature selection,
the tabu tenure was set arbitrarily to 3 for heart, credit and
cancer, respectively, and to 10 for the sonar problem.

The proposed A-Teams were implemented using the
middleware environment called JABAT (Barbucha et al.,
2009), based on the JAVA code and built using JADE (Java
agent development framework) (Bellifemine et al., 2003).

5.3. Experiment results. The classification accuracy
of the classifier obtained using the proposed approach
(i.e., using the set of prototypes, found by selecting in-
stances and removing irrelevant attributes) was compared
with

• results obtained by classifier learning without data
reduction, i.e., using the full, non-reduced dataset;

• results obtained using the reduced dataset produced
by the standard simulated annealing algorithm (SA);

• results obtained using the reduced dataset produced
by the standard tabu search algorithm (TS).

0 0.02 0.04 0.06 0.08 0.1

TS

"no reduction"

SA

ABRA #8

ABRA #4

ABRA #5

ABRA #6

ABRA #1

ABRA #2

ABRA #3

ABRA #7

approach

(Best method accuracy-Accuracy)/Best method accuracy

Fig. 1. Ranking of data reduction methods.

The generalization accuracy was used as the perfor-
mance criterion. The classification tool applied was the
C 4.5 algorithm (Quinlan, 1993). The experiment results
are shown in Table 1. The ranking of the compared ap-
proaches is shown in Fig. 1, where the horizontal axis re-
presents the mean relative difference between the mean
accuracies of the best method and the given method.

It should be noted that the proposed algorithm pro-
duces very good results as compared with the case when
data reduction is carried out by the standard SA algori-
thm or by the TS algorithm. A similar observation holds
true when the classifier is induced using the original, non-
reduced dataset.

From Table 1 it is also clear that the choice of the A-
Team architecture understood as a particular combination
of agents in ABRA can have an impact on the classifica-
tion accuracy. Results of the experiment indicate that the
ABRA #7 configuration, where the instance and feature se-
lection is carried out in parallel and where the instance se-
lection is carried out by the simulated annealing algorithm
and feature selection by the tabu search algorithm, assures
significantly better results than other architectures. More-
over, it can be observed that ABRA architectures based on
the simulated annealing technique (ABRA #1, ABRA #2
and ABRA #3) outperform these where optimizing agents
run the tabu search algorithm (ABRA #4 and ABRA #5).
Comparing ABRA #7 and ABRA #8, it can also be noted,
that better results can be obtained using the simulated an-
nealing algorithm for instance selection and the tabu se-
arch algorithm for feature selection than applying the ar-
chitecture with the interchanged algorithm assignment.

To confirm the above findings, the non-parametric
Friedman test (Friedman, 1937) to check whether parti-
cular data reduction algorithms are equally effective inde-
pendently of the kind of problem being solved, was ap-
plied. The test is based on weights (points) assigned to
the data reduction algorithms used in the experiment. To

Application of agent-based simulated annealing and tabu search procedures. . . 65

Table 1. Accuracy of the classification results (%).
Problem heart cancer credit sonar

C 4.5: non-reduced dataset 77.89 94.57 84.93 74.04
ABRA #1 86.9 96.41 88.14 82.44
ABRA #2 87.49 96.53 88.38 83.06
ABRA #3 87.69 96.47 88.22 83.35
ABRA #4 85.56 96.43 84.72 83.12
ABRA #5 87.43 95.21 85.94 82.32
ABRA #6 86.54 96.61 87.31 82.87
ABRA #7 88.31 96.42 89.01 83.35
ABRA #8 85.32 94.50 86.88 82.52
SA 82.00 93.05 83.22 75.68
TS 78.17 93.13 82.60 73.64

assign weights, a 11-point scale was used with 11 points
for the best and 1 point for the worst algorithm. The test
aimed at deciding among the following hypotheses:

• H0: zero hypothesis—data reduction approaches are
statistically equally effective regardless of the kind of
the problem being solved,

• H1: alternative hypothesis—not all data reduction
approaches are equally effective.

The analysis was carried out at the significance level
of 0.5. The respective value of the χ2 statistics with 11
architectures and 4 instances of the considered problems is
138 and the value of the respective χ2 quantile is equal to
18.31 for 10 degrees of freedom. Thus, it can be observed
that not all approaches are equally effective regardless of
the kind of the problems being solved. In Fig. 2 average
weights for each data reduction approach are shown.

0.0 2.0 4.0 6.0 8.0 10.0 12.0

ABRA #7

ABRA #3

ABRA #2

ABRA #6

ABRA #1

ABRA #4

ABRA #5

ABRA #8

"no reduction"

SA

TS

approach

the average Friedman weights

Fig. 2. Friedman test weights for the compared approaches.

The ABSA #7 algorithm is also competitive in com-
parison with other classifiers and other approaches to data
reduction, which can be concluded from data shown in
Table 2.

Furthermore, the experiment results showed that the
proposed approaches are also quite effective when a com-
pression of the data is considered. While the average num-
ber of retained instances is similar in the case of ABRA,
standard SA and standard TS, the number of retained
features is, on average, smaller when using the agent-
based simulated annealing approach. This can be conc-
luded from the data shown in Table 3. The best performer
from the point of view of the data compression rate is cle-
arly ABRA #7, achieving the best result in terms of decre-
asing the complexity of knowledge representation as well
as reducing the required computation time.

6. Conclusions

The main contribution of the paper was proposing and va-
lidating a novel approach to solving a data reduction pro-
blem. The proposed approach uses the multi-agent para-
digm and enables solving a difficult data reduction optimi-
zation problem using a set of optimizing agents executing
the simulated annealing and tabu search procedures.

The proposed approach extends the available ran-
ge of algorithms for solving the data reduction pro-
blem. Computational experiment results confirmed that
the agent-based data reduction algorithm using the simu-
lated annealing and tabu search procedures is an effec-
tive data reduction tool contributing to achieving higher
quality of machine learning classification in comparison
with standard simulated annealing and tabu search imple-
mentations. It was also shown that parallel reduction of
both instances and features assures better overall results
as compared with other schemes considered. Additionally,
the computational experiment results confirmed that simu-
lated annealing procedures outperform tabu search ones
when the instance selection is carried out.

Properties of the proposed approach in terms of its

66 I. Czarnowski and P. Jędrzejowicz

Table 2. Comparison of different classifiers and data reduction approaches (I: instance selection only, F: feature selection only, IF:
instance and feature selection, N: no data reduction).

Classifier Reduction Accuracy (%)
type heart cancer credit sonar

ABRA #6 IF 86.54 96.61 87.31 82.87
ABRA #7 IF 88.31 96.42 89.01 83.35
k-NN (Wilson and Martinez, 2000b) N 81.19 96.28 84.78 58.8
k-NN + RELIEF (Raman, 2003) F 77.85 72.12 79.57 -
CNN (Wilson and Martinez, 2000b) I 73.95 95.71 77.68 74.12
SNN (Wilson and Martinez, 2000b) I 76.25 93.85 81.31 79.81
IB3 + RELIEF (Raman, 2003) IF 79.94 73.25 71.75 -
RMHC (Sahel et al., 2007) IF 82.3 70.9 - -
GA-KJ (Rozsypal and Kubat, 2003) IF 74.7 95.5 - 55.3

Table 3. Average number of retained instances and features.
Approach heart cancer credit sonar

average number of retained features
ABRA #1 10.1 8.1 10.4 39
ABRA #2 9.8 7.1 9.8 38.7
ABRA #3 9.2 7.6 9.6 32.2
ABRA #4 10.4 8.1 10.2 37.3
ABRA #5 9.9 7.4 9.8 37.0
ABRA #6 9.5 8.0 9.5 36.1
ABRA #7 9.1 7.8 9.2 34.1
ABRA #8 10.2 9.1 9.4 36.5
SA 9.86 9.4 10.6 42.2
TS 9.2 8.6 10.1 36.7

average number of the retained instances
all algorithms 162 133 184 94

efficiency and computation time will be further studied.
Future research will also focus on examining the influen-
ce of the number of the copies of optimizing agents on
the quality of the selected prototypes and the computation
speed-up factor.

Acknowledgment

This research has been supported by the Polish Ministry
of Science and Higher Education within a grant for the
years 2008–2010 and a grant for the years 2010–2013.

References

Aarts, E. and van Laarhoven, P. (1987). Simulated anealing: A
pedestrian review of the theory and some applications, in
J. Kittler and P.A. Devijver (Eds.), Pattern Recognition and
Applications, Springer-Verlag, Berlin.

Aha, D., Kibler, D. and Albert, M. (1999). Instance-based lear-
ning algorithms, Machine Learning 6(1): 37–66.

Aksela, M. (2007). Adaptive Combinations of Classifiers with
Application to On-line Handwritten Character Recogni-
tion, Ph.D. thesis, Helsinki University of Technology,
Helsinki.

Asuncion, A. and Newman, D. (2007). Websi-
te of the UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml/.

Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel,
E. and Wierzbowska, I. (2009). e-JABAT—An implemen-
tation of the Web-based A-Team, in N. Nguyen and L. Jain
(Eds.), Intelligent Agents in the Evolution of Web and Ap-
plications, Studies in Computational Intelligence, Vol. 167,
Springer-Verlag, Berlin/Heidelberg, pp. 57–86.

Bellifemine, F., Caire, G., Poggi A. and Rimas-
sa, G. (2003). Jade. A white paper, Techni-
cal Report Exp, 3(3), September 2003, pp. 6–19,
http://exp.telecomitalialab.com.

Bezdek, J. and Kuncheva, L. (2001). Nearest prototype classifier
designs: An experimental study, International Journal of
Intelligent Systems 16(2): 1445–1473.

Bhanu, B. and Peng, J. (2000). Adaptive integration image seg-
mentation and object recognition, IEEE Transactions on
Systems, Man and Cybernetics 30(4): 427–44.

Bull, L. (2004). Learning classifier systems: A brief introduc-
tion, in L. Bull (Ed.), Applications of Learning Classifier
Systems, Studies in Fuzziness and Soft Computing, Sprin-
ger, Berlin, pp. 3–14.

Czarnowski, I. (2010). Prototype selection algorithms for distri-
buted learning, Pattern Recognition 43(6): 2292–2300.

http://exp.telecomitalialab.com.

Application of agent-based simulated annealing and tabu search procedures. . . 67

Czarnowski, I. and Jędrzejowicz, P. (2004). An approach to
instance reduction in supervised learning, in F. Coenen,
A. Preece and A. Macintosh (Eds.), Research and Deve-
lopment in Intelligent Systems XX, Springer, London, pp.
267–282.

Czarnowski, I. and Jędrzejowicz, P. (2010). An approach to data
reduction and integrated machine classification, New Ge-
neration Computing 28(1): 21–40.

Dash, M. and Liu, H. (1997). Feature selection for classification,
Intelligence Data Analysis 1(3): 131–156.

DataSet, C. (2009). Website of the Datasets Used
for Classification: Comparison of Results,
http://www.is.umk.pl/projects/
datasets.html.

Friedman, M. (1937). The use of ranks to avoid the assumption
of normality implicit in the analysis of variance, Journal of
the American Statistical Association 32(200): 675–701.

Glover, F. (1989). Tabu search, Part I, ORSA Journal on Com-
puting 1(3): 533–549.

Glover, F. (1990). Tabu search, Part II, ORSA Journal on Com-
puting 2(1): 4–32.

Glover, F. and Laguna, M. (1993). Tabu search, in C. Re-
eves (Ed.), Modern Heuristic Techniques for Combina-
torial Problems, John Wiley and Sons, New Jork, NY,
pp. 70–150 .

Hamo, Y. and Markovitch, S. (2005). The COMPSET algorithm
for subset selection, Proceedings of the 19th Internatio-
nal Joint Conference for Artificial Intelligence, Edinburgh,
UK, pp. 728–733.

Hart, P. (1968). The condensed nearest neighbour rule, IEEE
Transactions on Information Theory 14: 515–516.

Jędrzejowicz, P. (1999). Social learning algorithm as a tool for
solving some difficult scheduling problems, Foundation of
Computing and Decision Sciences 24(2): 51–66.

Kim, S.-W. and Oommen, B. (2003). A brief taxonomy and
ranking of creative prototype reduction schemes, Pattern
Analysis Application 6(3): 232–244.

Kirkpatrick, S., Gelatt, C. and Vecci, M. (1983). Optimisation
by simulated annealing, Science 220(4598): 671–680.

Kohavi, R. and John, G. (1997). Wrappers for feature subset
selection, Artificial Intelligence 97(1–2): 273–324.

Kuncheva, L. and Bezdek, J. (1998). Nearest prototype clas-
sification: Clustering, genetic algorithm or random se-
arch?, IEEE Transactions on Systems, Man and Cyberne-
tics 28(1): 160–164.

Kuncheva, L. and Jain, L. (1999). Nearest-neighbor classifier:
Simultaneous editing and feature selection, Pattern Reco-
gnition Letters 20(11–13): 1149–1156.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures
= Evolution Programs, Springer, Berlin.

Nanni, L. and Lumini, A. (2009). Particle swarm optimi-
zation for prototype reduction, Neurocomputing 72(4–6):
1092–1097.

Quinlan, J. (1993). C4.5: Programs for Machine Learning, Mor-
gan Kaufmann Publishers, San Mateo, CA.

Raman, B. (2003). Enhancing learning using feature and exam-
ple selection, Technical report, Texas AM University, Col-
lege Station, TX.

Ritter, G., Woodruff, H., Lowry, S. and Isenhour, T. (1975). An
algorithm for a selective nearest decision rule, IEEE Trans-
actions on Information Theory 21(6): 665–669.

Rozsypal, A. and Kubat, M. (2003). Selecting representative
examples and attributes by a genetic algorithm, Intelligent
Data Analysis 7(4): 291–304.

Sahel, Z., Bouchachia, A., Gabrys, B. and Rogers, P. (2007). Ad-
aptive mechanisms for classification problems with drifting
data, in B. Apolloni, R. Howlett and L. Jain (Eds.), KES
2007, Lecture Notes in Artificial Intelligence, Vol. 4693,
Springer-Verlag, Berlin/Heidelberg, pp. 419–426.

Skalak, D. (1994). Prototype and feature selection by sampling
and random mutation hill climbing algorithm, Proceedings
of the International Conference on Machine Learning, New
Brunswick, NJ, USA, pp. 293–301.

Song, H. and Lee, S. (1996). LVQ combined with simulated
annealing for optimal design of large set reference models,
Neural Networks 9(2): 329–336.

Talukdar, S., Baerentzen, L., Gove, A. and de Souza, P. (1996).
Asynchronous teams: Co-operation schemes for autono-
mous, computer-based agents, Technical Report TR EDRC
18-59-96, Carnegie Mellon University, Pittsburgh, PA.

Wilson, D. and Martinez, T. (2000a). An integrated instance-
based learning algorithm, Computational Intelligence
16(1): 1–28.

Wilson, D. and Martinez, T. (2000b). Reduction techniques
for instance-based learning algorithm, Machine Learning
33(3): 257–286.

Zongker, D. and Jain, A. (1996). Algorithm for feature selec-
tion: An evaluation, Proceedings of the International Con-
ference on Pattern Recognition, ICPR96, Vienna, Austria,
pp. 18–22.

Ireneusz Czarnowski holds a B.Sc. and an
M.Sc. in electronics and communication systems
from Gdynia Maritime University. In 2004 he ob-
tained a Ph.D. in computer science from Poznań
Technical University. Presently he is an assistant
professor at the Department of Information Sys-
tems, Faculty of Business Administration, Gdy-
nia Maritime University. His research interests
cover combinatorial optimization, artificial intel-
ligence, data mining and Internet technologies.

 http://www.is.umk.pl /projects/
datasets.html

68 I. Czarnowski and P. Jędrzejowicz

Piotr Jędrzejowicz received his M.A., Ph.D.
and D.Sc. degrees in operations research from
Gdańsk University. Currently he is a professor of
information systems and the head of the Infor-
mation Systems Department, Faculty of Business
Administration, Gdynia Maritime University. He
is also the vice-rector for research of the same
university. His research interests include decision
support systems, computational intelligence, data
mining and multi-agent systems.

Received: 13 April 2010
Revised: 15 November 2010

	Introduction
	Data reduction
	Problem formulation
	Data reduction algorithms

	Simulated annealing, tabu search and an agent-based population learning algorithm for data reduction
	Simulated annealing
	Tabu search
	Agent-based population learning algorithm

	A-Team with simulated annealing and tabu-search optimizing agents
	Solution representation format
	Initial population
	Fitness function
	Optimizing agents
	Replacement strategy

	Computational experiment
	Computational experiment settings
	Dataset choice and the experiment plan
	Experiment results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

