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In this paper, a two-species Lotka–Volterra predator-prey model with two delays is considered. By analyzing the associated
characteristic transcendental equation, the linear stability of the positive equilibrium is investigated and Hopf bifurcation
is demonstrated. Some explicit formulae for determining the stability and direction of Hopf bifurcation periodic solutions
bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical
simulations for supporting the theoretical results are also included.
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1. Introduction

Various mathematical models have been established in
the study of populations since Vito Volterra and James
Lotka proposed seminal models of predator-prey models
in the mid 1920s. Among these models, predator-prey
models play an important role in population dynamics.
Many theoreticians and experimentalists concentrated on
the stability of predator-prey systems and, more specifi-
cally, they investigated the stability of such systems when
time delays are incorporated into the models. Such de-
layed systems received great attention since time delay
may have very complicated impact on the dynamical be-
havior of the system such as the periodic structure, bifur-
cation, etc. (Kuang and Takeuchi, 1994; Xu et al., 2004;
Zhou et al., 2008; Teramoto et al., 1979; Bhattacharyya
and Mukhopadhyay, 2006; Prajneshu Holgate, 1987; Gao
et al., 2008; Xu and Ma, 2008; Kar and Pahari, 2007;
Klamka, 1991).

May (1973) first proposed and briefly discussed the

stability of the following delayed predator-prey system:{
ẋ(t) = x(t)[r1 − a11x(t− τ) − a12y(t)],

ẏ(t) = y(t)[−r2 + a21x(t) − a22y(t)],
(1)

where x(t) and y(t) can be interpreted as the population
densities of preys and predators at time t, respectively;
τ ≥ 0 is the feedback time delay of the preys to the growth
of the species itself; r1 > 0 denotes an intrinsic growth
rate of the preys and r2 > 0 denotes the death rate of the
predators; the parameters aij(i, j = 1, 2) are all positive
constants.

Song and Wei (2005) investigated further the dynam-
ics of the system (1). Considering the delay τ as the bi-
furcation parameter, they obtained that, under certain con-
ditions, the unique positive equilibrium of the system (1)
is absolute stable while it is conditionally stable and there
exist k switches from stability to instability to stability un-
der other conditions. Further, by using normal form theory
and the center manifold theorem, they obtained the formu-
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lae for determining the direction of Hopf bifurcations and
the stability of bifurcating periodic solutions.

Yan and Li (2006) incorporated the same delay τ into
the population density of the predator in the second equa-
tion of the system (1) and obtained the following:{

ẋ(t) = x(t)[r1 − a11x(t− τ) − a12y(t)],

ẏ(t) = y(t)[−r2 + a21x(t) − a22y(t− τ)],
(2)

Regarding the delay τ as the bifurcation parameter, they
investigated the stability of the system (2) and studied the
properties of Hopf bifurcation for the system (2) by us-
ing normal form theory and the center manifold theorem,
which is different from that used by Song and Wei (2005).

Faria (2001) investigated the stability and Hopf bifur-
cation of the following system with two different delays:{

ẋ(t) = x(t)[r1 − a11x(t) − a12y(t− τ2)],

ẏ(t) = y(t)[−r2 + a21x(t− τ1) − a22y(t)].
(3)

According to the view point of Kuang (1993), Yan and
Zhang (2008) considered the stability and Hopf bifurca-
tion of the following delayed system:{

ẋ(t) = x(t)[r1 − a11x(t − τ) − a12y(t− τ)],

ẏ(t) = y(t)[−r2 + a21x(t − τ) − a22y(t− τ)].
(4)

Based on (1)–(4), we consider the following system:{
ẋ(t) = x(t)[r1 − a11x(t− τ1) − a12y(t− τ2)],

ẏ(t) = y(t)[−r2 + a21x(t− τ2) − a22y(t− τ1)],
(5)

where x(t) and y(t) denote the population densities of
preys and predators at time t, respectively; r1 > 0 denotes
the intrinsic growth rate of preys and r2 > 0 denotes the
death rate of predators; the parameters aij(i, j = 1, 2) are
all positive constants; τ1 is the gestation periodic of preys
and predators; τ2 in the first equation of the system (5) de-
notes the hunting delay of predator to prey and τ2 in the
second equation of the system (5) is the delay in predator
maturation.

The biological meaning of the system (5) is as fol-
lows. In the absence of predators, the prey species follows
the logistic equation

ẋ(t) = x(t)[r1 − a11x(t− τ1)].

In the presence of predators, there is a hunting term,
a12y(t − τ2), with a certain delay τ2 called the hunting
delay. In the absence of prey species, the predator species
follows the equation

ẏ(t) = x(t)[−r2 − a22y(t− τ1)],

i.e., the number of predators decreases. The positive feed-
back a21x(t − τ2) has a positive delay τ2 which is the
delay in predator maturation.

We would like to point out that the systems (1)–(4)
are all a special case of the system (5). In this paper, we
will study the stability, and local Hopf bifurcation for the
system (5). To the best of our knowledge, it is the first
time the research of Hopf bifurcation for the model (5) is
undertaken.

The remainder of the paper is organized as follows.
In Section 2, we investigate the stability of the positive
equilibrium and the occurrence of local Hopf bifurcations.
In Section 3, the direction and stability of local Hopf bi-
furcation are established. In Section 4, numerical simula-
tions are carried out to illustrate the validity of the main
results. Some main conclusions are drawn in Section 5.

2. Stability of the positive equilibrium and
local Hopf bifurcations

In this section, we shall focus on analyzing the corre-
sponding linearized system at the positive equilibrium of
the system (5) and investigate the stability of this equi-
librium point and the existence of local Hopf bifurcations
occurring at the positive equilibrium.

Since any time delay does not change the equilibrium
of the system and, according to Yan and Zhang (2008), we
know that the delayed prey predator model (5) has unique
positive equilibrium points E0(x∗, y∗), where

x∗ =
r1a22 + r2a12

a11a22 + a12a21
, y∗ =

r1a21 − r2a11

a11a22 + a12a21
,

if
(H1) r1a21 − r2a11 > 0.

Let x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗ and still
denote x̄(t), ȳ(t) by x(t), y(t), respectively. Then (5) be-
comes⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = m1x(t) +m2x(t− τ1) +m3y(t− τ2)
+m4x(t)x(t − τ1) +m5x(t)y(t− τ2),

ẏ(t) = n1y(t) + n2x(t− τ2) + n3y(t− τ1)
+ n4x(t− τ2)y(t) + n5y(t)y(t− τ1),

(6)

where

m1 = r1 − a11x
∗ − a12y

∗, m2 = −a11x
∗,

m3 = −a12x
∗,m4 = −a12, m5 = −a12,

n1 = −r2 + a21x
∗ − a22y

∗, n2 = a21y
∗,

n3 = −a22y
∗, n4 = a21, n5 = −a22.

It is easy to check that m1 = n1 = 0. The lineariza-
tion of Eqn. (6) at (0, 0) is

{
ẋ(t) = m2x(t − τ1) +m3y(t− τ2),

ẏ(t) = n2x(t− τ2) + n3y(t− τ1),
(7)
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whose characteristic equation is

λ2 − (m2 + n3)λe−λτ1

+m2n3e
−2λτ1 −m3n2e

−2λτ2 = 0. (8)

In order to investigate the distribution of roots of the
transcendental equation (8), the following result is useful.

Lemma 1. (Ruan and Wei, 2003) For the transcendental
equation

P (λ, e−λτ1 , . . . , e−λτm)

= λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ+ p(0)

n

+
[
p
(1)
1 λn−1 + · · · + p

(1)
n−1λ+ p(1)

n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p

(m)
n−1λ+ p(m)

n

]
e−λτm = 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros
of P (λ, e−λτ1 , . . . , e−λτm) in the open right half plane
can change, and only a zero appears on or crosses the
imaginary axis.

In the sequel, we consider three cases.

Case A: τ1 = τ2 = 0. Then (8) becomes

λ2 − (m2 + n3)λ+m2n3 −m3n2 = 0. (9)

A set of necessary and sufficient conditions that all roots
of (9) have a negative real part is given in the following
form:

(H2) m2 + n3 < 0, m2n3 −m3n2 > 0.

Then the equilibrium point E0(x∗, y∗) is locally asymp-
totically stable when the condition (H1) holds.

Case B: τ1 = 0, τ2 > 0. Then (8) becomes

λ2 + pλ+ r + qe−2λτ2 = 0, (10)

where

p = −(m2 + n3), r = m2n3, q = −m3n2.

For ω > 0, iω being a root of (10), it follows that{
q cos 2ωτ2 = ω2 − r,
q sin 2ωτ2 = pω,

(11)

which leads to

ω4 + (p2 − 2r)ω2 + r2 − q2 = 0. (12)

It is easy to see that if the condition

(H3) p2 − 2r > 0, r2 − q2 > 0

holds, then Eqn. (12) has no positive roots. Hence, all
roots of (10) have negative real parts when τ2 ∈ [0,+∞)
under the conditions (H2) and (H3).

If (H2) and

(H4) p2 − 2r > 0, r2 − q2 < 0

hold, then (12) has a unique positive root ω2
0 . Substituting

ω2
0 into (11), we obtain

τ2n =
1

2ω0

{
arccos

q(ω2
0 − r)
q2

+ 2nπ
}
, (13)

n = 0, 1, 2, . . . .
Let λ(τ2) = α(τ2) + iω(τ2) be a root of (10) near

τ2 = τ2n and α(τ2n) = 0, ω(τ2n) = ω0. From func-
tional differential equation theory, for every τ2n , n =
0, 1, 2, . . . , there exists ε > 0 such that λ(τ2) is contin-
uously differentiable at τ2 for |τ2 − τ2n | < ε. Substituting
λ(τ2) into the left-hand side of (10) and differentiating
with respect to τ2, we have(

dλ
dτ2

)−1

=
(2λ+ p)e2λτ2

2qλ
− τ2
λ
, (14)

which leads to[
d(Reλ(τ))

dτ2

]−1

τ2=τ2n

= Re
{(2λ+ p)e2λτ2

2qλ

}∣∣∣
τ2=τ2n

=
p sin 2ω0τ2n + 2ω0 cos 2ω0τ2n

qω0

=
p2 − 2r + 2ω2

0

2q2
> 0.

Noting that

sign
{d(Reλ)

dτ2

}∣∣∣
τ2=τ2n

= sign
{

Re
(

dλ
dτ2

) }∣∣∣
τ2=τ2n

= 1,

we have
d(Reλ)

dτ2

∣∣∣
τ2=τ2n

> 0.

According to the above analysis and Corollary 2.4 of
Ruan and Wei (2003), we have the following results.

Lemma 2. For τ1 = 0, assume that (H1) and (H2) are
satisfied. Then the following conclusions hold:

(i) If (H3) holds, then the positive equilibrium
E0(x∗, y∗) of the system (5) is asymptotically stable
for all τ2 ≥ 0.

(ii) If (H4) holds, then the positive equilibrium
E0(x∗, y∗) of the system (5) is asymptotically stable
for τ2 < τ20 and unstable for τ2 > τ20 . Further-
more, the system (5) undergoes a Hopf bifurcation at
the positive equilibrium E0(x∗, y∗) when τ2 = τ20 .
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Case C: τ1 > 0, τ2 > 0. We consider Eqn. (8) with τ2 in
its stable interval. Regarding τ1 as a parameter, without
loss of generality, we consider the system (5) under As-
sumptions (H2) and (H4). Let iω(ω > 0) be a root of
(8). Then we can obtain

k1ω
4 + k2ω

3 + k3ω
2 + k4 = 0, (15)

where

k1 = 2(m2n3 + cos 2ωτ2)2 + sin2 2ωτ2,
k2 = −2(m2 + n3) sin 2ωτ2[m3n2(m2n3 + cos 2ωτ2)

+m2n3 −m3n2 cos 2ωτ2],

k3 = [(m2 + n3)m3n2 sin 2ωτ2]2 + [(m2 + n3)(m2n3

−m3n2 cos 2ωτ2)]2,
k4 = −[(m2n3 −m3n2 cos 2ωτ2)(m2n3 + cos 2ωτ2)

+m3n2 sin2 2ωτ2]2.

Write

H(ω) = k1ω
4 + k2ω

3 + k3ω
2 + k4. (16)

It is easy to check that H(0) < 0 and limω→+∞H(ω) =
+∞. We can obtain that (15) has finite positive roots
ω1, ω2, . . . , ωn. For every fixed ωi, i = 1, 2, 3, . . . , k,
there exists a sequence {τ j

1i
|j = 1, 2, 3, . . .}, such that

(15) holds. Let

τ10 = min{τ j
1i

| i = 1, 2, . . . , k; j = 1, 2, . . .}. (17)

When τ1 = τ10 , Eqn. (8) has a pair of purely imaginary
roots ±iω∗ for τ2 ∈ [0, τ20).

In the following, we assume that

(H5)
[
d(Reλ)

dτ1

]
λ=iω∗

�= 0.

Thus, by the general Hopf bifurcation theorem for FDEs
by Hale (1977), we have the following result on the sta-
bility and Hopf bifurcation in the system (5).

Theorem 1. For the system (5), assume that (H1), (H2),
(H4) and (H5) are satisfied, and τ2 ∈ [0, τ20). Then the
positive equilibrium E0(x∗, y∗) is asymptotically stable
when τ1 ∈ (0, τ10), and the system (5) undergoes a Hopf
bifurcation at the positive equilibrium E0(x∗, y∗) when
τ1 = τ10 .

3. Direction and stability of Hopf
bifurcation

In the previous section, we obtained conditions for Hopf
bifurcation to occur when τ1 = τ10 . In this section,
we shall derive explicit formulae determining the direc-
tion, stability, and period of these periodic solutions bifur-
cating from the positive equilibrium E0(x∗, y∗) at these

critical values of τ1, by using techniques from normal
form and center manifold theory (Hassard et al., 1981).
Throughout this section, we always assume that the sys-
tem (5) undergoes Hopf bifurcation at the positive equilib-
rium E0(x∗, y∗) for τ1 = τ10 , and then ±iω∗ denotes the
corresponding purely imaginary roots of the characteristic
equation at the positive equilibrium E0(x∗, y∗).

Without loss of generality, we assume that τ∗2 < τ10 ,
where τ∗2 ∈ (0, τ20). For convenience, let ūi(t) =
ui(τt)(i = 1, 2) and τ1 = τ10 + μ, where τ10 is defined
by (17) and μ ∈ R; dropping the bar for the simplification
of notation, then the system (5) can be written as an FDE
in C = C([−1, 0],R2) as

u̇(t) = Lμ(ut) + F (μ, ut), (18)

where u(t) = (x(t), y(t))T ∈ C and ut(θ) = u(t+ θ) =
(x(t+θ), y(t+θ))T ∈ C, andLμ : C → R, F : R×C →
R are given by

Lμφ = (τ1 + μ)C

⎛
⎜⎜⎝

φ1

(
− τ∗2
τ10

)

φ2

(
− τ∗2
τ10

)
⎞
⎟⎟⎠

+ (τ1 + μ)D
(
φ1(−1)
φ2(−1)

) (19)

and

F (μ, φ) = (τ1 + μ)(f1, f2)T , (20)

respectively, where φ(θ) = (φ1(θ), φ2(θ))T ∈ C,

C =
(

0 m3

n2 0

)
, D =

(
m2 0
0 n3

)

and

f1 = m4φ1(0)φ1(−1) +m5φ1(0)φ2

(
− τ∗2
τ10

)
,

f2 = n4φ1

(
− τ∗2
τ10

)
φ2(0) + n5φ2(0)φ2(−1).

From the discussion in Section 2, we know that if
μ = 0, then system (18) undergoes Hopf bifurcation at the
positive equilibrium E0(x∗, y∗) and the associated char-
acteristic equation of the system (18) has a pair of simple
imaginary roots ±iω∗τ10 .

By the representation theorem, there is a matrix
function with bounded variation components η(θ, μ), θ ∈
[−1, 0] such that

Lμφ =
∫ 0

−1

dη(θ, μ)φ(θ), for φ ∈ C. (21)
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In fact, we can choose

η(θ, μ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(τ10 + μ)(C +D), θ = 0,

(τ10 + μ)(C +D), θ ∈
[
− τ∗2
τ10

, 0
)
,

(τ10 + μ)D, θ ∈
(
−1,− τ∗2

τ10

)
,

0, θ = −1.
(22)

For φ ∈ C([−1, 0],R2), define

A(μ)φ =

⎧⎪⎨
⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1
dη(s, μ)φ(s), θ = 0

(23)

and

Rφ =
{

0, −1 ≤ θ < 0,
F (μ, φ), θ = 0. (24)

Then (18) is equivalent to the abstract differential equation

u̇t = A(μ)ut +R(μ)ut, (25)

where ut(θ) = u(t+ θ), θ ∈ [−1, 0].

For ψ ∈ C([−1, 0], (R2)∗), define

A∗ψ(s) =

⎧⎪⎨
⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0],R2) and ψ ∈ C([0, 1], (R2)∗),
define the bilinear form

〈ψ, φ〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0

ψT (ξ − θ)dη(θ)φ(ξ) dξ,

where η(θ) = η(θ, 0), the A = A(0) and A∗ are ad-
joint operators. From the discussions in Section 2, we
know that ±iω∗τ10 are eigenvalues of A(0), and they are
also the eigenvalues of A∗ corresponding to iω∗τ10 and
−iω∗τ10 , respectively. By direct computation, we can ob-
tain

q(θ) = (1, α)T eiω∗τ10θ, q∗(s) = M(1, α∗)eiω∗τ10s,

M = 1/K, where

α =
iω∗ −m2e

−iω∗τ10

m3e−iω∗τ∗
2

,

α∗ = − iω
∗ +m2e

−iω∗τ10

n2e−iω∗τ∗
2

,

K = 1 + ᾱα∗ +m2τ10e
iω∗τ10 + n2α

∗τ∗2 e
iω∗τ∗

2

+m3ᾱτ
∗
2 e

iω∗τ∗
2 + n3ᾱα

∗τ10e
iω∗τ10 .

Furthermore, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.

Next, we use the same notation as Hassard et al.
(1981), and we first compute the coordinates to describe
the center manifold C0 at μ = 0. Let ut be the solution of
Eqn. (18) when μ = 0.

Define

z(t) = 〈q∗, ut〉,
W (t, θ) = ut(θ) − 2Re{z(t)q(θ)}. (26)

on the center manifold C0. We have

W (t, θ) = W (z(t), z̄(t), θ), (27)

where

W (z(t), z̄(t), θ) = W (z, z̄)

= W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · ,

(28)

and z and z̄ are local coordinates for center manifold C0

in the directions of q∗ and q̄∗. Noting thatW is real if so is
ut, we consider only real solutions. For solutions ut ∈ C0

of (18),

ż(t) = iω∗τ10z + q̄∗(θ)F (0,W (z, z̄, θ) + 2Re{zq(θ)}

def= iω∗τ10z + q̄∗(0)F0.

In other words,

ż(t) = iω∗τ10z + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

Hence, we have

g(z, z̄)
= q̄∗(0)F0(z, z̄) = F (0, ut)

= M̄τ10

[(
m4e

−iω∗τ10 +m5αe
−iω∗τ∗

2

)
+ᾱ∗

(
n4αe

−iω∗τ∗
2 + n5αe

−iω∗τ10

)]
z2

+ 2M̄τ10

[
m4Re{αe−iω∗τ10 } +m5Re{αe−iω∗τ∗

2 }

+ᾱ∗
(
n4Re{αeiω∗τ∗

2 } + n5Re{|α|2eiω∗τ10}
)]
zz̄

+ M̄τ10

[
m4e

iω∗τ∗
2 +m5ᾱe

iω∗τ∗
2 + ᾱ∗

(
n4ᾱe

iω∗τ10

+n5ᾱ
2eiω∗τ10

)]
z̄2 + M̄τ10

{
m4

(
1
2
W

(1)
20 (0)ᾱeiω∗τ10
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+
1
2
W

(2)
20 (−1) + αW

(1)
11 (0)e−iω∗τ10 +W

(2)
11 (−1)

)

+m5

(
1
2
W

(1)
20 (0)ᾱeiω∗τ∗

2 +W
(1)
11 (0)αeiω∗τ∗

2

+W (2)
11 (− τ∗2

τ10

) +
1
2
W

(2)
20 (− τ∗2

τ10

)
)

+ ᾱ∗
[
n4

(
1
2
W

(1)
20 (− τ∗2

τ10

)ᾱ+W
(1)
11 (− τ∗2

τ10

)α

+W (2)
20 (0)e−iω∗τ10 +W

(2)
11 (0)e−iω∗τ∗

2

)
+ n5

(
1
2
W

(2)
20 (0)ᾱeiω∗τ10 +W

(2)
11 (−1)α

+αW (2)
11 (0)eiω∗τ10 +

1
2
W

(2)
20 (−1)ᾱ

)]}
z2z̄ + · · · .

Then we obtain

g20 = 2M̄τ10

[(
m4e

−iω∗τ10 +m5αe
−iω∗τ∗

2

)
+ᾱ∗

(
n4αe

−iω∗τ∗
2 + n5αe

−iω∗τ10

)]
,

g11 = 2M̄τ10

[
m4Re{αe−iω∗τ10} +m5Re{αe−iω∗τ∗

2 }

+ᾱ∗
(
n4Re{αeiω∗τ∗

2 } + n5Re{|α|2eiω∗τ10}
)]
,

g02 = 2M̄τ10

[
m4e

iω∗τ∗
2 +m5ᾱe

iω∗τ∗
2

+ᾱ∗
(
n4ᾱe

iω∗τ10 + n5ᾱ
2eiω∗τ10

)]
,

g21 = 2M̄τ10

{
m4

(
1
2
W

(1)
20 (0)ᾱeiω∗τ10 +

1
2
W

(2)
20 (−1)

+αW (1)
11 (0)e−iω∗τ10 +W

(2)
11 (−1)

)
+m5

(
1
2
W

(1)
20 (0)ᾱeiω∗τ∗

2 +W
(1)
11 (0)αe−iω∗τ∗

2

+W (2)
11 (− τ∗2

τ10

) +
1
2
W

(2)
20 (− τ∗2

τ10

)
)

+ ᾱ∗
[
n4

(
1
2
W

(1)
20 (− τ∗2

τ10

)ᾱ+W
(1)
11 (− τ∗2

τ10

)α

+
1
2
W

(2)
20 (0)eiω∗τ∗

2 +W
(2)
11 (0)e−iω∗τ∗

2

)

+ n5

(
1
2
W

(2)
20 (0)ᾱeiω∗τ10 +W

(2)
11 (−1)α

+αW (2)
11 (0)e−iω∗τ10 +

1
2
W

(2)
20 (−1)ᾱ

)]}
.

For unknown W (i)
20 (θ),W (i)

11 (θ), i = 1, 2 in g21, we
still have to compute them. From (25) and (26), we have

W
′
=

{
AW − 2Re{q̄∗(0)F0q(θ)}, −1 ≤ θ < 0,

AW − 2Re{q̄∗(0)F0q(θ)} + F0, θ = 0

= AW +H(z, z̄, θ),
(29)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ (30)

+H02(θ)
z̄2

2
+ . . . .

Comparing the coefficients, we obtain

(AW − 2iτ10ω
∗)W20 = −H20(θ), (31)

AW11(θ) = −H11(θ). (32)

We know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ) − q∗(0)f̄0q̄(θ)
= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ). (33)

Comparing the coefficients of (33) with (30) gives

H20(θ) = −g20q(θ) − ḡ02q̄(θ), (34)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (35)

From (31), (34) and the definition of A , we get

Ẇ20(θ) = 2iω∗τ10W20(θ) + g20q(θ) + ¯g02q̄(θ). (36)

Noting that q(θ) = q(0)eiω∗τ10θ , we have

W20(θ) =
ig20
ω∗τ10

q(0)eiω∗τ10θ +
iḡ02

3ω∗τ10

q̄(0)e−iω∗τ10θ

+ E1e
2iω∗τ10θ, (37)

where E1 = (E(1)
1 , E

(2)
1 ) ∈ R

2 is a constant vector. Sim-
ilarly, from (32), (35) and the definition of A, we have

Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ), (38)

W11(θ) = − ig11
ω∗τ10

q(0)eiω∗τ10θ

+
iḡ11
ω∗τ10

q̄(0)e−iω∗τ10θ + E2, (39)

where E2 = (E(1)
2 , E

(2)
2 ) ∈ R

2 is a constant vector.
In what follows, we shall seek appropriateE1, E2 in

(37), (39), respectively. From the definition ofA and (34),
(35) it follows that∫ 0

−1

dη(θ)W20(θ) = 2iω∗τ10W20(0) −H20(0) (40)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0), (41)

where η(θ) = η(0, θ). From (31), we have

H20(0) = −g20q(0) − ¯g02q̄(0) + 2τ10(H1, H2)T , (42)

H11(0) = −g11q(0) − ¯g11(0)q̄(0) + 2τ10(P1, P2)T ,
(43)
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where

H1 = m4e
−iω∗τ10 +m5αe

−iω∗τ∗
2 ,

H2 = n4αe
−iω∗τ∗

2 + n5αe
−iω∗τ10 ,

P1 = m4Re{αe−iω∗τ10 } +m5Re{αe−iω∗τ∗
2 },

P2 = n4Re{αeiω∗τ∗
2 } + n5Re{|α|2eiω∗τ10}.

Noting that

(
iω∗τ10I −

∫ 0

−1

eiω∗τ10θ dη(θ)
)
q(0) = 0,

(
−iω∗τ10I −

∫ 0

−1

e−iω∗τ10θdη(θ)
)
q̄(0) = 0,

and substituting (37) and (42) into (40), we have

(
2iω∗τ10I −

∫ 0

−1

e2iω∗τ10θdη(θ)
)
E1 = 2τ10(H1, H2)T .

That is,

(
2iω∗ −m2e

−2iω∗τ10 −m3e
−2iω∗τ∗

2

−n2e
−2iω∗τ∗

2 2iω∗ − n3e
−2iω∗τ10

)
E1

= 2(H1, H2)T .

It follows that

E
(1)
1 =

Δ11

Δ1
, E

(2)
1 =

Δ12

Δ1
, (44)

where

Δ1 = det
(
v1 v2
v3 v4

)
,

Δ11 = 2 det
(
H1 v2
H2 v4

)
,

Δ12 = 2 det
(
v1 H1

v2 H2

)
,

where

v1 = 2iω∗ −m2e
−2iω∗τ10 , v2 = −m3e

−2iω∗τ∗
2 ,

v3 = −n2e
−2iω∗τ∗

2 ,

v4 = 2iω∗ − n3e
−2iω∗τ10 .

Similarly, substituting (38) and (43) into (41), we
have (∫ 0

−1

dη(θ)
)
E2 = 2τ10(P1, P2)T .

That is, (
m2 m3

n2 n3

)
E2 = 2(−P1,−P2)T .

It follows that

E
(1)
2 =

Δ21

Δ2
, E

(2)
2 =

Δ22

Δ2
, (45)

where

Δ2 = det
(
m2 m3

n2 n3

)
,

Δ21 = 2 det
( −P1 m3

−P2 n3

)
,

Δ22 = 2 det
(
m2 −P1

n2 −P2

)
.

From (37), (39), (44), (45), we can calculate g21 and de-
rive the following values:

c1(0) =
i

2ω∗τ10

(
g20g11 − 2|g11|2 − |g02|2

3

)
+
g21
2
,

μ2 = − Re{c1(0)}
Re{λ′(τ10)}

,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)} + μ2Im{λ′
(τ10 )}

ω∗τ10

.

These formulas give a description of the Hopf bifur-
cation periodic solutions of (18) at τ = τ10 on the center
manifold. From the discussion above, we have the follow-
ing result.

Theorem 2. For the system (5), assume that (H1), (H2),
(H4) and (H5) are satisfied. The periodic solution is su-
percritical (resp. subcritical) if μ2 > 0 (resp. μ2 < 0).
The bifurcating periodic solutions are orbitally asymptot-
ically stable with an asymptotical phase (resp. unstable)
if β2 < 0 (resp. β2 > 0). The period of the bifurcat-
ing periodic solutions increases (resp. decrease) if T2 > 0
(resp. T2 < 0).

4. Numerical examples

In this section, we present some numerical results of the
system (5) to verify the analytical predictions obtained in
the previous section. From Section 3, we may determine
the direction of a Hopf bifurcation and the stability of the
bifurcation periodic solutions. Let us consider the follow-
ing system:{

ẋ(t) = x(t)[0.5 − 0.5x(t− τ1) − y(t− τ2)],

ẏ(t) = y(t)[−0.5 + x(t− τ2) − y(t− τ1)],
(46)

which has a positive equilibrium E0(x∗, y∗) = (2
3 ,

1
6 ).

When τ1 = 0, we can easily obtain that (H2) and (H4)
are satisfied. For example take n = 0. By some computa-
tion by means of Matlab 7.0, we get ω0 ≈ 0.4509, τ20 ≈
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3.357. From Lemma 2, we know that the transversal con-
dition is satisfied. Thus the positive equilibrium E0 =
(2
3 ,

1
6 ) is asymptotically stable for τ2 < τ20 ≈ 3.357

and unstable for τ2 > τ20 ≈ 3.357, which is shown in
Fig. 1. When τ2 = τ20 ≈ 3.357, Eqn. (46) undergoes
Hopf bifurcation at the positive equilibrium E0 = (2

3 ,
1
6 ),

i.e., a small amplitude periodic solution occurs around
E0 = (2

3 ,
1
6 ) when τ1 = 0 and τ2 is close to τ20 = 1.52,

which is shown in Fig. 2.

Let τ2 = 3 ∈ (0, 3.357) and choose τ1 as a parame-
ter. We have τ10 ≈ 0.6673. Then the positive equilibrium
is asymptotically stable when τ1 ∈ [0, τ10). The Hopf bi-
furcation value of Eqn. (46) is τ10 ≈ 0.6673. By the algo-
rithms derived in Section 3, we can obtain

λ
′
(τ10) ≈ 0.3732− 8.1075i,

c1(0) ≈ −3.1532− 4.4312i,

μ2 ≈ 0.2335,

β2 ≈ −5.2312,

T2 ≈ 7.1239.

Furthermore, it follows that μ2 > 0 and β2 < 0.
Thus, the positive equilibriumE0 = (2

3 ,
1
6 ) is stable when

τ1 < τ10 as is illustrated by computer simulations (see
Fig. 3). When τ1 passes through the critical value τ10 , the
positive equilibrium E0 = (2

3 ,
1
6 ) looses its stability and

a Hopf bifurcation occurs, i.e., a family of periodic solu-
tions bifurcate from the positive equilibriumE0 = (2

3 ,
1
6 ).

Since μ2 > 0 and β2 < 0, the direction of Hopf bifurca-
tion is τ1 > τ10 , and these bifurcating periodic solutions
from E0 = (2

3 ,
1
6 ) at τ10 are stable, which is depicted in

Fig. 4.

5. Conclusions

In this paper, we investigated the local stability of the
positive equilibrium E0(x∗, y∗) and local Hopf bifurca-
tion of a Lotka–Volterra predator-prey model with two
delays. We showed that, if (H1), (H2), (H4) and (H5)
are satisfied, and τ2 ∈ [0, τ20), then the positive equi-
librium E0(x∗, y∗) is asymptotically stable when τ1 ∈
(0, τ10). As the delay τ1 increases, the positive equilib-
rium E0(x∗, y∗) loses its stability and a sequence of Hopf
bifurcations occur at the positive equilibrium E0(x∗, y∗),
i.e., a family of periodic orbits bifurcates from the positive
equilibrium E0(x∗, y∗). Finally, the direction of Hopf bi-
furcation and the stability of the bifurcating periodic orbits
were discussed by applying normal form theory and the
center manifold theorem. A numerical example verifying
our theoretical results was also given.
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Fig. 1. Behavior and phase portrait of the system (46) with τ1 =
0, τ2 = 3.7 > τ20 ≈ 3.357. Hopf bifurcation occurs
from the positive equilibrium E0 = ( 2

3
, 1

6
). The initial

value is (0.2,0.2).
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