Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 2, 229-242
DOI: 10.2478/v10006-011-0017-y

BRINGING INTROSPECTION INTO BLOBSEER:
TOWARDS A SELF-ADAPTIVE DISTRIBUTED
DATA MANAGEMENT SYSTEM

ALEXANDRA CARPEN-AMARIE *, ALEXANDRU COSTAN **, JING CAI ***,
GABRIEL ANTONIU *, Luc BOUGE ****

* INRIA Rennes—Bretagne Atlantique/IRISA
Campus Universitaire de Beaulieu, 35042 Rennes, France
e-mail: |{alexandra.carpen-amarie, gabriel.antoniu}@inria.fr

**Polytechnic University of Bucharest
Department of Computer Science, 313 Spl. Independentei, 060042 Bucharest, Romania
e-mail: [Alexandru.Costan@cs.pub.ro

***Department of Computer Science
City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
e-mail: [Tylor.Cai@student.cityu.edu.hk

****Ecole Normale Supérieure de Cachan
Antenne de Bretagne/IRISA, Campus Universitaire de Beaulieu, 35042 Rennes, France
e-mail: [Luc .Bouge@bretagne.ens-cachan. fr

Introspection is the prerequisite of autonomic behavior, the first step towards performance improvement and resource usage
optimization for large-scale distributed systems. In grid environments, the task of observing the application behavior is
assigned to monitoring systems. However, most of them are designed to provide general resource information and do
not consider specific information for higher-level services. More precisely, in the context of data-intensive applications,
a specific introspection layer is required to collect data about the usage of storage resources, data access patterns, etc.
This paper discusses the requirements for an introspection layer in a data management system for large-scale distributed
infrastructures. We focus on the case of BlobSeer, a large-scale distributed system for storing massive data. The paper
explains why and how to enhance BlobSeer with introspective capabilities and proposes a three-layered architecture relying
on the MonALISA monitoring framework. We illustrate the autonomic behavior of BlobSeer with a self-configuration
component aiming to provide storage elasticity by dynamically scaling the number of data providers. Then we propose a
preliminary approach for enabling self-protection for the BlobSeer system, through a malicious client detection component.
The introspective architecture has been evaluated on the Grid’5000 testbed, with experiments that prove the feasibility of
generating relevant information related to the state and behavior of the system.

Keywords: distributed system, storage management, large-scale system, monitoring, introspection.

1. Introduction

Managing data at a large scale has become a critical re-
quirement in a wide spectrum of research domains, rang-
ing from data-mining to high-energy physics, biology or
climate simulations. Grid infrastructures provide typi-
cal environments for such data-intensive applications, en-
abling access to a large number of resources and guaran-
teeing a predictable quality of service. However, as the ex-

ponentially growing data are correlated with an increasing
need for fast and reliable data access, data management
continues to be a key issue that highly impacts on the per-
formance of applications.

More specifically, storage systems intended for very
large scales have to address a series of challenges, such as
a scalable architecture, data location transparency, high
throughput under concurrent access and the storage of

{alexandra.carpen-amarie, gabriel.antoniu}@inria.fr
Alexandru.Costan@cs.pub.ro
Tylor.Cai@student.cityu.edu.hk
Luc.Bouge@bretagne.ens-cachan.fr

amcs@

A. Carpen-Amarie et al.

massive data with fine grain access. Although these re-
quirements are the prerequisites for any efficient data
management system, they also imply a high degree of
complexity in the configuration and tuning of the system,
with possible repercussions on the system’s availability
and reliability.

Such challenges can be overcome if the system is
outfitted with a set of self-management mechanisms that
enable autonomic behavior, which can shift the burden
of understanding and managing the system state from the
human administrator to an automatic decision-making en-
gine. However, self-adaptation is impossible without deep
and specific knowledge of the state of both the system and
the infrastructure where the system is running on. It heav-
ily relies on introspection mechanisms, which play a cru-
cial role of exposing the system behavior accurately and
in real time.

On existing geographically distributed platforms
(e.g., grids), introspection is often limited to low-level
tools for monitoring the physical nodes and the commu-
nication interconnect: they typically provide information
such as CPU load, network traffic, job status, file trans-
fer status, etc. In general, such low-level monitoring tools
focus on gathering and storing monitored data in a scal-
able and non-intrusive manner (Zanikolas and Sakellar-
iou, 2005).

Even though many grid monitoring applications have
been developed to address such general needs (Massie
et al., 2004; Gunter et al., 2000), little has been done
when it comes to enabling introspection for large-scale
distributed data management. This is particularly im-
portant in the context of data-intensive applications dis-
tributed at a large scale. In such a context, specific pa-
rameters related to data storage need to be monitored and
analyzed in order to enable self-optimization in terms of
resource usage and global performance. Such parameters
regard physical data distribution, storage space availabil-
ity, data access patterns, application-level throughput, etc.

This paper discusses the requirements of a large-
scale distributed data management service in terms of self-
management. It explains which self-adaptation directions
can serve a data management service designed for large-
scale infrastructures. Furthermore, it focuses on intro-
spection, identifying the specific ways in which introspec-
tion can be used to enable the autonomic behavior of a
distributed data storage system.

As acase study, we focus on BlobSeer (Nicolae et al.,
2010), a service for sharing massive data at very large
scales in a multi-user environment. We propose a three-
layered architecture enabling BlobSeer with introspection
capabilities. We validate our approach through an im-
plementation based on the generic MonALISA (Legrand
et al., 2004) monitoring framework for large-scale dis-
tributed services. Moreover, we provide two applications
for the introspection layer, targeting self-configuration

and self-protection, which take advantage of the intro-
spective features that BlobSeer is equipped with.

The remainder of the paper is organized as follows.
Section [2| summarizes existing efforts in the grid moni-
toring systems field, emphasizing their limitations when
it comes to enabling specific introspection requirements.
Section [explains which self-management directions fit
the needs of data management systems. Section [4] pro-
vides a brief description of BlobSeer and describes the
specific introspection mechanism that we designed and
implemented and the data that need to be collected in such
a data management system. Section 3 presents the appli-
cations of the introspective features of BlobSeer, namely,
a self-configuration module dealing with storage elasticity
and the preliminary steps towards a self-protection com-
ponent. In Section [6] we discuss the feasibility and ef-
ficiency of our approach, by presenting a visualization
tool and a set of experiments realized on the Grid’5000
testbed. Finally, Section[7ldraws conclusions and outlines
directions for future developments.

2. Related work

The autonomic behavior of large scale distributed sys-
tems aims to deal with dynamic adaptation issues by em-
bedding the management of complex systems inside the
systems themselves, alleviating the users and administra-
tors from additional tasks. A distributed service, like a
storage service, is said to be autonomic if it encapsulates
some autonomic behavior (Gurguis and Zeid, 2005) such
as self-configuration, self-optimization, self-healing, and
self-protection (Kephart and Chess, 2003).

In this context, performance evaluation becomes a
critical component of any dynamic system that requires
high throughput, scheduling, load balancing or analysis of
applications’ performance and communications between
nodes. In grid environments, previous research has often
been limited to using historical information to create mod-
els to which various analysis and mining techniques are
applied. The results were thereafter used for performing
more efficient job mappings on available resources. The
autonomic behavior depends on monitoring the distributed
system to obtain the data on which decisions are based.
Experience with production sites showed that, in large dis-
tributed systems with thousands of managed components,
the process of identifying the causes of faults in due time
by extensive search through the potential root failure in-
jectors proves rather time consuming and difficult. This
process may interrupt or obstruct important system ser-
vices. Several techniques were used to address these is-
sues.

One approach relies on Bayesian Networks
(BNs) (Cowell er al., 1999), often used to model
systems whose behavior is not fully understood. We
investigated some consistent work already done on the

Bringing introspection into BlobSeer: Towards a self-adaptive distributed data management system

probabilistic management in distributed systems. Hood
and Ji (1997) utilize Bayesian networks for proactive
detection of abnormal behavior in a distributed system.
Steinder and Sethi (2004) apply Bayesian reasoning
techniques to perform fault localization in complex
communication systems. Ding er al. (2004) present
probabilistic inference in fault management based on
Bayesian networks. However, the Bayesian network
paradigm used within all these works does not provide di-
rect mechanisms for modeling the temporal dependencies
in dynamic systems (Santos and Young, 1999), which is
essential for enhancing autonomic behavior.

Another approach takes time into consideration by
identifying the dynamic changes in distributed systems as
a discrete nonlinear time series. Previous research work
on scalable distributed monitoring for autonomous sys-
tems can be broadly classified into two categories: rely-
ing on decentralized architectures such as hierarchical ag-
gregation (Van Renesse et al., 2003) or the peer-to-peer
structure (Albrecht et al., 2005) to distribute monitoring
workload, and trading off information coverage (Liang
et al.,2007) or information precision (Jain et al., 2007) for
lower monitoring cost. In contrast, our research focuses
on identifying the relevant parameters for an autonomic
introspection layer while relying on the extension and
adaptation of some existing monitoring tools for tracking
these parameters. The monitoring solution should further
meet our needs for non-intrusiveness and minimized mon-
itoring costs.

Exploring correlation patterns among distributed
monitoring data sources has been extensively studied
in various contexts such as sensor network monitor-
ing (Vuran and Akyildiz, 2006), distributed event track-
ing (Jain et al., 2004), and resource discovery (Cardosa
and Chandra, 2008). While the general idea of exploring
temporal and spatial correlations is not new, we shall em-
phasize that applying the idea to distributed information
tracking over large-scale networked systems requires non-
trivial system analysis and design. In our case, this means
discovering dynamic correlation patterns (for some pre-
defined targeted events: node failures, malicious clients
intrusions, etc.) among distributed information sources,
using light-weight methods instead of assuming a specific
probabilistic model, as in wireless sensor networks, for
instance.

Although the works mentioned above are able to pro-
vide some means of monitoring for singular or aggregate
services, they do not dynamically replace the faulty ser-
vice once a failure has been detected, or take automated
actions to optimize the system’s overall performance, as
our work attempts to do to within a large scale distributed
storage system.

3. Self-adaptation for large scale data
management systems

A large scale data management platform is a complex
system that has to deal with changing rates of concur-
rent users, the management of huge data spread across
hundreds of nodes or with malicious attempts to access
or to damage stored data. Therefore, such a system can
benefit from a self-adaptation component that enables au-
tonomic behavior. We refine the set of self-adaptation
directions that best suit the requirements of data man-
agement systems: they match the main self-management
properties defined for autonomic systems (Kephart and
Chess, 2003; Parashar and Hariri, 2005).

Self-awareness is the feature that enables a system
to be aware of the resource usage and the state of its
components and of the infrastructure where they are
running. This is mainly achieved through monitoring and
interpreting the relevant information generated by the
usage of the system.

Self-optimization is the ability to efficiently allocate and
use resources, while dealing with changing workloads.
It aims at optimizing the system’s performance and
increasing data availability.

Self-configuration is the property that addresses the
dynamic adaptation of the system’s deployment scheme
as a response to changing environment conditions. The
system has to be able to reconfigure on the fly, when its
state requires or allows for a change in the number of
managed nodes.

Self-protection addresses the detection of hostile or in-
trusive actions directed towards the system’s components
and enables the system to automatically take appropriate
measures to enforce security policies and make itself less
vulnerable to subsequent similar attacks.

In order to improve the performance and the effi-
ciency of resource usage in a data sharing system, below
we define a set of goals that justify the need for the afore-
mentioned properties.

Monitoring. Constant surveillance of the state of a sys-
tem and of the events that trigger system reactions is
the prerequisite of all the other self-adaptation directions.
Thus, the self-awareness property is of utmost importance
for providing support for autonomous behavior.

Dynamic dimensioning. The performance of data ac-
cess primitives is influenced by the number of running
nodes of the data sharing system. Moreover, the load of

aamcs

A. Carpen-Amarie et al.

gy g g

{” Metadat v Client p H . i

: Providers e — Y P T ETE] : ' Self-adaptation Engine ;

i el Nl R i

i A I R S | Introspection Layer]

L BLOB e \‘

H 1 Iy 1 H .

H [B I I [[' I

”HJ e l P | Monitoring Layer | |

ST —Provides—, s Instrumentation == —. |
Provider \ !

manager,

\
____layer _ "r“
|
.................. |
Iob eer J

Fig. 1. BlobSeer: architecture of the BlobSeer system (a), architecture of the introspective BlobSeer (b).

each component that stores data is also dependent on the
available storage nodes and on their capacity to serve user
requests. On the other hand, the workload is often un-
predictable, and the deployment of the system on a large
number of physical nodes can lead to underused storage
nodes when the number of clients is low or the stored
data are not large enough. These reasons account for the
need to enhance a large-scale storage system with a mech-
anism that dynamically adjusts the number of deployed
storage nodes. This is equivalent to taking advantage of
real-time indicators of the state of the system within a self-
configuration component that can observe a heavy load or
underutilized components.

Malicious clients detection. A data sharing system dis-
tributed on a large number of nodes can fit the needs of
applications that generate important amounts of data only
if it can provide a degree of security for the stored in-
formation. For this reason, the system has to be able to
recognize malicious requests generated by unauthorized
users and to block illegal attempts to inject or to modify
data. Therefore, a self-protection component that enforces
these requirements has to be integrated into the system.

4. Towards an introspective BlobSeer

BlobSeer is a data sharing system which addresses the
problem of efficiently storing massive, unstructured data
blocks called binary large objects (referred to as BLOBs
further in this paper), in large-scale, distributed environ-
ments. The BLOBs are fragmented into small, equally-
sized chunks. BlobSeer provides efficient fine-grained ac-
cess to the chunks belonging to each BLOB, as well as
the possibility to modify them, in distributed, multi-user
environments.

4.1. Architecture. The architecture of BlobSeer (cf.
Fig. [I(a)) includes multiple distributed entities. Clients
initiate all BLOB operations: CREATE, READ, WRITE

and APPEND. There can be many concurrent clients ac-
cessing the same BLOB or different BLOBs at the same
time. The support for concurrent operations is enhanced
by storing the chunks belonging to the same BLOB on
multiple data providers. The metadata associated with
each BLOB are hosted on other components, called meta-
data providers. BlobSeer provides versioning support, so
as to prevent chunks from being overwritten and to be able
to handle highly-concurrent WRITE and APPEND oper-
ations. For each of them, only a patch composed of the
range of written chunks is added to the system. Finally,
the system comprises two more entities: the version man-
ager, which deals with the serialization of the concurrent
WRITE/APPEND requests and with the assignment of
version numbers for each new WRITE/APPEND opera-
tion, and the provider manager, which keeps track of all
storage providers in the system.

A typical setting of the BlobSeer system involves
the deployment of a few hundreds data providers, stor-
ing BLOBs of the order of the TB. A typical size for a
chunk within a BLOB can be smaller that 1 MB, whence
the challenge of dealing with hundreds of thousands of
chunks belonging to just one BLOB. BlobSeer pro-
vides efficient support for heavily-concurrent access to
the stored data, reaching a throughput of a 6.7 GB/s ag-
gregated bandwidth for a configuration with 60 metadata
providers, 90 data providers and 360 concurrent writers,
as explained by Nicolae et al. (2009).

4.2. Introspection mechanisms on top of BlobSeer.
We enhanced BlobSeer with introspection capabilities in
order to enable this data sharing platform with autonomic
behavior. Carpen-Amarie et al. (2010) present a three-
layered architecture designed to identify and generate rel-
evant information related to the state and the behavior of
the system (Fig.[I(b)). Such information is then expected
to serve as input to a higher-level self-adaptation engine.
These data are yielded by (i) an introspection layer, which

Bringing introspection into BlobSeer: Towards a self-adaptive distributed data management system

processes the raw data collected by (ii) a monitoring layer.
The lowest layer is represented by the (iii) instrumentation
code that enables BlobSeer to send monitoring data to the
upper layers.

4.2.1. Introspection: Relevant data. The self-
adaptation engine can only be effective if it receives ac-
curate data from the introspection layer. The latter gener-
ates data ranging from general information about the run-
ning nodes to specific data regarding the stored BLOBs
and their structure.

General information. These data are essentially con-
cerned with the physical resources of the nodes that act
as data providers. They include CPU usage, network traf-
fic, disk usage, storage space, or memory. A self-adapting
system has to take into account information about the val-
ues of these parameters across the nodes that make up the
system, as well as about the state of the entire system, by
means of aggregated data. For instance, the occupied and
available storage space at each single provider play a cru-
cial role in deciding whether or not additional providers
are needed.

Individual BLOB-related data. The most significant in-
formation for a single BLOB is its access pattern, i.e.,
the way the chunks and the versions are accessed through
READ and WRITE operations. The basic data are the
number of read access instances for each chunk that the
BLOB version consists of, and the number of WRITE op-
erations performed on the BLOB for each chunk. These
data facilitate the identification of BLOB regions compris-
ing chunks with a similar number of access instances, in-
formation that can influence the adopted replication strat-

cgy.

Global state. Even though the details within each BLOB
are made available to the provider-allocation algorithms
implemented by the provider manager, it is essential to
have an overview of the whole data stored in the BlobSeer
system, from a higher-level point of view. Some of the key
data at this global level are the total number of access in-
stances associated with each provider. This is a measure of
the load of each of them and can directly influence the se-
lection of the providers that will be allocated new chunks,
depending on their deviation from the average load within
the system.

4.2.2. Monitoring: Data collection mechanisms.
The input for the introspective layer consists of raw data
that are extracted from the running nodes of BlobSeer, col-
lected and then stored, a set of operations realized within
the monitoring layer. Therefore, it can rely on a moni-
toring system designed for large-scale environments that
implements these features. Such a monitoring framework
has to be both scalable and extensible, so as to be able to

deal with the huge number of events generated by a large-
scale data management system, as well as to accommo-
date system-specific monitoring information and to offer
a flexible storage schema for the collected data.

Monitoring framework: MonALISA. The Global
Grid Forum (GGF, 2010) proposed a Grid Monitoring
Architecture (GMA) (Tierney et al., 2002), which de-
fines the components needed by a scalable and flexible
grid monitoring system: producers, consumers, and a di-
rectory service. A wide variety of grid monitoring sys-
tems (Zanikolas and Sakellariou, 2005), such as Gan-
glia (Massie et al., 2004), RGMA (Cooke et al., 2004),
GridICE (Andreozzia et al., 2005), comply with this ar-
chitecture.

Among them, we selected MonALISA (Monitor-
ing Agents in a Large Integrated Services Architec-
ture) (Legrand et al., 2004) for our data monitoring tasks,
as it is a general-purpose, flexible framework, which pro-
vides the necessary tools for collecting and processing
monitoring information in large-scale distributed systems.
Moreover, it is an easily extensible system, which al-
lows the definition and processing of user-specific data,
by means of an API for dynamically-loadable modules.
MonALISA is currently used to monitor large high-
energy physics facilities. It is deployed on over 300
sites belonging to several experiments, such as CMS or
ALICE (ALICE, 2010).

In BlobSeer, the main challenge the monitoring layer
has to cope with is the large number of data provider nodes
and therefore the huge number of BLOB chunks, versions
and huge BLOB sizes. Furthermore, it has to deal with
hundreds of clients that concurrently access various parts
of the stored BLOBES, as they generate a piece of monitor-
ing information for each chunk accessed on each provider.
MonALISA is suitable for this task as it is a system de-
signed for large-scale environments and proved to be both
scalable and reliable.

Instrumenting BlobSeer. The data generated by the in-
strumentation layer are relayed by the monitoring system
and finally fed to the introspection layer. The instrumen-
tation layer is implemented as a component of the mon-
itoring layer. The MonALISA framework provides a li-
brary called ApMon that can be used to send the monitor-
ing data to the MonALISA services. At the providers, the
instrumentation code consists of listeners located on each
of them, which report to the monitoring system each time
a chunk is written or read. The monitoring information
from the version manager is collected using a parser that
monitors the events recorded in the logs. The state of the
physical resources on each node is monitored through an
ApMon thread that periodically sends data to the monitor-
ing service.

@amcs

amcs@

A. Carpen-Amarie et al.

5. Introducing self-adaptation for BlobSeer

To introduce autonomic behavior in BlobSeer, we investi-
gated two directions. The first approach aims at enhancing
BlobSeer with self-configuration capabilities, as a means
to support storage elasticity through dynamic deployment
of data providers. The second direction addresses the self-
protection of BlobSeer from malicious clients by detect-
ing and reacting to potential threats in realtime based on
the information yielded by the introspection layer. In this
section, we detail these two approaches.

5.1. Self-configuration through dynamic data
providers deployment. Dynamic dimensioning is a
means to achieve the self-configuration of BlobSeer, by
enabling the data providers to scale up and down depend-
ing on the detected system needs. The component we
designed adapts the storage system to the environment
by contracting and expanding the pool of data providers
based on the system’s load. The key idea of the dynamic
data providers deployment component is the automatic de-
cision that has to be made on how many resources the sys-
tem needs to operate normally while keeping the resources
utilization down to a minimum. This problem is addressed
by using a test-decided heuristic based on the monitoring
data. The system maintains two pools of providers:

Active Pool of Providers (APP) a pool of providers that
are currently on and are actively used by the BlobSeer in-
frastructure.

Backup Pool of Providers (BPP) a pool of providers that
are currently off, waiting in stand-by to be activated in
order to be used.

The goal is to dynamically switch providers from one
pool to another when certain conditions are met, in or-
der to optimize resource usage. Instead of reserving a
large number of nodes which eventually are not effectively
used, the system only relies on the APP and self-adapts its
execution using the BPP.

5.1.1. Architectural overview. The dynamic deploy-
ment decision is based on retrieving the monitoring data
and computing a score that evaluates the status of each
provider. The monitoring data are retrieved from two dif-
ferent sources, each one with specific metrics: BlobSeer-
related data and physical resources information. These
data are stored and processed using a monitoring reposi-
tory. Based on the real-time monitoring information, the
decision algorithm computes a heuristic score. Its value
determines the decision of removing or adding a node to
the active pool of providers.

In order to take the corresponding action based on
the obtained result, the application needs to get a list of
available nodes (data providers) from the provider man-
ager which can be turned on or off, depending on the de-

Dynamic Providers Deployment

—{ Provider Pool Manager J
Enable / Disable

Introspection
Module

Data Providers
Provider Mover

Start / Shutdown Notify / Ack
| |
4 L 4 L
BlobSeer {1f =, [f e _
@ § & f Provider
X % Manager
Data Providers ;

Fig. 2. Architectural overview of the dynamic deployment mod-
ule.

cision taken. This part is also responsible for notifying the
BlobSeer system, specifically the provider manager, of the
changes made in the system.

The main actors of the dynamic deployment ser-
vice are the decision taking component (the provider pool
manager) and the decision enforcement component (the
provider mover), as depicted in Fig. The provider
pool manager analyzes the monitoring information and
using some configurable policies it makes the decision
about either enabling or disabling a set of data providers.
The provider mover is responsible for putting this deci-
sion into practice by moving a provider from the active
pool of providers to the backup pool of providers or vice-
versa, depending on what commands it receives from the
provider pool manager.

The interaction with BlobSeer’s provider manager
is represented by requests for the list of the active data
providers running in the system at a specific moment in
time. The provider pool manager reads the coordinates of
the provider manager and contacts it to obtain a list of tu-
ples (host, port) that point to the nodes where data
providers are active. The provider mover also manages
the two pools, APP and BPP, and the Providers’ migration
between them. The provider mover notifies the provider
manager of a change in the APP. If the notification fails,
the provider mover does not retry it, relying on the watch-
dog facility implemented in BlobSeer, which scans the
entire list of providers to track the active providers. Fi-
nally, the provider mover communicates directly with the
data providers and issues the start or shutdown commands
through which a provider is moved from BPP to APP or
from APP to BPP, respectively.

The sequence diagram depicted in Fig. Bl illustrates
the flow of actions within the dynamic deployment mod-
ule. The monitoring data are retrieved continuously, as a
separate process by the monitoring module, and are stored
into a monitoring repository. The provider pool manager
connects to the provider manager to get the list of active

Bringing introspection into BlobSeer: Towards a self-adaptive distributed data management system

ProviderPool Provider

Moo oo |Monitoring | ProviderMover | | Provider | | fUoV9er Algorithm 1 Scaling down data providers.
f reauest monitor daig § 1: procedure SCALING_DOWN(dataProvidersList)
[TORIOTIRET ™ got available prpviders 2 for all dataProvider in dataProvidersList do
e ——— - — —uvaiEBs i — — = — — —] 3 GET_MONITORING_DATA(dataProvider)
4: S «— COMPUTE_SCORE(dataProvider)
disable providers (ig <hutdown 5: if S < scoreThreshold then
s 6 keep dataProvider in APP
notly 7 else
ok shutdown 8: if dataReplicationDegree >
e — replication Threshold then
== = === 9: move dataProvider to BPP
10: available Providers < retrieve avail-
Fig. 3. Sequence diagram of dynamic providers deployment. able providers from the provider manager
11: transfer data to available Providers
providers. Once these data are obtained, Fhe pool man- i g?_'dgfriéngw;t(ada taProvider)
ager starts cgmputlng a score for each provider. Bz}sed on 14 else
a conﬁggrz}tlon file spequmg: the targeted scenarios and s keep dataProvider in APP
the heuristic used, a decision is taken and communicated .
. .o . 16: end if
to the provider m(?ver. This, .1n turn, calls the scripts that 7. end if
start or stop a particular provider. 8 end for

5.1.2. Heuristic providers evaluation. The scoring
algorithm provides a method to detect which providers
should be moved from the APP to the BPP. The factors
to be taken into consideration and tracked using the in-
trospection layer can be divided into two subcategories:
physical factors (depending on the physical node that runs
the data provider, e.g., the free disk space, the average
bandwidth usage, the CPU load or the system uptime)
and BlobSeer factors (metrics referring to the BlobSeer
behavior, e.g., the number of read/write access instances
per time unit, the size of stored chunks and BLOBs, the
replication degree).

We illustrate this approach with a common sce-
nario identified by the dynamic provider deployment mod-
ule and treated accordingly by stopping the unnecessary
providers. In this case, if the introspection layer detects
that on one provider the free disk space is above the 70%
threshold, the replication factor for the stored chunks is
greater than 1, with a small read and write access rate
(e.g., less than one access per hour), it decides to shut
down the provider. All the values referred to above are
adjustable through a configuration file. The current val-
ues were chosen based on a set of performance evaluation
experiments aiming to identify the tradeoff between the
costs of shutting down one provider and moving its data
to another one, and the benefits of using fewer resources.
The scenario illustrates the case of a provider with extra
disk space available, which is not used by clients. Con-
sidering all the stored data are also replicated on other
providers, it is reasonable to shut down this provider in
order to efficiently use the available resources. The shut
down decision is only made when the operation’s costs are
smaller and there are available nodes where the data can

19: end procedure

be transferred to preserve the replication factors.

The self-configuration engine is not limited to de-
tecting this type of scenarios. Several other patterns are
identifiable using a simple specification mechanism. The
conditions making up the scenarios are modeled as factors
used to compute a score for each provider. The heuristic
used in the score computation is based on weight factors
using the following formula:

Sszfti-wcfi, (1)

i=1

where wft; represents the weight of the factor 4 from the
total score and wcf ; represents the weight of the true con-
dition from the factor ¢. With this notation, the pseu-
docode for scaling down data providers is presented in
Algorithm[Il

5.2. Self-protection through malicious client detec-
tion. Detecting malicious clients is the first step towards
enabling self-protection for the BlobSeer system. Such a
feature has to take into account several types of security
threats and to react when such attacks occur.

In this section, we propose a simple malicious client
detection mechanism that focuses on protocol breaches
within BlobSeer, as this is a critical vulnerability of a data
management system that enables the clients to directly ac-
cess the data storage nodes in order to provide very effi-
cient data transfers. The goal of the detection component
is to identify the known forms of protocol misuse, and

@amcs

amcsb

A. Carpen-Amarie et al.

Algorithm 2 Data writing step.

Algorithm 3 Data publication step.

1: procedure WRITE_DATA(buffer, offset, size)
2: wld < generate unique write id
noCh «— [size/chSize]
P — get noCh providers from provider manager
D« 0
for all 0 < i <noCh in parallel do
chld < generate unique chunk id
chOffset < chSize X1
store buffer[chOffset .. chOffset + chSize]
as chunk (chld, wld) on provider PJi]
10: D «— DU {(chld,wld,i, chSize)}
11: Pglobal — PglobalU{(ChId,P[i])}
12: end for
13: end procedure

B A

thus to help the system to maintain the stored data in a
consistent state.

5.2.1. Protocol breach scenarios for BlobSeer. A ma-
licious user can try to compromise the system by deliber-
ately breaking the data insertion protocols. This kind of
behavior is a starting point for DoS attacks, in which the
user attempts to overload the system through large num-
bers of malformed or incomplete requests. To cope with
this security risk, specific mechanisms have to be devel-
oped to quickly detect the illegal access instances and iso-
late the user that initiated them.

The most vulnerable data access operation is writing
data into BlobSeer, as it gives a malicious user not only
the opportunity to overload the system and to increase its
response time, but also the means to make corrupted data
available.

The WRITE operation imposes a strict protocol on
the user that wants to correctly insert data into the sys-
tem. We consider the typical case of WRITE operations
in BlobSeer, that is, when a user attempts to write a con-
tinuous range of chunks to a specific BLOB. For simplic-
ity, we can assume that the WRITE operation consists of
two independent phases that have to be executed consec-
utively. These two steps can be summarized as follows (a
full description of the data access primitives in BlobSeer
can be found in the work of Nicolae et al. (2010)):

Data writing step. A simplified description of this oper-
ation is provided in Algorithm[2l We assume the size of
data to be written is a multiple of a predefined chunk size,
denoted by chSize, as this is often the case in BlobSeer.
The input parameters of this step are the data to be written
as a string buffer, the offset within the BLOB where the
data have to be inserted and the size of the sequence.

The client connects to the provider manager and re-
quests a list of data providers, P, which can host the
chunks to be written. Then, the chunks are sent in par-

1: procedure PUBLISH_DATA(offset, size, D, wld)

2: writeInfo < invoke remotely on version man-
ager ASSIGN_VERSION(offset, size, wld)

3: BUILD_METADATA(writeln fo, D)

: invoke remotely on version
COMPLETE_WRITE (writeInfo)

5: end procedure

manager

allel to the data providers, together with a unique identi-
fier, chld, and the identifier of the WRITE operation, wid.
Upon successful completion of this step, the information
associated with all the written chunks will be stored in
a chunk descriptor map denoted by D. Additionally, the
providers that hold each chld are stored in Pyjgpal, a con-
tainer where the addresses of all the chunks in the system
are saved.

Data publication step. It is represented by the creation
of the metadata associated with the written data and the
publication of the written chunk range as a new version,
as described in Algorithm[3l

First, the client asks the version manager for a new
version for its chunk list, and then it proceeds to the
creation of metadata, starting from the chunk descriptor
map D generated in the first step. The WRITE IS op-
eration finalized after the client successfully invokes the
COMPLETE_WRITE procedure on the version manager,
which in turn is responsible for publishing the new version
of the BLOB.

A correct WRITE operation is defined as success-
ful completion of the aforementioned steps, with the con-
straint that the published information concerning the writ-
ten chunk range be consistent with the actual data sent to
the data providers, that is, the values of D and wld that
are sent to the version manager correspond to chunks that
have been written on data providers. As a consequence,
there are two types of protocol breaches that can be de-
tected for the WRITE operation:

Data written and not published. In this case, a malicious
user obtains a list of providers from the provider manager
and then starts writing data to the providers. The second
step is never issued and thus the version manager, which
keeps track of all the BLOBs and their versions, will never
be aware of the data inserted into the system. This kind of
protocol breach can be developed into a Denial of Ser-
vice (DoS) attack, aiming to overload of one or more data
providers.

Publication of inconsistent data. The attack that corre-
sponds to this situation aims to disrupt the computations
that use data stored by the BLOBs. As an example, a
user may attempt to compromise the system by making
data that do not actually exist available. Therefore, an ap-

Bringing introspection into BlobSeer: Towards a self-adaptive distributed data management system

plication can start reading and processing the data with-
out being aware that the metadata contain fake references.
Hence the computation would be compromised and the
application forced to restart the processing.

5.2.2. Detection mechanism. Enabling self-protection
in BlobSeer relies on coupling a malicious-client detec-
tion module with the introspection layer. On the one hand,
such a module has to identify the malicious activities that
attempt to compromise the system and to isolate users that
initialize them. On the other hand, it should not interfere
with BlobSeer operations, so as to preserve the efficient
data access instances for which BlobSeer is optimized.
The introspection layer processes information monitored
independently of the interactions between the user and the
system, and thus it is an ideal candidate to provide input
data for a malicious client detection module.

We implemented a detection module that addresses
the protocol-breach attacks and generates blacklists with
the users that attempt them. Its input data are provided as
a history of the users’ actions by the introspection layer,
which constantly monitors the real-time data access and
updates the history. The user history stores the following
types of monitoring parameters:

Data generated by the data providers. The monitor-
ing information collected from the data providers con-
sists of tuples that aggregate the information about the
stored data chunks. The data corresponding to a new
chunk written in the system are defined as a tuple denoted
by (cId, wlid, noCh, chSize, ts), where cld is the client
identifier, wld is the write identifier generated in the data
writing step and ts is the timestamp attached by the mon-
itoring system when the data are recorded. Note that for
each wld there can be several records in the user history
(with different timestamps), as not all the chunk writes are
recorded by the monitoring system at the same time.

Data obtained from the version manager. The in-
trospection system records each new version published
by the version manager in the form of tuples defined
as (cld,wld, v, offset, size, ts), where cld is the client
identifier, wld is the same write identifier used for the data
writing step, v is the new published version, offset and
size identify the chunk range written into the system, and
ts is the timestamp assigned by the monitoring system.

The detection module comprises two components,
each of them dealing with a specific type of proto-
col breach. The detection mechanism for inconsis-
tent data publication is presented in Algorithm [l The
DETECT_ILLEGAL_PUBLISH procedure is executed
periodically and each time it inspects the most recent mon-
itoring data recorded by the introspection module. The
procedure searches for published versions that have no
corresponding written data chunks or the written range of

Algorithm 4 Malicious clients detection.

1: BL+—0

2: lastTsChecked = 0

3: procedure DETECT_ILLEGAL_PUBLISH

4: mazTs = getCurentTime() — windowSize

5: PW «— get list of published writes such that ¢s >
lastTsChecked and ts < maxTs

6: DW « get list of data writes such that ts >
lastTsChecked — windowSize

7: last TsChecked <— max(ts) from PW

8: for p € PW,p = (cId,wld,of fset, size,v) do

9: if 2d € DW, d =
(cldg, wldg, noChg, chSizeq, tsq) such that
cldg = cld,wld; = wld then

10: BL «— UPDATE_SCORE(BL, cId, p)

11: else

12: if size £ > noChy X chSizey then

dEDW

13: BL+— UPDATE_SCORE(BL, cld, p)

14: end if

15: end if

16: end for

17: end procedure

chunks does not match the information published. Each
published write is matched against the set of chunk writes
that occurred in a predefined time window, denoted by
windowSize, surrounding its timestamp. If no chunk
writes are found with the same client identifier and write
id, or if the total size of the written chunks does not match
the published size, the client is added to a global black-
list BL. Once blacklisted, a client is also associated with
a score, which can be computed according to the type of
illegal action. For example, if no chunks are written, the
UPDATE_SCORE procedure computes a score propor-
tional to the write size declared by the publication step.

The goal of the detection mechanism is to keep track
of the malicious users and to feed this information back
into the BlobSeer system, so as to enable it to react when
receiving new requests from the users identified as mali-
cious. The malicious users can be made available to the
provider manager as a blacklist where each user’s score
shows the amount of fake data that the user introduced
into the BlobSeer system. The provider manager imple-
ments the allocation strategy that assigns providers for
each user WRITE operation. Being aware of the blacklist,
the provider manager can decide to block the malicious
users by not granting the providers when they want to
write again into the system. The behavior of the provider
manager can be further refined by taking into account the
score associated with each client. In this case, there are
several other constraints that can be enforced on the users,
such as a decreased bandwidth for their WRITE opera-
tions, a waiting time imposed before being assigned the

aamcs

;
d

A. Carpen-Amarie et al.

Mo. of accesses

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000
Chunk ID

(a)

2,250

2,000

1,750

1,500

1,250

Size (MB)

1,000

750

500

250

1 23 4 5 7 B 9 1w 11 12 13 14 15 16 17 1B
version

(b)

Fig. 4. Visualization for BlobSeer-specific data: number of WRITE access instances on each chunk of a BLOB (each chunk is identified
by its position within the BLOB) (a), size of all the stored versions of a BLOB (b).

necessary list of providers or a size limit for the data writ-
ten.

6. Experimental evaluation

We evaluated the feasibility of gathering and interpreting
the BlobSeer-specific data needed as input data for the dif-
ferent self-optimizing directions. Our aim was to create an
introspection layer on top of the monitoring system, able
to process the raw data collected from BlobSeer and to ex-
tract significant information regarding the state and behav-
ior of the system. We performed a series of experiments
that evaluate the introspection layer and also provide
some preliminary results concerning the introduction of
self-protection capabilities in BlobSeer. The experiments
were conducted on the Grid’5000 (Bolze et al., 2006)
testbed, a large-scale experimental grid platform that cov-
ers nine sites geographically distributed across France.

6.1. Visualization tool for BlobSeer-specific data.
We implemented a visualization tool that can provide a
graphical representation of the most important parameters
yielded by the introspection layer.

We show the outcome of the introspection layer
through an evaluation performed on 127 nodes belong-
ing to a Grid’5000 cluster in Rennes. The nodes are
equipped with x86_64 CPUs and at least 4 GB of RAM.
They are interconnected through a Gigabit Ethernet net-
work. We deployed each BlobSeer entity on a dedicated
node as follows: two nodes were used for the version man-
ager and the provider manager, 10 nodes for the meta-
data providers, 100 nodes for the storage providers and
10 nodes acted as BlobSeer clients, writing data to the
BlobSeer system. Four nodes hosted MonALISA mon-
itoring services, which transferred the data generated by
the instrumentation layer built on top of the BlobSeer
nodes to a MonALISA repository. The repository is the

location where the data were stored and made available to
the introspection layer.

In this experiment, we used 10 BLOBs, each of them
having the chunk size of 1 MB and a total size larger
than 20 GB. We created the BLOBs and we wrote 10 data
blocks of 2 GB on each BLOB. Each data block overlaps
the previous one by 10%. Next, we started 10 clients in
parallel and each of them performed a number of WRITE
operations on a randomly selected BLOB. The blocks
were written on the BLOB at random offsets and they con-
sisted of a random number of chunks, ranging between
512 MB and 2 GB in size.

We processed the raw data collected by the monitor-
ing layer and extracted the higher-level data within the in-
trospection layer. Some results are presented below, along
with their graphical representations.

Access patterns. They represent significant information
that the introspection layer has to be aware of. It can be
obtained by computing the number of READ/WRITE ac-
cess instances. The access patterns can be examined from
two points of view. The first one regards the access pat-
terns for each BLOB. It considers the number of READ
or WRITE accesses for each chunk, for a specified ver-
sion or for the whole BLOB, and it identifies the regions
of the BLOB composed of chunks with the same number
of access instances (Fig. @(a)). The other one refers to
the number of READ or WRITE operations performed on
each provider, allowing classification of the providers ac-
cording to the pressure of the concurrent access they have
to withstand.

Size of all the stored versions of a BLOB. The differ-
ences between the versions of the same BLOB are pre-
sented in Fig. where the size of the new data intro-
duced by each version into the system is shown in MB.
This information, correlated with the number of access
instances for each version, can be used to identify ver-

Bringing introspection into BlobSeer: Towards a self-adaptive distributed data management system

5000

4000 [

3000 [

2000

1000 [

Aggregated throughput (MB/s)

0 10 20 30 40 50 60 70 80
Number of clients

(2)

50 r
40 |
©
- 30 r
i)
©
5 20 r
a
100
PNW Detection
0 T —

0O 10 20 30 40 50 60 70 80
Number of clients

(b)

Fig. 5. Performance evaluations: aggregated throughput of the WRITE operation for BlobSeer (BS) and for BlobSeer with the monitor-
ing support enabled (BSMON) (a), WRITE duration and the detection delay when concurrent clients that publish data without

writing them (PNW) access the BlobSeer system (b).

sions that correspond to a small amount of data and are
seldom accessed. Such observations are necessary for a
self-optimization component that handles the replication
degree of each version.

6.2. Impact of the introspection architecture on Blob-
Seer data access performance. This experiment is de-
signed to evaluate the impact of using the BlobSeer sys-
tem in conjunction with the introspection architecture.
The introspective layer collects data from BlobSeer with-
out disrupting the interactions between its components,
and thus no constraint is enforced on the user’s access to
the BlobSeer entities. In this way, the throughput of the
BlobSeer system is not influenced by the detection mod-
ule. The only downside of such a system is the intrusive-
ness of the instrumentation layer that runs at the level of
the BlobSeer components and is susceptible of decreasing
their performance.

For this experiment we used the Grid’5000 clusters
located in Rennes and Orsay. The nodes are equipped with
x86_64 CPUs and at least 2 GB of RAM. We used a typi-
cal configuration for the BlobSeer system, which enables
the system to store massive amounts of data that can reach
the order of the TB. It consists of 150 data providers, 20
metadata providers, one provider manager and one version
manager. Both data and metadata providers store data on
their hard disks and they are configured to store up to 64
GB and 8 GB, respectively. The MonALISA monitoring
services are deployed on 20 nodes and they collect moni-
toring data from all the providers, each of them being dy-
namically assigned to a monitoring service in the deploy-
ment phase. The repository that gathers all the monitored
parameters is located outside Grid’5000, as well as the
detection module that interacts only with the repository’s
database. Each entity is deployed on a dedicated physical
machine.

This test consists of deploying a number of concur-

rent clients that make a single WRITE operation. Each
client writes 1 GB of data in a separate BLOB, using a
chunk size of 8 MB. We analyze the aggregated through-
put of the BlobSeer WRITE operation obtained when de-
ploying it standalone compared with the BlobSeer outfit-
ted with the introspection layers. The throughput is mea-
sured for a number of clients ranging from 5 to 80, and
the experiment was repeated 3 times for each value of the
number of clients deployed. Figure shows that the
performance of the BlobSeer system is not influenced by
the addition of the instrumentation code and the gener-
ation of the monitoring parameters, as in both cases the
system is able to sustain the same throughput. Since the
introspective layer computes its output based on the moni-
tored data generated for each written chunk, the more fine-
grained BLOBs we use, the more monitoring information
has to be processed. For this test, each BLOB consists
of 128 chunks and therefore the introspective component
performs well even when the number of generated mon-
itoring parameters reaches 10,000, as is the case when
testing it with more than 80 clients.

6.3. Malicious clients detection. We aim to explore
the first step towards a self-protecting BlobSeer system,
by building a component that can detect illegal actions and
prevent malicious users from damaging the stored data.
To reach this goal, the detection mechanism for the mali-
cious users has to deliver an accurate image of the users’
interaction with BlobSeer. Moreover, it has to expose the
illegal operations as fast as possible, so as to limit the size
of data illegally injected into the system and to prevent the
malicious users from carrying on the harmful access. We
define the detection delay as the duration of the detection
phase after the end of the client’s operations. We use the
detection delay as a measure of the performance of the
detection module.

The aim of this experiment is to analyze the perfor-

aamcs

amcsw

A. Carpen-Amarie et al.

mance of the detection module when the system is ac-
cessed by multiple concurrent malicious clients that pub-
lish data without actually writing them. This access pat-
tern corresponds to a scenario where a number of clients
access a reputation-based data storage service. Each client
can increase its reputation by sharing a large amount of
data with the other users of the system. To achieve this
goal, a malicious client may pretend to share huge data,
while it only skips the data writing phase of the WRITE
operation and publishes nonexistent data.

The deployment settings are identical with the pre-
vious experiment. We want to assess the behavior of the
system under illegal concurrent access. Thus we deploy
only malicious clients, repeating the test with an increas-
ing number of clients, ranging from 5 to 80. We measure
both the duration of the WRITE operation of the client
and the delay between the beginning of the WRITE and
the detection of the client that initiated it as being mali-
cious. All the clients start writing at the same time, thus
having the same start time. For each point in the chart,
we compute the average duration between all the clients
deployed for that run. The results obtained in Fig.
show that the delay between the end of the write oper-
ation and the detection of the malicious clients remains
constant as the number of clients increases. This is a mea-
sure of the scalability of our approach, showing that the
detection process is able to cope with a large number of
concurrent clients and to deliver results fast enough to al-
low the system to block the attackers while sustaining the
same level of performance.

7. Conclusions and future work

This paper addresses the challenges raised by the intro-
duction of introspection into a data management system
for large-scale, distributed infrastructures. Such a feature
aims at exposing general and service-specific data to a
higher-level layer, in order to enable the system to evolve
towards an autonomic behavior. We propose a layered ar-
chitecture built on top of the BlobSeer data management
system, a service dedicated to large-scale sharing of mas-
sive data. The goal of this architecture is to generate a set
of specific data that can serve as input for a self-adaptive
engine.

We also proposed a dynamic dimensioning module
and a malicious clients detection component that rely on
data yielded by the introspection layer. By reacting in
real time to changes in the state of the system, they rep-
resent the first step towards enhancing this system with
self-configuration and self-protection capabilities.

To build the monitoring layer, we relied on the Mon-
ALISA general purpose, large-scale monitoring frame-
work, for its versatility and extensibility. Our experiments
showed that it was able to scale with the number of Blob-
Seer providers and to cope with the huge amount of mon-

itoring data generated by a large number of clients. More-
over, it allowed us to define and collect BlobSeer-specific
data, as well as to visualize graphical representations as-
sociated with the various high-level data extracted.

The next step will consist in equipping BlobSeer with
other self-adaptive components in order to optimize the
system’s performance and resource usage. For example,
by allowing the provider manager to rely on introspection
data, this engine will help improving the storage resource
allocation strategies. Besides, it can also provide infor-
mation based on which adaptive data replication strate-
gies can be implemented. Together, such features will
enable autonomic behavior of the BlobSeer data manage-
ment platform.

Acknowledgment

Experiments presented in this paper were carried out
using the Grid’5000 experimental testbed, being de-
veloped under the INRIA ALADDIN development ac-
tion with support from CNRS, RENATER and sev-
eral universities as well as other funding bodies (see
http://www.grid5000.0rg/).

References

Albrecht, J., Oppenheimer, D., Vahdat, A. and Patterson, D.A.
(2005). Design and implementation tradeoffs for wide-area
resource discovery, Proceedings of 14th IEEE Symposium
on High Performance, Research Triangle Park, NC, USA,
pp. 113-124.

ALICE (2010). The MonALISA Repository for ALICE,
http://pcalimonitor.cern.ch/map. jsp.

Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Ru-
bini, G.L., Tortone, G. and Vistoli, M. C. (2005). GridICE:
A monitoring service for grid systems, Future Generation
Computer Systems 21(4): 559-571.

Bolze, R., Cappello, F., Caron, E., Dayd, M.J., Desprez, F., Jean-
not, E., Jgou, Y., Lanteri, S., Leduc, J., Melab, N., Mornet,
G., Namyst, R., Primet, P., Qutier, B., Richard, O., Talbi,
E., and Touche, I. (2006). Grid’5000: A large scale and
highly reconfigurable experimental grid testbed, Interna-
tional Journal of High Performance Computing Applica-
tions 20(4): 481-494.

Cardosa, M. and Chandra, A. (2008). Resource bundles: Us-
ing aggregation for statistical wide-area resource discov-
ery and allocation, 28th IEEE International Conference
on Distributed Computing Systems (ICDCS 2008), Beijing,
China, pp. 760-768.

Carpen-Amarie, A., Cai, J.,, Costan, A., Antoniu, G. and
Bougé, L. (2010). Bringing introspection into the Blob-
Seer data-management system using the MonALISA dis-
tributed monitoring framework, Ist International Work-
shop on Autonomic Distributed Systems (ADiS 2010), Cra-
cow, Poland, pp. 508-513.

http://www.grid5000.org/
http://pcalimonitor.cern.ch/map.jsp

Bringing introspection into BlobSeer: Towards a self-adaptive distributed data management system

Cooke, A., Gray, A., Nutt, W., Magowan, J., Oevers, M., Taylor,
P., Cordenonsi, R., Byrom, R., Cornwall, L., Djaoui, A.,
Field, L., Fisher, S., Hicks, S., Leake, J., Middleton, R.,
Wilson, A., Zhu, X., Podhorszki, N., Coghlan, B., Kenny,
S., Callaghan, D.O. and Ryan, J. (2004). The relational
grid monitoring architecture: Mediating information about
the grid, Journal of Grid Computing 2(4): 323-339.

Cowell, R.G., Dawid, A.P., Lauritzen, S.L. and Spiegelhalter,
DJ. (1999). Probabilistic Networks and Expert Systems,
Springer-Verlag, New York, NY.

Ding, J., Kramer, B.J., Bai, Y. and Chen, H. (2004). Probabilis-
tic inference for network management, in M.M. Freie, P.
Chemovil, P. Lorenz and A. Gravey (Eds.), Universal Mul-
tiservice Networks, Lecture Notes in Computer Science,
Vol. 3262, Springer, Berlin/Heidelberg, pp. 498-507.

GGF (2010). The Global Grid Forum,
http://www.ggf.org/.

Gunter, D., Tierney, B., Crowley, B., Holding, M. and Lee, J.
(2000). Netlogger: A toolkit for distributed system per-
formance analysis, MASCOTS ’00: Proceedings of the Sth
International Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, San
Francisco, CA, USA, pp. 267-273.

Gurguis, S. and Zeid, A. (2005). Towards autonomic web
services: Achieving self-healing using web services,
DEASOS5: Proceedings of Design and Evolution of Auto-
nomic Application Software Conference, St. Louis, MO,
USA, pp. 1-5.

Hood, C. and Ji, C. (1997). Automated proactive anomaly de-
tection, Proceedings of the IEEE International Conference
of Network Management (IM97), San Diego, CA, USA,
pp. 688—699.

Jain, A., Chang, E.Y. and Wang, Y.-F. (2004). Adaptive
stream resource management using Kalman filters, SIG-
MOD ’04: Proceedings of the 2004 ACM SIGMOD In-
ternational Conference on Management of Data, Paris,
France, pp. 11-22.

Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M. and
Zhang, Y. (2007). STAR: self-tuning aggregation for scal-
able monitoring, VLDB ’07: Proceedings of the 33rd In-
ternational Conference on Very Large Data Bases, Vienna,
Austria, pp. 962-973.

Kephart, J.O. and Chess, D.M. (2003). The vision of autonomic
computing, Computer 36(1): 41-50.

Legrand, 1., Newman, H., Voicu, R., Cirstoiu, C., Grigoras, C.,
Dobre, C., Muraru, A., Costan, A., Dediu, M. and Stratan,
C. MonALISA: An agent based, dynamic service system
to monitor, control and optimize distributed systems, Com-
puter Physics Communications 180(12): 2472-2498.

Liang, J., Gu, X. and Nahrstedt, K. (2007). Self-configuring
information management for large-scale service overlays,
INFOCOM 2007: 26th IEEE International Conference on
Computer Communications/Joint Conference of the IEEE
Computer and Communications Societies, Anchorage, AK,
USA, pp. 472-480.

Massie, M., Chun, B. and Culler, D. (2004). The Ganglia dis-
tributed monitoring system: Design, implementation, and
experience, Parallel Computing 30(7): 817-840.

Nicolae, B., Antoniu, G. and Bougé, L. (2009). Enabling high
data throughput in desktop grids through decentralized data
and metadata management: The BlobSeer approach, Pro-
ceedings of the 15th International Euro-Par Conference,
Delft, The Netherlands, pp. 404-416.

Nicolae, B., Antoniu, G., Bougé, L., Moise, D. and Carpen-
Amarie, A. (2010). BlobSeer: Next generation data man-
agement for large scale infrastructures, Journal of Parallel
and Distributed Computing 71(2): 168-184.

Parashar, M. and Hariri, S. (2005). Autonomic computing: An
overview, in J.-P. Banatre, P. Fradet, I. -L. Giavitto and O.
Michel (Eds.), Unconventional Programming Paradigms,
Lecture Notes in Computer Science, Vol. 3566, Springer
Berlin/Heidelberg, pp. 247-259.

Santos, Jr., E. and Young, J. D. (1999). Probabilistic tem-
poral networks: A unified framework for reasoning with
time and uncertainty, International Journal of Approximate
Reasoning 20(3): 263-291.

Steinder, M. and Sethi, A. S. (2004). Probabilistic fault local-
ization in communication systems using belief networks,
IEEE/ACM Transactions on Networking 12(5): 809-822.

Tierney, B., Aydt, R. and Gunter, D. (2002). A grid moni-
toring architecture, Grid Working Draft GWD-PERF-16-3
http://www.gridforum.org/!

Van Renesse, R., Birman, K.P. and Vogels, W. (2003). Astrolabe:
A robust and scalable technology for distributed system
monitoring, management, and data mining, ACM Trans-
actions on Computer Systems 21(2): 164-206.

Vuran, M.C. and Akyildiz, L.LE. (2006). Spatial correlation-
based collaborative medium access control in wireless
sensor networks, IEEE/ACM Transactions on Networking
14(2): 316-329.

Zanikolas, S. and Sakellariou, R. (2005). A taxonomy of grid
monitoring systems, Future Generation Computing Sys-
tems 21(1): 163-188.

Alexandra Carpen-Amarie received her engi-
neering degree in 2008 from the Computer Sci-
ence Department of Bucharest Polytechnic Uni-
versity, Romania. She is currently a Ph.D. stu-
dent at Ecole Normale Superieure de Cachan,
,.' Antenne de Bretagne, France, working in the
KerData Team at the Rennes—Bretagne Atlan-
tique research center of the French National In-
stitute of Computer Science and Control (IN-
RIA). Her research interests include large-scale
distributed data storage, cloud computing and monitoring in distributed
systems.

aamcs

http://www.ggf.org/
http://www.gridforum.org/

amcs%

A. Carpen-Amarie et al.

Alexandru Costan is a postdoctoral researcher
within the KerData team at the Rennes—Bretagne
Atlantique research center of the French Na-
tional Institute of Computer Science and Control
(INRIA). He obtained his Ph.D. in 2011 from
the Polytechnic University of Bucharest. His
research interests include data management for
large scale distributed infrastructures and cloud
data services, monitoring in distributed systems,
autonomic behavior and workflow management.
His Ph.D. thesis was focused on self-adaptive behavior of large-scale
distributed systems based on monitoring information. He has received
a Ph.D. excellency grant from Oracle and was awarded an IBM Ph.D.
fellowship in 2009.

Jing Cai is an M.Sc. student at the Depart-
ment of Computer Science, City University of
Hong Kong. He worked with the KerData team at
the INRIA Rennes—Bretagne Atlantique research
center as a research intern in 2009. His research
interests include distributed computing and mon-
itoring in grid computing environments.

Gabriel Antoniu is a research scientist at the IN-
RIA Rennes—Bretagne Atlantique research center
in France. He is the leader of the KerData joint
research team of the INRIA Rennes—Bretagne
Atlantique research center and Ecole Normale
Superieure (ENS) Cachan—Antenne de Bretagne
and a member of the KerData research team.
His research interests include grid and cloud dis-
f tributed storage, large-scale distributed data man-
sl agement and sharing, data consistency models
and protocols, and grid and peer-to-peer systems. Gabriel Antoniu re-
ceived his bachelor of engineering degree from the National Institute of
Applied Sciences of Lyon (INSA), France, in 1997, his M.Sc. degree in
computer science from Ecole Normale Superieure (ENS) Lyon, France,
in 1998, his Ph.D. degree in computer science in 2001 from ENS Lyon,
and his habilitation for research supervision (HDR) from ENS Cachan
in 2009.

N Luc Bougé is a professor and the chair of the
B Informatics and Telecommunication Department
(DIT) at Ecole Normale Superieure (ENS) de
Cachan, Antenne de Bretagne, France. He is a
member of the KerData joint research team of
the INRIA Rennes—Bretagne Atlantique research
center and ENS Cachan—Antenne de Bretagne in
France. His research interests include the de-
sign and semantics of parallel programming lan-
guages and the management of data in very large
distributed systems such as grids, clouds and peer-to-peer (P2P) net-
works.

Received: 1 July 2010
Revised: 6 December 2010
Re-revised: 21 January 2011

	Introduction
	Related work
	Self-adaptation for large scale data management systems
	Towards an introspective BlobSeer
	Architecture
	Introspection mechanisms on top of BlobSeer
	Introspection: Relevant data
	Monitoring: Data collection mechanisms

	Introducing self-adaptation for BlobSeer
	Self-configuration through dynamic data providers deployment
	Architectural overview
	Heuristic providers evaluation

	Self-protection through malicious client detection
	Protocol breach scenarios for BlobSeer
	Detection mechanism

	Experimental evaluation
	Visualization tool for BlobSeer-specific data
	Impact of the introspection architecture on BlobSeer data access performance
	Malicious clients detection

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

