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Tasks scheduling and resource allocation are among crucial issues in any large scale distributed system, including Computa-
tional Grids (CGs). These issues are commonly investigated using traditional computational models and resolution methods
that yield near-optimal scheduling strategies. One drawback of such approaches is that they cannot effectively tackle the
complex nature of CGs. On the one hand, such systems account for many administrative domains with their own access po-
licies, user privileges, etc. On the other, CGs have hierarchical nature and therefore any computational model should be able
to effectively express the hierarchical architecture in the optimization model. Recently, researchers have been investigating
the use of game theory for modeling user requirements regarding task and resource allocation in grid scheduling problems.
In this paper we present two general non-cooperative game approaches, namely, the symmetric non-zero sum game and the
asymmetric Stackelberg game for modeling grid user behavior defined as user requirements. In our game-theoretic appro-
aches we are able to cast new requirements arising in allocation problems, such as asymmetric users relations, security and
reliability restrictions in CGs. For solving the games, we designed and implemented GA-based hybrid schedulers for ap-
proximating the equilibrium points for both games. The proposed hybrid resolution methods are experimentally evaluated
through the grid simulator under heterogeneity, and large-scale and dynamics conditions. The relative performance of the
schedulers is measured in terms of the makespan and flowtime metrics. The experimental analysis showed high efficiency
of meta-heuristics in solving the game-based models, especially in the case of an additional cost of secure task scheduling

to be paid by the users.
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1. Introduction

In recent years, grid computing systems have become po-
pular for the resolution of large-scale complex problems in
science, engineering, and industry. Such systems enable
the virtualization of a wide range of resources; thus, va-
rious types of Grid systems, such as Computational Grids
(CGs), desktop, enterprise, data grids, etc., can be design
and studied. Among them, computational grids were pri-
marily concerned with the development of efficient reso-
lution methods for solving complex problems of high per-
formance computing and more generally, problems in the
domain of e-science.

Since CGs focus on high system scalability, and thus

on large-scale resource sharing, an efficient resource ma-
nagement system is crucial for the efficacy of the system.
However, providing effective scheduling and resource al-
location mechanisms in CGs is a complex undertaking
due to their scale and the fact that resource owners and
consumers may have different goals, preferences, and po-
licies. Differently from traditional distributed computing
systems, in which users and owners of the computational
resources usually belong to the same administrative do-
main, in CGs the security and reliability of the resources
are among crucial criteria in scheduling problems. Thus,
an important research issue in this domain is to achieve
efficient assignment of tasks to trustful resources.

The approaches proposed in the literature so far have
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shown limitations in effectively translating the complex
nature of CGs and may not overcome some limitations,
like different access rights of grid users, conflicting ob-
jectives of users and administrative owners, different local
resource access policies or security barriers.

Heuristic-based approaches can be very efficient in
solving the traditional job-shop problems (Mesghouni
et al., 2004), but they usually just partially cover the re-
quirements of grid-enabled applications. Recently, resear-
chers have been investigating the usefulness of game the-
ory in solving the task and resource allocation problems in
CGs. Using game-theoretic models enables including mo-
re requirements and features into the computational opti-
mization model for the problem. Meta-heuristics can then
be used for solving the game to more effectively tackle the
resolution of the resulting computationally hard problem
of finding equilibrium points of the resulting games.

In this paper, we present two general non-cooperative
game models, namely, the symmetric non-zero sum game
and the asymmetric Stackelberg game for modeling grid
user behavior. We show that, in our game-theoretic appro-
ach, we are able to cast new requirements of allocation
problems, such as symmetric and asymmetric user rela-
tions and security and reliability restrictions in CGs. We
use GA-based hybrid algorithms for approximating the
equilibrium points for both games. The proposed hybrid
resolution methods are experimentally evaluated through
the grid simulator under heterogeneity, and large-scale
and dynamics scenarios. The relative performance of the
grid schedulers is measured by the makespan and flowti-
me metrics. We also survey the most relevant research pro-
posals in the literature for using economical game-based
models for real-life resource allocation problems.

The organization of this paper is as follows. In Sec-
tion B we introduce preliminary concepts on grid ar-
chitecture, scheduling and resource allocation and game-
theoretical models. In Section] we define the general ga-
me models for grid scheduling, and then we present the
concepts of two non-cooperative symmetric and asymme-
tric games. Resolution meta-heuristic methods for solving
such games are defined in Section [3l The experimental
evaluation of the proposed hybrid meta-heuristics is pre-
sented in Section [6l In Section [7] we survey the most re-
levant market-based approaches with game-based models
for real-life resource allocation problems. We end the pa-
per in Section [§ with some conclusions.

2. Related work

Effective resource and task allocation in grid systems un-
der security and resource reliability conditions has at-
tracted recently a lot of attention in the literature. The-
re have been proposed several extensions and enhance-
ments of the grid security infrastructure for the verifi-
cation of the security conditions and resource availabili-

ty (Lin et al., 2004). An architectural framework for ac-
cess control to grid resources can be found in the work
of Laccetti and Schmidb (2007), where the extension of
the authentication and authorization features the OS layer
is proposed. Hwang and Kesselman (2003) proposed a fa-
ilure detection service and a failure handling mechanism,
which enable the detection of both task failures and user
secure requirements without the need for updating the grid
protocol and the local policy at the Grid node.

Brandic et al. (2006) addressed the security aspect of
a Quality of Service (QoS) requirement defined by grid
users at workflow specification time. The authors propose
the location affinity model, in which the user for securi-
ty reasons may express the location affinity regarding grid
resources where certain workflow of tasks may be execu-
ted.

The integration of security and resource reliability as
joint scheduling criteria requires fast, scalable and effec-
tive resolution methods to solve the multi-objective sche-
duling problem in CGs. Heuristic methods, due to their
effectiveness and robustness, have been successfully ap-
plied to solve scheduling problems in the dynamic grid
environment. In Section[5.1 we present a simple classifi-
cation of the most popular meta-heuristic grid schedulers.
Many of them can be effectively applied for solving grid
users’ decision process, modeled by using game theory,
under various conditions and constraints, including time
deadlines and budget constraints, and security and machi-
nes reliability requirements.

An interesting application of heuristic methods in
the non-cooperative game of grid users in the commodi-
ty market model is presented by Garg et al. (2009). The
authors defined two heuristics, namely, Min-Min Cost Ti-
me Trade-off (MinCTT) and Max-Min Cost Time Trade-
off (Max-CTT) algorithms, for jointly optimizing cost and
execution time of user application in utility grids. Both
approaches are based on min-min and max-min methods,
which were adapted to user-application time slot pairs.
This approach is an example of grid users’ game, in which
task execution and resource utilization costs are defined as
bi-objective players’ cost functions.

Song et al. (2005; 2006) considered risky and inse-
cure conditions in online scheduling in grids caused by
software vulnerability and distrusted resources. They ap-
plied a game-theoretical model introduced by Kwok et al.
(2007) for modeling resource owners selfish behavior in
the hierarchical grid structure. A Space Time Genetic Al-
gorithm (STGA) was implemented as the main mecha-
nism of three risk-resilient meta-heuristics, named as ri-
sky, preemptive and replicated STG algorithms. The indi-
viduals in populations evaluated in the STGA framework
are encoded as messy chromosomes, which are expressed
as a list of ordered pairs (job ID, site ID). The length of
each chromosome can vary during the scheduling in the
advent of task failures. Furthermore, a gene’s value may
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be over-specified, i.e., it may appear more than once in a
chromosome with different values. The “cut and splice"
operator has been used to replace the crossover operation.

The results presented by Song et al. (2006) were
extended by Wu and Sun (2010) by considering the he-
terogeneity of the fault-tolerance mechanism in security-
assured grid job scheduling. The authors defined four ty-
pes of GA-based online schedulers for the simulation of
some fault-tolerance mechanisms, including job retry, job
migration (with and without checkpointing) and job repli-
cation mechanisms.

Our work differs from all of the above in the follo-
wing aspects:

(1) It provides a new hierarchical grid resource manage-
ment system, in which the resource provider plays an
additional role of the trust manager.

(i1) It proposes various game-theoretical resource alloca-
tion techniques that fit well to the defined hierarchi-
cal infrastructure and do not require any special syn-
chronization procedures.

(ii1) It proposes efficient, fast and scalable resolution me-
thods for solving large-scale complex decision pro-
blems of grid users.

3. Preliminaries

3.1. Hierarchical computational grid. The computa-
tional grid, hierarchical by nature, is usually modeled as
a multi-level system, which allows efficient management
of geographically distributed resources and tasks schedu-
ling under various criteria, including security and resource
reliability requirements. The model can be seen as a hy-
bridization of centralized and decentralized modules. In
the centralized module, there is a central authority (meta-
scheduler or meta-broker), who has complete knowledge
of the system by monitoring the resources and interacts
with local job dispatchers in order to define optimal sche-
dules. In the decentralized module, the local schedulers
interact with each other to manage the task pool. They
have the knowledge about the resource clusters, but they
cannot monitor the whole system.

The hierarchical model addresses scalability and
fault-tolerance issues, but it does not provide site-
autonomy. The hierarchy in such a system usually consists
of two or three levels. A Meta-Broker (MB) model is an
example of the hierarchical bi-level grid system. In this
model, grid users submit their tasks/applications to the
meta-broker, which uses also the information supplied by
the resource owners to match the users’ tasks to appropria-
te resources. In recent approaches, security and resour-
ce reliability are defined as additional scheduling criteria.
The MB structure can be then adapted for designing the
security-assured grid system (Kotodziej and Xhafa, 2010).
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Fig. 1. Model of a security-aware grid system.

In Fig. [[l we present a simple example of a security MB
model restricted to a grid site.

In this model the meta-broker plays additionally the
role of a trust manager, who is responsible for the verifica-
tion of a secure-assurance condition for any task-machine
matching. He controls resource allocation and communi-
cation between grid users and service resource owners. It
is assumed that the meta-broker is a central authority, who
has access to all resources distributed in a wide grid area
network. The resources inside each grid site are connected
with each other under a local network structure.

Security awareness can be extended to higher level
structures. Kwok et al. (2007) presented a hierarchical
grid model with three main levels: the global, the inter-site
and the intra-site level. At the intra-site level, there is a fe-
deration of autonomous resources. The information about
computational capacities of the machines is sent by the
resource owners to the local job dispatcher, who defines
the “grid site reputation index" and sends it to the global
scheduler. The participating grid sites (machine clusters)
form another federation at the inter-site level. The global
scheduler performs task scheduling according to a certa-
in scheduling algorithm. He just uses the “site reputation
indexes" supplied by the grid sites as inputs to the schedu-
ling algorithm.

The grid hierarchical systems presented above can
be easily transformed to game-theoretical models in or-
der to push the concept of CGs into mainstream compu-
ting (market-based approaches) and to efficiently solve the
scheduling problem under various criteria defined jointly
as a scheduling objective.

3.2. Independent job batch scheduling problem.
Unlike traditional distributed systems, in CGs, users and
distributed resources belong to different autonomous do-
mains. Thus, having full control over grid resources is in
practice impossible. In this case, a fundamental problem
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is the difficulty in transparent access to the resources from
users of different administrative domains. There are al-
so some special local usage policies specified by resour-
ce owners, which should be taken into account during the
scheduling computation process. While grid users require
assurance on the level, type, and quality of service pro-
vided by the resources, resource owners are usually con-
cerned about maintaining local control on how resources
are being utilized. Thus, an effective mapping of compu-
tational tasks or data transfers to resources that meet the
requirements (cost, performance, security and other servi-
ce metrics) remains challenging.

Due to the different demands imposed by grid-
enabled applications, scheduling can be defined as a fa-
mily of global optimization problems. Its complexity co-
mes from the number of objectives to optimize (single
vs. multi-objective), the type of environment (static vs. dy-
namic), the processing mode (immediate vs. batch), ta-
sks interrelations, etc. Among several versions of schedu-
ling problems highlighted by Xhafa and Abraham (2010),
independent job batch scheduling is one of the simplest
and fundamental scheduling problems. It usually arises in
data intensive computing such as data mining and massi-
ve processing applications. For this class of applications,
the batch mode is appropriate, given that such an appli-
cation manage voluminous data (transfer and replication)
and can run periodically. In such a case, jobs or applica-
tions are grouped in batches and scheduled as a group.

The independent scheduling problem can be forma-
lized using the Expected Time To Compute (ETC) matrix
model (Ali et al., 2000). In this model, the following input
data have to be specified:

e the number of independent tasks to be allocated to
Grid resources in non-preemptive mode,

o the number of machines candidates to participate in
the allocation of tasks,

e the workload (in millions of instructions) of each
task,

e the computing capacity of each machine (in Mips),

e the ready times indicating when machines will have
finished the previously assigned tasks,

e the ETC matrix of size nb_tasks X nb_machines,
where ET'C[j][m] is the value of the expected time
to compute task j in machine m.

4. Game-theoretic models for scheduling
and resource management
Game theory plays an important role in computer scien-

ce, where it is used as a means of modeling interactive
computations or multi-agent systems. Nowadays, Internet

computing is seen as a new domain of applications of ga-
me theory, which, in combination with economic theory,
can develop algorithms for finding equilibria in computa-
tional markets, computational auctions, grid and P2P sys-
tems as well as security and information markets. An im-
portant challenge in using game-theoretic models for grid
scheduling and resource management is the large size sca-
le of the Grid system and the fact that resources cross dif-
ferent administrative domains. The basic assumptions that
underlie game-based models are that game players are ra-
tional and pursue well-defined objectives (cost or pay-off
functions), and they take into account their knowledge or
expectations of other players’ behavior.

There are three main types of game models applica-
ble to scheduling and allocation in CGs:

e Non-cooperative game, where the players act inde-
pendently of each other. This model is based on the
premise about the users’ behavior in a realistic grid,
in which cooperation is difficult to happen on a large
scale and grid users submit their tasks independently.
Also the resource owners act selfishly in order to ma-
ximize resource utilization and to execute tasks from
local users.

e Cooperative game, in which players can form a co-
alition to plan their actions in advance. This model is
useful for intra-site grid negotiations, where the local
job dispatchers can define the joint “execution capa-
bilities" parameters for the clusters of the grid sites
and declare them to the global scheduler.

e Semi-cooperative game, where each player can cho-
ose (randomly) another player for cooperation. This
game is usually proposed as a multi-round auction to
incorporate task rescheduling.

The solution of each of those games is an equilibrium
state, in which each player holds correct expectations con-
cerning the other players’ behavior (see the work of Khan
and Ahmad (2006) for detailed analysis).

One of the main benefits of game-theoretical schedu-
ling and resource management in CGs is that they enable
a highly scalable system since decision-making process
is distributed across all grid users and resource owners.
Due to the large scale nature of grid systems, the non-
cooperative game is a potential model for integrating se-
curity and resource reliability requirements in grid sche-
duling. We can consider two different general scenarios
of the non-cooperative games: symmetric and asymmetric
games.

4.1. Symmetric game. Letus denote by N the number
of users (players). The total number of tasks n in a given
batch can be calculated as the sum of the tasks submitted
by all users, i.e., n = El]\il k;, where k; is the number of



Modern approaches to modeling user requirements on resource and task allocation. . .

tasks of the user [ = 1,..., N. A schedule x is encoded
by the following vector:

=zt ... 2N, (1

where

l f— — —
= [mk(z_1>+1’""xk<z,_1)+kl] (2)

denotes the strategy vector of the user [ (k; is the num-
ber of the [-user’s tasks, and @ =k +...+kg-1))-
The coordinates of vector z! are the decision variables of
the user [ and indicate the numbers of the machines to
which his tasks are assigned. The symmetry in the non-
cooperative game expresses the situation where the privi-
leges to the resources are the same for all users. Each user
tries to choose an optimal strategy of mapping his tasks
to machines in order to minimize the total cost of schedu-
ling his pool of tasks. To express the symmetry of the grid
users, we can assume that each player submits an equal
amount of tasks, i.e., k = k1 = kg = --- = ky. This
means that the total number of tasks in the batch can be
calculatedasn = N - k.

Definition 1. The symmetric grid user non-cooperative
game can be defined as the triple

Gy = (N {Ji}i=1,. N {Qi}1=1,...N),
where

e [V is the number of grid users;

o {J1,...,JJn},l=1,..., N are the sets of the users’
strategies;

L4 {Qla"'7QN}7Ql : ']1 X X JN i Ra
Vl=1,..., N is the set of the users’ cost functions.

The users’ strategy vectors ' are the elements of the
strategy spaces J; = Jig_1).k+1) X ... X J(.x) Speci-
fied for each user [ (I = 1,..., N). The cost of playing
the game calculated for a particular user [ is defined as
the cost of scheduling his or her tasks and is denoted by
Q. The players try to minimize simultaneously their cost
functions @); during the game.

Definition 2. An N-dimensional multi-vector
(z1,...,2N)

of strategies is called an equilibrium point of the game if

Ql(ﬁv"'vm/]\\])
=min,icy, Ql(ﬁ, Gt DI L G SN 2 )
(3
foralll=1,...,N.

The equilibrium point can be interpreted as a steady
state of the strategic game, in which each player holds cor-
rect expectations concerning other players’ behaviodll. If
the strategies chosen by all players are equilibrium points,
no player is interested in changing his strategy, because of
the increase in the values of his cost function.

To be a solution of grid users’ game, the equilibrium
point should be additionally Pareto optimal (Straffin,
1996; Pavlidis et al., 2005). In this paper we consider non-
Zero sum gamesﬁ, for which the equilibrium points are the
results of minimization of a multi-cost game function.

Let us denote by min @y, ({ = 1,... N) the minimal
value of the function @Q); calculated as follows:

min Q= min {Qi(z",...,z")} )
zled;

The result of the global minimization of the follo-
wing game multi-cost function Q) : J; X -+ X Jy — R:

N
Q@',....a™)=>"([Qu',...,2N) — min Q)

=1
(%)
is an equilibrium state of a non-cooperative non-zero sum
symmetric game of grid users, satisfying the condition of
Pareto optimality (Pavlidis et al., 2005).

The problem of the minimization of the function )
can be defined as a hierarchical procedure presented in
Fig.[2l It is composed of two cooperating modules: Global
Module, in which the values of the function () are calcu-
lated and optimized, and Players’ Module, which solves
local level problems of the minimization of the users’ cost
functions Q;.

Players' Module

min Q1 ()

Fig. 2. Hierarchical procedure of solving a non-cooperative /N-
person game.

In order to specify the interaction mechanism of Glo-
bal and Players’ Modules let us denote by gy an ini-
tial schedule generated in Global Module, i.e., Ty =

In the case of continuous players’ cost functions, the equilibrium
state of the game is called the Nash equilibrium (Edlefsen and Millham,
1972).

2In this scenario, the strategies of the players are not opposite, i.e.,
the sum or the values of all players cost functions @Q; is nonzero.
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[x%o), ce xf\é)], where ml(o) denotes the part of the sche-
dule z(g) (sub-schedule of x(gy) composed of the values
of the decision variables of the user [ (Eqn. (2)).

Vector x(g) is replicated and N copies of it are sent
to Players’” Module—one copy per user. Then each user
independently optimizes his game cost functiord by chan-
ging the allocations of just his own tasks. As a result of
this minimization, the optimal values of the ; cost func-
tions are calculated:

: i 1.2 N
min Q1) = xrpelngl(x s Ty - - ,x(o)),
) . . . 1 N-1 _ N
min Qn, ) = min QN(m(O),...,x(O) , ).

zNedy

(6)

These values are sent back to Global Module, where

the objective function for the whole game @ is calculated
for the schedule (.

4.2. Asymmetric scenario: Stackelberg game. For il-
lustrating the asymmetric scenario in a non-cooperative
grid users game, we define the Stackelberg game, in which
one user acts as a Leader and the rest of players (users) are
his Followers.

Stackelberg games have been well-studied in the ga-
me theory literature (e.g., Bagsar and Olsder, 1995). Ro-
ughgarden (2004) defined a Stackelberg game model for
scheduling tasks on a set of machines with load-dependent
latencies in order to minimize the total latency of the sys-
tem.

The following examples illustrate some real-life grid
scenarios, in which the Stackelberg game model can cha-
racterize situations where there is a Leader who acts first:

e There is a privileged grid user (Leader), who can ha-
ve full access to resources as opposed to the other
users with limited access to resources.

e Some tasks could have critical deadlines (especial-
ly in online scheduling) and they can be sent by the
Leader to the meta-broker with a request to allocate
them first.

e Considering a pool of tasks, the Leader could be the
owner of a large portion of the tasks in the pool; it
might then seem reasonable to allocate his tasks in
the best resources in the system.

e Some tasks could have security requirements. Thus
the Leader can send the information on these tasks
to the meta-broker, requesting to allocate them in the
most trustful resources (secure machines).

3Note that user cost optimization in Players’ Module can be imple-
mented as a parallel multi-threaded procedure, which can speed-up the
whole process.

e Tasks arriving into a grid system could be disparate
in their needs for computational resources. Some of
them could be atomic tasks generated by compound
tasks while others could be just monolithic applica-
tions. The high degree of heterogeneity of tasks is a
crucial factor conditioning the grid system’s perfor-
mance. In such a scenario, the Leader could create
a small batch of the most time consuming tasks, out
the task pool, in order to “balance" the disparity. The-
se tasks would then be sent to the meta-broker requ-
esting to allocate them first.

Formally the Stackelberg game for grid users can be
defined as a two-level game in the following way:

o Leader’s level: Leader’s action I. The Leader cho-
oses his initial strategy «' = [x71, ..., Tk, ], where kq
denotes the number of tasks submitted by the Leader.

e Followers’ level: Followers’ action. The followers
minimize simultaneously their cost functions relative
to the Leader’s choice:

72 = arg min {Qo(xt, 22,...,2N)}
x2€Js

@)

¥ =arg min {Qn(a',...,2V)},
x

Neln

where J; is the set of the Leader’s strategies. Let us

denote by rp = [x1,2%,..., 2] the vector which
is interpreted as the result of the Followers’ action.

e Leader’s level: Leader’s action II. The Leader
updates his strategy by minimizing his cost function
@, taking into account the result of the Followers’
actions. The vector ¢ = [z, 2%, ..., 2N ], where

. 1.2 N
rp = arg min Qlz' xh,...ap), ®)
zleJ;

is a solution of the whole game.

It has to be noted that the Followers can play an “or-
dinary" non-cooperative symmetric game, but they must
know the Leader’s action first. The game muti-cost func-
tion @ in this case can be defined in the following way:

Q:=Q1+Qr, )
where () is the Leader’s cost function and
N
Qr =) Q (10)
1=2

is the Followers’ cost function. An optimal solution of the
whole game is called the Stackelberg equilibrium.
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Table 1. Heuristic and meta-heuristic methods in grid scheduling.

Meta-heuristic class | Class characteristic | Scheduler type | Methods | Main references |
— used for single-objective opti- Minimum Completion Time
mization (MCT)

— with low computational cost
—useful in generating initial

Immediate mode

Minimum execution time
Switching Algorithm (SA)

(Braun et al., 2001)
(Xhafa et al., 2008)

— construct a path in the solution
space

Ad-hoc — solutions for population-based Opportunistic load balancing
schedulers
k-percent best
min-min, max-min, sufferage (Xhafa et al., 2008)
Batch mode relative cost, LJFR-SJFR
— explore the solution space Hill climbing
Local search starting from an initial solution Simulated annealing

Tabu search (Abraham ef al., 2000)

— explore of the search space
by the populations of individuals
Population-based — require large running time

— effective in finding

Single population

Genetic Algorithms (GAs)
Memetic Algorithms (MAs)
Particle Swarm  Optimization

(Abraham et al., 2000)

(Liu et al., 2009)

near-optimal solutions

(PSO)
Ant Colony Optimization (ACO)
Multi-population g_;g;r)chlc Genetic ~ Strategy | (Kolodziej et al., 2009)

Grid-Enabled Hierarchical
Parallel Genetic Algorithm (GE-
HPGA)

(Lim et al., 2007)

5. Solving grid users’ games

Due to multiple constraints and different optimization cri-
teria in a dynamic environment, resource allocation in
grids still remains a challenging, complex and computa-
tionally hard global optimization problem. Thus, heuri-
stic approaches are candidates for effective design grid
schedulers. Meta-heuristic schedulers could achieve ro-
bustness and are appropriate for tackling various sche-
duling attributes, like immediate and batch scheduling,
multi-objectivity, decentralized and hierarchical grid ar-
chitectures, etc. (Xhafa and Abraham, 2010).

5.1. Meta-heuristic methods. Meta-heuristic methods
are usually classified into three main groups, namely
calculus-based methods (greedy algorithms and ad-hoc
methods), stochastic methods (guided and non-guided me-
thods) and enumerative methods (dynamic programming
and the branch-and-bound algorithm). The most popular
and efficient meta-heuristics in grid scheduling are ad-
hoc, local search-based and population-based methods.
We briefly review them in Table [Il For a more detailed
survey on meta-heuristic approaches in grid scheduling,
the reader is referred to the work of Xhafa er al. (2009).
Another important feature of meta-heuristics which
is useful in grid scheduling is that they can be easily hy-
bridized with other approaches. It makes grid schedulers
better adapted to various grid types and specific types of
applications. Abraham ef al. (2000) present a model for
hybridization of GA, SA and TS heuristics; each GA-
based hybrid, namely, GA+SA and GA+TS, improves the
efficiency of the genetic scheduler. A GA+TS hybrid ap-

proach was proposed by Xhafa et al. (2009). Ritchie and
Levine (2003) combine an ACO with a TS algorithm for
the problem. In the work of Xhafa et al. (2007), a basic
unstructured MA is combined with several local search
algorithms in order to identify the best performance of the
resulting memetic algorithm.

The hybridization ability and dealing with various
conflicting optimization criteria are at the same time cru-
cial meta-heuristics features, which makes them appro-
priate methods for solving grid users’ games. In such ga-
mes, many scheduling and resource management criteria,
like security and resource utilization and reliability, are
integrated into users’ cost functions. This is in contrast
to most of other approaches, where those criteria are ad-
dressed separately, which contradicts in fact the complex
nature of grid systems. In Section[3.2} we present the main
concepts of four hybrid GA-based schedulers, previously
defined by Kotodziej et al. (2009) as well as Kolodziej
and Xhafa (2010), which are well-suited for optimizing
the game multi-cost function Q) (see Eqns. (3) and (9)) for
symmetric and asymmetric grid user games characterized
in Sections 4.1 and

5.2. GA-based hybrid approach. A general concept
of hybridization of four GA-based approaches for solving
symmetric and asymmetric grid user games is presented
in Table

The GA-based meta-heuristics act as global and lo-
cal optimizers in Global and Players’ Modules. Each hy-
brid is defined as a combination of two methods: the Risky
Genetic Algorithm (RGA) and Secure Genetic Algorithm
(SGA)—in Global Module—and two local level optimi-
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Table 2. Hybrid meta-heuristics for risky and secure-assured
task scheduling.

Hybrid Main | Subordinate
meta-heuristic | unit unit
RGA-GA RGA PGA
RGA-PMCT RGA PMCT
SGA-GA SGA PGA
SGA-PMCT SGA PMCT

zers: Player’s Genetic Algorithm (PGA) and a modified
MCT heuristic, namely, Player’s Minimum Completion
Time (PMCT), in Players’ Module. The main difference
between the RGA and the SGA is the method of evaluating
the population by the users’ cost functions (J;, which can
be calculated differently in the case of considering the se-
curity condition and in the case of ignoring all security
requirements (we will call these two scenarios the secure
and risky modes and define the appropriate players cost
functions formulas in Section [6.1)).

The general flowchart of the hybrid GA-based sche-
dulers in the case of the symmetric game is presented in
Fig.[3

The algorithm implemented in Players’ Module runs
sequentially in order to minimize the users’ cost functions.
Once the population of schedules has been sent to Players’
Module, each player tries to optimize his tasks allocation
and compute the min @); values for the schedules. It can
be observed that, in fact, it is not necessary to replicate
the whole population for each user because for each of
them independently just the changes in machine comple-
tion times must be calculated.

For the Stackelberg game, the general template of
GA-based schedulers at the Leader’s level is given in Al-
gorithm[Il

The process of initialization of the population in hy-
brid GAs is defined as a two-steps procedure. In the first
step, we define P° as a candidate initial population. It
consists of the incomplete schedules computed by the Le-
ader using one of the initialization methods for GA-based
schedulers (see, e.g., Xhafa et al., 2007). Each schedule
from this set contains just the values of the Leader’s de-
cision variables. All those “incomplete” chromosomes are
sent to the Followers, who fill in the respective parts of
each schedule by using one of the ad-hoc heuristics. The
updated PP is then evaluated under the game cost func-
tion @ = > ,_; Qi defined as fitness. The crossover
and mutation operhtions are performed separately on the
Leader’s and Followers’ decision variables. Thus in each
generation the Followers can update their own decision
(including the initial choices) due to possible changes on
the availability of resources introduced by the Leader.

Algorithm 1 A hybridized GA-based scheduler template:
Leader’s level.

1: Generate PV containing 1 “incomplete” schedules; ¢ = 0;
2: Send PP to the Followers to complete the respective parts of all
schedules in P° (using ad-hoc heuristics); P° (F) is created;
3: Update the population P° according to the Followers’ solutions;
PO .= PO(F),

: Evaluate PO;

: while not termination-condition do

Select the parental pool T of size \; T := Select(P?);

Perform crossover procedures separately on the Leader’s and Fol-

lowers variables on pairs of individuals in 7 (F") with probabi-

lity pc; Pl := Cross(T");

8: Perform mutation procedures separately to the Leader’s and Fol-
lowers’ variables on individuals in Pj with probability py,;
P! = Mutate(Pl);

9:  Evaluate P}, ;

10:  Create a new population P**1 of size p from individuals in P*
and P}, ; P! := Replace(P?; PL)

11: t:=t+1;

12: end while

13: return Best found individual as solution;

Local schedulers in Players’ Module. We used two
modifications of the well-known grid schedulers for opti-
mizing the users’ cost function in Players’ Module.

The first one, named as the player’s genetic algori-
thm, is a simple extension of the classical GA-based sche-
duler (Xhafa et al., 2007) applied independently for each
user with the cost function @; as fitness. The GA opera-
tions are executed on sub-schedules of the length k; labe-
led just by the tasks submitted by user [. The GA proce-
dure is run sequentially for the “queue" of users.

The second method, the Player’s Minimum Comple-
tion Time, is a modification of Minimum Completion Time
(MCT). In this method, a task is assigned to the machine
yielding the earliest completion time (defined as the sum
of ready_time for the machine and the time of computing
all tasks assigned there). The process is repeated until the-
re remain tasks to be assigned. The template of the main
mechanism of the PMCT procedure is defined in Algori-
thm 2

Algorithm 2 PMCT algorithm template.

1: Receive the population of schedules and ready_times of the machines from
Global Module;

2: for all Schedule in the population do

3: Calculate the completion times of the machines in a given schedule;

4: for all Individual user/Follower do

5: for all User’s task/Follower’s task do

6: Find the machine that gives minimum completion time;

7:

8:

Assign task to its best machine;
Update the machine completion time;

9: end for

10: Calculate the min Q; value for a given schedule;
11: end for

12: Send the min Q; values to Global Module;

13: end for

A simple case study on the four hybrid GA-based
schedulers approaches is presented in the following sec-
tion.
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Fig. 3. Hybrid GA-based schedulers general flowchart.

6. Case study: Non-cooperative grid users
games for independent batch scheduling

6.1. Specification of the players’ cost functions. In
our case study, we considered symmetric and Stackelberg
games defined in Sections[4.Tland[4.2] for which the play-
ers’ cost functions are composed of the following three
factors:

Q=0 +Q" +qQ™, (11)

where Ql(e) is the user’s task execution cost, Ql(s) indicates
the cost of security-assured allocation of the user’s tasks,
and Ql(u) denotes a resource utilization cost.

The total cost of the execution of the user’s tasks

expressed as Ql(e) can be calculated as an average com-
pletion time of his tasks on the machines to which they
are assigned. Let us introduce the following notation:
Machines(l) denotes the set of machines to which all ta-
sks of the user [ are assigned, and Tasks(l) is the set of
tasks of the user /. The function ) le) can be defined using
the following formulae:

Zje Tasks(l) completion [j] [Z]

12
completion,,, ) - ki (12)

Q) =

)

where completions|[j][i] denotes the completion time of a

“4The values of all components of the users’ cost functions, i.e., Ql(e) s

Ql(u) and Ql(s) functions, are scaled to obtain values in the same range.
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task j on a machine ¢ and it is calculated in the following
way:

completions[j|[i] = ETC[j][i] + ready][i]. (13)

In Eqn. (I3), ET'C|[j][¢] denotes the elements of the
ETC matrix and ready|i] is the finishing time of the exe-
cution of tasks previously assigned to the machine .

In Eqn. (I2) we denoted by completion,, ;) the ma-
ximal completion time of the user’s tasks, i.e.,

completion,, ;) =  max  completion[j][i]. (14)

Jj€ Tasks(l)
i€ Machines(l)

The values of the function Ql(s) depend on the sche-
duling strategy. In this work we consider two scheduling
strategies:

e Risky mode, in which all risky and failing conditions

are ignored by the users. In this case, Ql(s) =0,1l=
1,...,N.

e Secure mode, in which the Ql(s) function is defined

as follows:
[(Em— . )
oW — 1Z:l Pyljl[zs] - ETCj][z;]
! . (ETC)mqy -k
j=(k1+-+ki—1+1)
(15)

(ETC) ) is the (expected) maximal computation
time of the tasks of the user [ in a given schedule.

In Eqn. (I3) we denoted by Py[j][x;] the probabi-
lity of the failure of machine x; during the execution of
task j. This probability is usually modeled by the negative
exponential distribution:

) 0 if sd; <tl,.,
Prliled = { | sy oS
(16)
where ) is interpreted as a failure coefficient and is a glo-
bal parameter of the model, and sd; and ¢, , are the ele-
ments of security demand S D and trust level T L vectors
(Song et al., 2006).
The resource utilization cost Ql(u) is calculated for
each grid user as an average idle time of machines on
which his tasks are executed:

QY= x (1-Cmmeeel)
xjEmachines(l) . mapespan
2. ETC[xj) (17)
'jE Tasks [ 4]

Completion ;[z;]

where Completion ;)[x;] is the completion time of a gi-

ven machine z; € Machines(l), and Tasks)[z;] is the

set of the tasks of the user [ assigned to the machine x;.
It can be noted that the problem of risk-resilient re-

source allocation is defined in our approach from the grid

users’ perspective, and not that of the resource owners.

6.2. Experiments setting. In the experimental evalu-
ation of the proposed four hybrid meta-heuristics in two
games scenarios, we integrated the schedulers with the
discrete event-based grid simulator HyperSim-G (Xhafa
et al., 2009). The experiments were conducted on two
benchmarks composed of a set of static and dynamic in-
stances. In both static and dynamic cases, four grid, size
scenarios are considered: small (32 hosts/512 tasks), me-
dium (64 hosts/1024 tasks), large (128 hosts/2048 tasks),
and very large (256 hosts/4096 tasks). The settings for the
simulator are presented in Table 3l

There are 16 players in the symmetric game and 15
Followers in the Stackelberg game, and the number of the
Leader’s tasks is a half of the whole task batch. The coeffi-
cients of SD and T'L vectors as well as machines reliabi-
lity probabilities P, are defined as uniformly generated
fractions in the ranges [0.6,0.9], [0.3,1] and [0.85,1], re-
spectively. The value of the failure coefficient A is 3.

In Table[d] we present the key parameters for the GA
engines in Global and Players’ Modules for the symme-
tric game. The parameters are the same for Leader’s and
Followers’ Modules in the Stackelberg game.

Table 4. Settings of GAs key parameters in Global/Leader’s and
Player’s/Followers’ Modules.

| Parameter | SGA and RGA | PGA |
Population size 60 20
Intermediate pop. size 48 14
Crossover prob. 0.8 0.8
Mutation prob. 0.2 0.2
Stopping criterion 1000 iterations | 500 iterations

A combination of genetic operators for GAs in the
case of symmetric and asymmetric scenarios was selec-
ted based on the results of the tuning process performed
by Xhafa et al. (2007). We used linear ranking selection,
cycle crossover (CX), re-balancing mutation and elitist ge-
nerational replacement as the main evolutionary mecha-
nism in Global/Leader’s and Players’/Followers’ Modu-
les. We also applied L/FR-SJFR (Longest Job to Fastest
Resource—Shortest Job to Fastest Resource) as an initiali-
zation procedure to introduce more diversity to the initial
population.

Performance measures. To evaluate the scheduling
performance we used the makespan and flowtime metrics
(see Xhafa et al., 2009) defined in the following way:

e Flowtime: Let I; denote the time when task j finali-
zes. The flowtime can be calculated using the follo-
wing formulae:

Flowtime = Y Fj. (18)
j€ Task
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Table 3. Setting for the grid simulator for static and dynamic cases.

Static setting

Small Medium Large Very Large
Nb. of hosts 32 64 128 256
Resource cap. (in MIPS) N (1000, 175)
Total nb. of tasks 512 1024 2048 4096
Workload of tasks N (250000000, 43750000)

Dynamic setting

Init. hosts 32 64 128 256
Max. hosts 37 70 135 264
Min. hosts 27 58 121 248
Resource cap. (in MIPS) N (1000, 175)
Add host N (625000, 93750) N(562500,84375)  N(500000,75000) N (437500, 65625)
Delete host N (625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N (250000000, 43750000)
Interarrival E(7812.5) E(3906.25) E(1953.125) E(976.5625)

The flowtime is usually considered a QoS criterion as
it expresses the response time to the submitted task
execution requests of grid users.

e Makespan: Makespan is one of the basic metrics of
grid systems performance—the smaller the value of
the makespan, the faster the execution of tasks in the
grid system. The makespan can be calculated by the
following formulae:

Makespan = jerr%%zcks Fj;. (19)

6.3. Experimental results. FEach experiment was repe-
ated 30 times under the same configuration of parameters
and operators. In Figs. 4 and [3] we present the averaged
values of makespan and flowtime achieved by four hybrid
meta-heuristics when solving the symmetric and Stackel-
berg games within static and dynamic grid scenarios.

In the symmetric game, the best results for makespan
and flowtime in all grid scenarios considered were achie-
ved by the SGA-GA scheduler. Especially in static small-
size grids, this method is very effective in makespan re-
duction. The differences in the flowtime results achieved
by all hybrid meta-heuristics are not so significant, whi-
le in the case of makespan both SGA hybrids significantly
outperform risky hybrids in all grid scenarios.

In the case of the Stackelberg game, two PMCT hy-
brids outperform the RGA-GA and SGA-GA algorithms.
For makespan values, the differences in the results achie-
ved by PMCT and GA hybrids are significant, while in the
case of flowtime, all values are at the same level, except
those obtained for very large grid sizes. The best results in
all instances are achieved by the SGA-PMCT algorithm.
However, in the case of static scheduling scenario, the effi-
ciencies of RGA-PMCT and SGA-PMCT are very similar,
while in the dynamic case, especially for makespan va-
lues, the differences in both schedulers’ performance are
significant.

Although the security requirements would imply so-
me additional cost to the users of the grid system, it is
worth assuming this cost in order to allocate tasks to tru-
stful resources.

Our experimental analysis shows that hybrid
GA-based schedulers can be effective in solving user ga-
mes; however, the main drawback of using such methods
is their high computation complexity. The game scenarios
presented in Section[lare very general, which makes them
useful in supporting the user decision process in various
situations. In some real-life approaches particular game
scenarios can be applied for efficient resource allocation.
Most of them are based on economical models. In the fol-
lowing section, we briefly highlight the most popular ga-
me models used in grid scheduling.

7. Game-theoretical models and
market-based approaches

Computational economy is a popular mechanism for the
design of the resource management architecture of grid
systems. It allows the resource owners, acting as sellers,
to earn money by letting others (mainly grid users, acting
as buyers) use their (idle) computational resources. The
pricing of the resources is driven by demand and supply.

A number of economic models for grid resource ma-
nagement has been proposed in the literature so far. We
present in Table[3lthree most popular approaches found in
grid computing, namely, commodity market, auction and
bargaining models. Each model can be easily modified to
meet users or resource owners requirements. For example,
the posted price model (Buyya and Bubendorfer, 2009) is
an extension of commodity market by considering posted
prices (usually lower than regular ones) as a special offer
to grid users.

The auction mechanism can be also defined in ma-
ny ways (e.g., English, Dutch, second price auctions). All
of them differ in terms of whether they are performed as
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Fig. 4. Experimental results for the non-cooperative symmetric game: static case—average makespan (a), average flowtime (b); dyna-

mic case—average makespan (c), average flowtime (d).

open or closed auctions and the offer price for the highest
bidder. Wolski et al. (2001) proposed a model called G-
Commerce in which computational resources among dif-
ferent grid sites are traded in a barter manner. This mo-
del can be interpreted as a combination of the commodity
market and auction approaches.

Market-oriented approaches are suitable to exploit
the interaction of different scheduling layers. However,
grid users and resource owners are likely to behave in dif-
ferent (selfish or/and cooperative) manners and their be-
havior cannot be characterized using conventional techni-
ques. Game-theoretical models are quite natural tools for
solving this problem, because each market-based scena-
rio can be easily translated into the game framework. This
kind of approaches has recently attracted a lot of attention
of researchers.

The mechanism of first price bidding auctions was
applied by Kwok et al. (2007) to define the game-based
resource management and global scheduling policy at the
intra- and inter-site levels in the 3-levels hierarchical grid
structure. In the intra-site bidding, each machine owner in
the site declares the “execution capability" of the resour-
ce. The local job dispatcher moderates these amounts and
sends a single value to the global scheduler. In the inter-
site bidding, the global scheduler should allocate tasks ac-
cording to the values sent by the local dispatchers. The
authors showed that the cooperation of the players at both
levels are optimal strategies for both games. In fact, there

is also a third game defined for the resource owners, who
behave selfishly. The objective of this non-cooperative ga-
me is to maximize resource utilization. The game scena-
rios at each level are very simple, and the authors focused
in fact on the optimization of two scheduling criteria: mi-
nimization of the task deadlines (user’s requirement) and
maximization of resource utilization (resource owner’s re-
quirement). However, for successful execution of all those
games, a synchronization mechanism must be introduced,
which can make the whole system inefficient in a large-
scale dynamic environment.

An early approach to modified auction mechanisms
can be found in the work of Regev and Nisan (2000). The
authors defined POPCORN market for trading online CPU
times. In their system, a virtual currency called “popco-
in" was used between buyers and sellers communicating
via the Internet. Social efficiency and price stability were
studied using the Vickrey auction game. In this scenario,
cooperation between players to form a coalition and win
the auction is possible, but the players usually behave sel-
fishly. It should be noted that in this approach some form
of concrete currency is needed to play the game, and for
that reason the system would not be practicable in a real-
life situation where there are huge numbers of machines
involved.

Ghosh et al. (2005) studied the load balancing issues
in a mobile CG, in which there is a Wireless Access Point
(WAP) which mediates the requests from different mobi-
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Fig. 5. Experimental results for the Stackelberg game: static case—average makespan (a), average flowtime (b); dynamic case—

average makespan (c), average flowtime (d).

le devices. The problem is modeled as a bargaining co-
operative game between each mobile device and the WAP
server. Assuming that there are n mobile devices under a
single WAP server, this server has to play n such games
with the corresponding devices. The solution of the who-
le game is the Nash Bargaining Solution (NBS). In this
approach, an explicit payment scheme must be enforced
in the system. A recent study on the bargaining cooperati-
ve game application in optimizing energy consumption in
grids is proposed in by Subrata et al. (2010).

8. Conclusions and future work

In this paper we addressed the need for using new com-
putational paradigms to efficiently solve scheduling and
resource allocation problems in computational grids. By
surveying the most important approaches in the literature,
we observed that the proposed methods usually fail to ef-
fectively cast additional requirements of grid scheduling
such as security and reliability of resources.

Game-theoretic models proved to be useful appro-
aches for supporting grid users’ decisions, where different
scheduling criteria, including security and resource relia-
bility, must be considered at the same time. Users’ beha-
vior can be effectively translated into the computational
model linked to grid scheduling. Due to a large-scale of
the grid, non-cooperative games seem to be a potential
model for integrating various requirements in grid sche-
duling.

We presented two general non-cooperative game sce-
narios, namely, the symmetric non-zero sum game and the
Stackelberg game, and defined simple GA-based hybrid
schedulers for approximating their equilibrium points.
The procedure of solving the proposed non-cooperative
games is complex because of the need for integration and
synchronization of two cooperating modules. However,
experimental analysis shows high efficiency of using the
meta-heuristics as resolution methods for game-based mo-
dels, especially in the case of additional security costs pa-
id by the users. Because of the variety of real-life game
scenarios, we believe that the game-based models concept
can be successfully implemented also in cloud computing,
where secure scheduling and information management re-
main challenging problems.
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