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1. Introduction

The development of the theory of fractional integrals and
derivatives starts with Euler, Liouville and Abel (1823).
However, during the last ten years, fractional calculus
has attracted much more attention of physicists and math-
ematicians. In fact, real problems in scientific fields
such as physics, mechanics, chemistry and biology are
formulated as partial differential equations or integral
equations. Many authors have demonstrated applica-
tions of fractional calculus to coelastic materials (Bagley
and Torvik, 1985), continuum and statistical mechanics
(Mainardi, 1997), colored noise (Mandelbrot, 1967), eco-
nomics (Baillie, 1996), bioengineering (Magin, 2004),
anomalous diffusion and transport (Chena et al., 2010),
the dynamics of interfaces between nanoparticles and sub-
strates (Chow, 2005), complex viscoelasticity (Meral et
al., 2010), rheology (Metzler, 2003) and others. There are
also several methods for solving fractional integral equa-
tions like He’s homotopy (Pandey et al., 2009), Adomian

decomposition (Li and Wang, 2009), collocation method
(Lepik, 2009) and power spectral density (Zaman and
Yu, 1995).

The aim of this paper is to introduce a new opera-
tional wavelet method for approximating the solution of a
fractional Volterra integral equation in the following form:

f(x) − 1
Γ(α)

∫ x

0

(x − t)α−1k(x, t)f(t) dt = g(x), (1)

0 ≤ x ≤ 1.

The kernel k(x, t) and the right-hand-side function g(x)
are given, and α > 0 is a real number. This equation is
also referred to as the weakly-singular linear Volterra in-
tegral equation (see Hachbusch, 1995). The value α = 1
corresponds to the ordinary (non-fractional) Volterra inte-
gral equation. Particularly, if k(x, t) = 1 and 0 < α < 1
in Eqn. (1), we have an Abel integral equation in the form

f(x) − λ

∫ x

0

f(t)
(x − t)β

dt = g(x), 0 < β < 1, (2)
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where λ = 1/Γ(α) and β = 1 − α.
The treatment of Eqn. (1) is not simple because, as

is well known, the solutions of weakly singular Volterra
integral equations usually have a weak singularity at x =
0, even when the inhomogeneous term g(x) is smooth.
Miller and Feldstein (1971) proved that the solution of (1)
is unique and continuous in [0, 1] if g ∈ L1(0, 1) and
k ∈ L∞. A deeper insight into this problem is provided
by many differentiability results for f(x) obtained by var-
ious authors under specific hypotheses on g(x) and k(x, t)
(Miller and Feldstein, 1971).

A possibility of nonsmooth solution complicates
the numerical investigation of Eqn. (2). Various nu-
merical techniques have been developed to treat such
nonsmooth solutions (Baratella and Orsi, 2004; Brun-
ner, 1984; Dixon, 1985). In general, the numerical so-
lution of Eqn. (1) is often quite complicated, so we are
looking for simplifications. For this reason we use an op-
erational Haar wavelet method, since Haar wavelets are
the simpest ones (Lepik, 2003; 2004, Maleknejad, 2005;
Hsiao, 2007), and it has not received much attention so far.
Only Lepik (2009) has used Haar wavelets to solve such
equations. He has utilized these wavelets as a colloca-
tion method and introduced a local error estimate, but we
use Haar wavelets to obtain an operational method which
yields an operational matrix of fractional integration.

The main characteristic of an operational method is
to convert a differential equation into an algebraic one.
This not only simplifies the problem but also speeds up the
computation. However, the interest in the wavelet treat-
ment of various integral equations has recently increased
due to promising applications of this method in compu-
tational chemistry (Chuev and Fedorov, 2004a; 2004b;
2004c; Fedorov, 2004; Fedorov and Khoromskij, 2007;
Fedorov and Chuev, 2005).

In the present paper we first introduce Haar wavelets
and their properties, then construct a new operational ma-
trix of fractional integration via Haar wavelets. After
that the method is described and its convergence is dis-
cussed. A global error estimate is also evaluated and sev-
eral representative examples are considered. We should
remark that, despite numerous examples of numerical
evaluations of the fractional Volterra integral equation, a
general theory guaranteeing the convergence of the so-
lution for this equation is still incomplete (Baratella and
Orsi, 2004; Brunner, 1984; Dixon, 1985; Miller and Feld-
stein, 1971). Therefore, to consider the conditions under
which the method will fail, we shall apply our approach
not only to smooth solutions, but also to those revealing
nonsmooth behavior.

2. Function approximation

The orthogonal set of the Haar wavelets hn(x) is a group
of square waves defined as follows:

h0(x) =

{
1, 0 ≤ x < 1,

0, elsewhere,

h1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ x <
1
2
,

−1,
1
2
≤ x < 1,

0, elsewhere,

hn(x) = h1(2jx − k),

n = 2j + k, j, k ∈ N ∪ {0}, 0 ≤ k < 2j ,
(3)

such that
∫ 1

0

hn(x)hm(x) dx = 2−jδnm,

where δnm is the Kronecker delta. For more details, see
the works of Akansu and Haddad (1981), Vetterli and Ko-
vacevic (1995), or Strang (1989).

The Heaviside step function is defined as

u(x) =
{

1, x ≥ 0,
0, x < 0.

A useful property of this function is

u(x− a)u(x− b) = u(x−max{a, b}), a, b ∈ R. (4)

Note that we can write Eqn. (3) by using the Heavi-
side step function as

h0(x) = u(x) − u(x − 1),

hn(x) = u
(
x − k

2j

)
− 2u

(
x − k + 1/2

2j

)

+ u
(
x − k + 1

2j

)
,

n = 2j + k, j, k ∈ N ∪ {0}, 0 ≤ k < 2j .

(5)

Each square integrable function f(x) in the interval [0, 1)
can be expanded into a Haar series of infinite terms:

f(x) = c0h0(x)

+
∞∑

j=0

2j−1∑
k=0

c2j+kh2j+k(x), x ∈ [0, 1], (6)

where the Haar coefficients are determined as

ci = 2j

∫ 1

0

f(x)hi(x) dx,

i = 0, 2j + k, j, k ∈ N ∪ {0}, 0 ≤ k < 2j ,

(7)
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such that the following integral square error εm is mini-
mized:

εm =
∫ 1

0

[
f(x) −

m−1∑
i=0

cihi(x)
]2

dx,

m = 2J+1, J ∈ N ∪ {0}.

By using Eqn. (5), the above Haar coefficients can be
rewritten as

ci = 2j

[∫ k+1/2
2j

k

2j

f(x) dx −
∫ k+1

2j

k+1/2
2j

f(x) dx

]
,

i = 2j + k, j, k ∈ N ∪ {0}, 0 ≤ k < 2j. (8)

If f(x) is piecewise constant or may be approximated
by a piecewise constant function during each subinterval,
the series sum in Eqn. (6) can be truncated after m terms
(m = 2J+1, J ≥ 0 being the resolution level of the
wavelet), that is

f(x) ∼= c0h0(x) +
J∑

j=0

2j−1∑
k=0

c2j+kh2j+k(x)

= cTh(x) = fm(x), x ∈ [0, 1], (9)

where c = cm×1 = [c0, c1, . . . , cm−1]T , h(x) =
hm×1(x) = [h0(x), h1(x), . . . , hm−1(x)]T .

3. Haar wavelet operational matrix of
fractional integration

In this section we obtain an operational matrix of frac-
tional integration, based on Haar wavelets, which is
novel. The Riemann–Liouville fractional integral oper-
ator of order α > 0 of the function f(x) is defined as
(Podlubny, 1999; Miller and Ross, 1993)

Iαf(x) =
1

Γ(α)

∫ x

0

(x − t)α−1f(t) dt,

α > 0, x > 0, (10)

where Γ(·) is the Gamma function with the property Γ(x+
1) = xΓ(x), x ∈ R. Some properties of the operator
Iα can be found in the research by Podlubny (1999). We
mention only the following: For α � 0 and γ > −1, we
have

Iαxγ =
Γ(γ + 1)

Γ(α + γ + 1)
xα+γ . (11)

The integration of h(x) can be expanded into a Haar series
with a Haar coefficient matrix Pm (Chen and Hsiao, 1997)
as ∫ x

0

h(x) dx ∼= Pmh(x).

The m×m matrix Pm is called the operational matrix of
integration and is given by Hsiao and Wu (2007) as

Pm =
1

2m

[
2mPm/2 −Hm/2×m/2

H−1
m/2×m/2 0

]
, (12)

where H1×1 = [1], P1 = [1/2] and

Hm×m =

[
h
( 1

2m

)
,h
( 3

2m

)
, . . . ,h

(2m − 1
2m

)]
.

Three basic multiplication properties of Haar
wavelets are as follows (Hsiao and Wu, 2007):

(i) hn(x)h0(x) = hn(x) for any n ∈ N ∪ {0}.

(ii) For any two Haar wavelets hn(x) and hl(x) with n <
l, we have

hn(x)hl(x) = ρnlhl(x),

where

ρnl

= hn(2−i(q + 1/2))

=

⎧⎨
⎩

1, 2i−jk ≤ q < 2i−j(k + 1/2),
−1, 2i−j(k + 1/2) ≤ q < 2i−j(k + 1),
0, elsewhere,

(13)

for n = 2j + k, j ≥ 0, 0 ≤ k < 2j and l =
2i + q, i ≥ 0, 0 ≤ q < 2i.

(iii) The square of any Haar wavelet is a block pulse with
a magnitude of 1 during both positive and negative
half waves.

The product of h(x), hT (x) and c can also be ex-
panded into a Haar series with a Haar coefficient matrix
Mm as follows:

h(x)hT (x)c = Mmh(x),

where Mm is an m × m matrix referred to as the product
operational matrix and given by Hsiao and Wu (2007):

Mm =
[

Mm/2 Hm/2diag(c̃b)
diag(c̃b)H−1

m/2 diag(c̃T
a Hm/2)

]
, (14)

such that M1 = c0 and

c̃a = [c0, . . . , cm/2−1]T , c̃b = [cm/2, . . . , cm−1]T .

Now we want to obtain the operational matrix of
fractional integration for Haar wavelets, which is a gen-
eralized form of Pm in (12). The fractional integration of
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order α of h(x) can be expanded into a Haar series with a
Haar coefficient matrix Pα

m as follows:

1
Γ(α)

∫ x

0

(x − t)α−1h(t) dt = Pα
mh(x). (15)

We call this m × m square matrix Pα
m the (generalized)

operational matrix of fractional integration. Thus for ex-
panding the Riemann–Liouville integral, it is enough to
expand

1
Γ(α)

∫ x

0

(x − t)α−1hn(t) dt,

for n = 0, 1, . . . , m − 1, in a Haar series. We know that

1
Γ(α)

∫ x

0

(x − t)α−1hn(t) dt =
1

Γ(α)
{xα−1 ∗ hn(x)},

where ∗ is the convolution operator of two functions. By
taking the Laplace transform of the above equation, we
have

L
{ 1

Γ(α)

∫ x

0

(x − t)α−1hn(t) dt
}

=
1

Γ(α)
L{xα−1}L{hn(x)}, (16)

where

L{xα−1} =
Γ(α)
sα

,

L{hn(x)} = L
{

u
(
x − k

2j

)
− 2u

(
x − k + 1/2

2j

)

+ u
(
x − k + 1

2j

)}

=
1
s

{
e−

k

2j s − 2e−
k+1/2

2j s + e−
k+1
2j s

}
.

The last two equalities are obtained using the properties
of the Laplace transform. Therefore, (16) can be rewritten
as

L
{ 1

Γ(α)

∫ x

0

(x − t)α−1hn(t) dt
}

=
1

Γ(α + 1)
.
Γ(α + 1)

sα+1

·
{
e−

k

2j s − 2e−
k+1/2

2j s + e−
k+1
2j s

}
.

Now, taking the inverse Laplace transform of the

above equation, we find

1
Γ(α)

∫ x

0

(x − t)α−1hn(t) dt

=
1

Γ(α + 1)

{(
x − k

2j

)α

u
(
x − k

2j

)
︸ ︷︷ ︸

X(x)

− 2
(
x − k + 1/2

2j

)α

u
(
x − k + 1/2

2j

)
︸ ︷︷ ︸

Y (x)

·
(
x − k + 1

2j

)α

u
(
x − k + 1

2j

)
︸ ︷︷ ︸

Z(x)

}

=
1

Γ(α + 1)
{X(x) − 2Y (x) + Z(x)}. (17)

Specifically, for n = 0, we have

1
Γ(α)

∫ x

0

(x − t)α−1h0(t) dt =
1

Γ(α + 1)
W (x), (18)

where

W (x) = xαu(x) − (x − 1)αu(x − 1).

Equations (17) and (18) can be expanded into Haar
wavelets as

Iαhn(x) = cn0h0(x) +
J∑

p=0

2p−1∑
q=0

cn2p+qh2p+q(x) (19)

for n = 0, 1, . . . , m − 1.

Now we want to obtain the coefficients cnl, n, l =
0, 1, . . . , m − 1 in the above equation. According to (4)
and (5), we have

c00 =
1

Γ(α + 1)

∫ 1

0

W (t)h0(t) dt =
1

Γ(α + 2)
,

c02p+q =
2p

Γ(α + 1)

∫ 1

0

W (t)h2p+q(t) dt

=
2p

Γ(α + 1)

∫ 1

0

W (t)

{
u
(
t − q

2p

)

− 2u
(
t − q + 1/2

2p

)
+ u

(
t − q + 1

2p

)}
dt

=
2p

Γ(α + 1)

[∫ 1

q
2p

tα dt − 2
∫ 1

q+1/2
2p

tα dt

+
∫ 1

q+1
2p

tα dt

]
.



An operational Haar wavelet method for solving fractional Volterra integral equations 539

Thus

c02p+q

= − 2p

Γ(α + 2)

·
[( q

2p

)α+1

− 2
(q + 1/2

2p

)α+1

+
(q + 1

2p

)α+1
]
,

(20)

where p = 0, 1, . . . , J and q = 0, 1, . . . , 2p − 1.

Similarly, to calculate cn0 and cn2p+q for n =
1, 2, . . . , m − 1, p = 0, 1, . . . , J and q = 0, 1, . . . , 2p − 1
(in Eqn. (19)), we have

cn0 =
1

Γ(α + 1)

∫ 1

0

[
X(t) − 2Y (t) + Z(t)

]
h0(t) dt

=
1

Γ(α + 1)

∫ 1

0

[X(t) − 2Y (t) + Z(t)]

· [u(t) − u(t − 1)] dt

=
1

Γ(α + 1)

[ ∫ 1

k

2j

(
t − k

2j

)α

dt

− 2
∫ 1

k+1/2
2j

(
t − k + 1/2

2j

)α

dt

+
∫ 1

k+1
2j

(
t − k + 1

2j

)α

dt
]
.

Consequently,

cn0

=
1

Γ(α + 2)

[(
1 − k

2j

)α+1

− 2
(
1 − k + 1/2

2j

)α+1

+
(
1 − k + 1

2j

)α+1
]
. (21)

and

cn2p+q

=
2p

Γ(α + 1)

∫ 1

0

[X(t) − 2Y (t) + Z(t)]h2p+q(t) dt

=
2p

Γ(α + 1)

∫ 1

0

[X(t) − 2Y (t) + Z(t)]
[
u
(
t − q

2p

)

− 2u
(
t − q + 1/2

2p

)
+ u

(
t − q + 1

2p

)]
dt

=
2p

Γ(α + 1)

[ ∫ 1

η0

(
t − k

2j

)α dt

− 2
∫ 1

η1/2

(
t − k

2j

)α

dt +
∫ 1

η1

(
t − k

2j

)α

dt
]

− 2
2p

Γ(α + 1)

[ ∫ 1

θ0

(
t − k + 1/2

2j

)α

dt

− 2
∫ 1

θ1/2

(
t − k + 1/2

2j

)α dt

+
∫ 1

θ1

(
t − k + 1/2

2j

)α

dt

+
2p

Γ(α + 1)

[ ∫ 1

ξ0

(
t − k + 1

2j

)α

dt

− 2
∫ 1

ξ1/2

(
t − k + 1

2j

)α

dt +
∫ 1

ξ1

(
t − k + 1

2j

)α

dt,

where

ηi = max
{ k

2j
,

q + i

2p

}
, i = 0, 1/2, 1,

θi = max
{k + 1/2

2j
,

q + i

2p

}
, i = 0, 1/2, 1,

ξi = max
{k + 1

2j
,

q + i

2p

}
, i = 0, 1/2, 1.

Therefore

cn2p+q

= − 2p

Γ(α + 2)

[(
η0 − k

2j

)α+1

− 2
(
η1/2 − k

2j

)α+1

+
(
η1 − k

2j

)α+1

]

+ 2
2p

Γ(α + 2)

[(
θ0 − k + 1/2

2j

)α+1

− 2
(
θ1/2 − k + 1/2

2j

)α+1

+
(
θ1 − k + 1/2

2j

)α+1]

− 2p

Γ(α + 2)

[(
ξ0 − k + 1

2j

)α+1

− 2
(
ξ1/2 − k + 1

2j

)α+1

+
(
ξ1 − k + 1

2j

)α+1]
,

for n = 1, 2, . . . , m − 1, p = 0, 1, . . . , J and q =
0, 1, . . . , 2p−1. Thus, we can write the operational matrix
of fractional integration as

Pα
m =

[
Pα

m/2 Rm/2×m/2

Sm/2×m/2 Um/2×m/2

]
,

where
Rm/2×m/2 = [cn2J+q],

for n = 0, 1, . . . , m/2 − 1, q = 0, 1, . . . , 2J − 1 and
Sm/2×m/2 = [cnl], n = m/2, . . . , m − 1,and l =
0, 1, . . . , m/2 − 1 are calculated easily by (20), (22) and
(21), (22), respectively, and Um/2×m/2 is an upper trian-
gular matrix in the form

Um/2×m/2 = u1I + u2μ + u3μ
2 + · · · + um/2μ

m/2−1,
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such that

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2J

Γ(α + 2)

( 1
2J

)α+1

[4(1/2)α+1 − 1],

if i = 1,

2J

Γ(α + 2)

( 1
2J

)α+1[
− iα+1 + 4(i − 1/2)α+1

−6(i − 1)α+1 + 4(i − 3/2)α+1

−(i − 2)α+1
]
, if i = 2, . . . , m/2,

Im/2 is an (m/2) × (m/2) identity matrix and

μm/2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

1
0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m/2×m/2

It is essential that, for α = 1, the fractional inte-
gration (10) is the ordinary integration and the general-
ized operational matrix of fractional integration Pα

m is the
same as Pm, which is introduced in (12). Here we present
P1/3

m for J = 0, 1:

P1/3
2 =

[
0.8399 −0.1733
0.1733 0.4933

]
,

P1/3
4 =

⎡
⎢⎢⎣

0.8399 −0.1733 −0.1375 −0.0571
0.1733 0.4933 −0.1375 0.2179
0.0286 0.1090 0.3916 −0.0428
0.0688 −0.0688 0 0.3916

⎤
⎥⎥⎦ ,

4. Application of the method

According to Section (2), the right-hand side of Eqn. (1)
is approximated as

g(x) ∼= g0h0(x) +
J∑

j=0

2j−1∑
k=0

g2j+kh2j+k(x) = gTh(x).

(22)
Similarly, K(x, t) ∈ L2([0, 1) × [0, 1)) can be approxi-
mated as

k(x, t) ∼=
m−1∑
i=0

m−1∑
j=0

kijhi(x)hj(t),

or, in matrix form,

k(x, t) ∼= hT (x)Kh(t), (23)

where K = [kij ]m×m, such that

kij = 2i+j

∫ 1

0

∫ 1

0

k(x, t)hi(x)hj(t) dt dx,

i, j = 0, 1, . . . , m − 1.

Also, the fractional integral part of (1) is written as

1
Γ(α)

∫ x

0

(x − t)α−1k(x, t)f(t) dt ∼= ṽh(x). (24)

The details of calculating ṽ are shown in Appendix.
By substituting the approximations (9), (33) and (22) into
(1), we obtain

hT (x)c − hT (x)ṽ = hT (x)g.

Therefore,
c − ṽ = g. (25)

Equation (25) is a system of linear equations and can
be easily solved for the unknown vector c. Note that the
entries of the vector ṽ are related to the entries of c. Sim-
ilarly, the Abel integral equation (2) can be written as

hT (x)c − hT (x)(Pα
m)T c = hT (x)g.

Therefore,
c − (Pα

m)T c = g. (26)

Equation (26) is a system of linear equations and can
be easily solved for the unknown vector c:

c = (I − (Pα
m)T )−1g.
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Fig. 1. Fractional integration of f(x) = x and its approxima-
tion (Iαf16(x)) for α = 2/3, 1, 4/3.

5. Error analysis

Let us consider the following integral equation:

f(x) − 1
Γ(α)

∫ x

0

(x − t)α−1k(x, t)f(t) dt = g(x),

0 ≤ x ≤ 1. (27)

Suppose that f(x) is the exact solution of the above inte-
gral equation. In order to analyze the convergence of our
method, we will define the following error function and
show that the method is convergent for a special class of
functions in the sense that the corresponding error tends
to zero as m tends to infinity.
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Definition 1. If f(x) and fm(x) = cT h(x) are the exact
and approximate solutions of (27), respectively, then the
corresponding error is defined as follows:

em(x) = f(x) − fm(x).
It is clear that

em(x) =
∞∑

j=J+1

2j−1∑
k=0

c2j+kh2j+k(x).

Now we will prove the following convergence theo-
rem.

Theorem 1. Suppose that f(x) satisfies a Lipschitz con-
dition on [0, 1], that is,

∃M > 0, ∀x, y ∈ [0, 1] : |f(x) − f(y)| ≤ M |x − y|.
(28)

Then the Haar wavelet method will be convergent in the
sense that em(x) goes to zero as m goes to infinity. More-
over, the convergence is of order one, that is,

‖em(x)‖2 = O
( 1

m

)
.

Proof. We have

‖em(x)‖2
2 =

∫ 1

0

( ∞∑
j=J+1

2j−1∑
k=0

c2j+kh2j+k(x)
)2

dx

=
∞∑

j=J+1

2j−1∑
k=0

c2
2j+k

∫ 1

0

h2
2j+k(x) dx

+
∞∑

j=J+1

2j−1∑
k=0

∞∑
p=J+1

2p−1∑
q=0, q �=k

{
c2j+k

· c2p+q

∫ 1

0

h2j+k(x)h2p+q(x)
}

dx

=
∞∑

j=J+1

2j−1∑
k=0

c2
2j+k

( 1
2j

)
.

Since c2j+k = 2j
∫ 1

0
f(x)hi(x) dx, by (8) and using the

mean value theorem, we have

∃ xjk
1 ∈

[ k

2j
,

k + 1/2
2j

]
, xjk

2 ∈
[k + 1/2

2j
,

k + 1
2j

]
,

such that

c2j+k = 2j
[(k + 1/2

2j
− k

2j

)
f(xjk

1 )

−
(k + 1

2j
− k + 1/2

2j

)
f(xjk

2 )
]

=
1
2

[
f(xjk

1 ) − f(xjk
2 )
]

≤ 1
2
M(xjk

1 − xjk
2 )

≤ 1
2
M

1
2j

= M
1

2j+1
.

The first inequality is obtained by (28). Therefore,
c2
2j+k ≤ M2 1

22j+2 and

‖em(x)‖2
2 =

∞∑
j=J+1

2j−1∑
k=0

c2
2j+k

( 1
2j

)

≤
∞∑

j=J+1

2j−1∑
k=0

M2 1
22j+2

( 1
2j

)

=
M2

4

∞∑
j=J+1

2j 1
23j

=
M2

3

( 1
2J+1

)2

.

Since m = 2J+1, we have

‖em(x)‖2
2 ≤ M2

3

( 1
m

)2

or, in other words,

‖em(x)‖2 = O
( 1

m

)
.

�
By the above proof, we can obtain a bound for

‖em(x)‖2

‖em(x)‖2 ≤ M

m
√

3
. (29)

At the end of this section, we discuss the condi-
tions under which our method will fail or will not give
us an acceptable approximation. The solution f(x) of
Eqn. (27) is generally not differentiable at the initial point
(Vainikko and Pedas, 1981). On the other hand, the Lip-
schitz continuity of functions on the real line is closely
related to differentiability, i.e., an everywhere differen-
tiable function f : R → R is Lipschitz continuous (with
M = sup |f ′(x)|) if and only if it has the first derivative
bounded (one direction follows from the mean value the-
orem). So due to the non-smoothness of f(x) at the initial
point, the Lipschitz constant M may not exist or may be
too large. Therefore, the error bound (29) will increase
and we will not have a good approximation.

5.1. Estimation of the error function. In real prob-
lems, we often tend to solve equations with unknown ex-
act solutions. These unknown exact solutions may be sin-
gular, smooth or not. Hence, when we apply our method
to these problems, we cannot say that this approximate
solution is good or bad unless we are able to calculate the
error function em(x). Therefore, it is necessary to intro-
duce a process for estimating the error function when the
exact solution is unknown.
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Fig. 2. Approximate solutions of Example 2 for selected values of m.
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Fig. 3. Approximate solutions of Example 3 for selected values of m.

Here we introduce a method to estimate the error
function. Since fm(x) is considered an approximate solu-
tion of Eqn. (1), it satisfies the following equation:

fm(x) − 1
Γ(α)

∫ x

0

(x − t)α−1k(x, t)fm(t) dt

= g(x) + rm(x), (30)

The perturbation term rm(x) can be obtained by sub-
stituting the estimated solution fm(x) into the equation

rm(x)

= fm(x) − 1
Γ(α)

∫ x

0

(x − t)α−1k(x, t)fm(t) dt

− g(x). (31)

Subtracting (30) from (1), we get the following equation:

em(x)− 1
Γ(α)

∫ x

0

(x− t)α−1k(x, t)em(t) dt = −rm(x).

(32)

Obviously, the above is a fractional Volterra integral equa-
tion in which the error function, em(x), is unknown. We
can easily apply our method to the above equation to find
an approximation of the error function em(x).

6. Numerical examples

To show the efficiency of the proposed method, we will
apply our method to obtain the approximate solution of the
following examples. All of the computations have been
performed using MATLAB 7.8. Note that

‖em(x)‖2 =
(∫ 1

0

e2
m(x) dx

)1/2

∼=
( 1

N

N∑
i=0

e2
m(xi)

)1/2

,

where f(x) is the exact solution and fm(x) is the approx-
imate solution obtained by Eqn. (9).
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Example 1. Let f(x) = x. Here we approximate Iαf(x)
by Pα

m for α = 2/3, 1, 4/3 and compare it with the exact
fractional integration of the function f(x) = x, which is
easily obtained by (11). If we write x ∼= cT h(x), we will
have Iαx ∼= cT Iαh(x) ∼= cT Pα

mh(x). Numerical results
for m = 16 are shown in Fig. 1. �
Example 2. (Pandey et al., 2009) Consider the following
Abel integral equation of the second kind:

f(x) =
1

1 + x
+

2arcsinh(
√

x)√
1 + x

−
∫ x

0

f(t)√
x − t

dt = x, 0 ≤ x ≤ 1,

which has the exact solution f(x) = 1/(1 + x). Numeri-
cal results are shown in Table 1 and Fig. 2.

Example 3. (Yousefi, 2006) Consider the following Abel
integral equation of the second kind:

f(x) = 2
√

x −
∫ x

0

f(t)√
x − t

dt = x, 0 ≤ x ≤ 1,

which has f(x) = 1−eπxerfc(
√

πx) as the exact solution,
where the complementary error function erfc(x) is defined
as

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt.

Here α = 1/2. Numerical results are shown in Table 1
and Fig. 3. �
Example 4. Consider the following fractional Volterra
integral equation:

f(x) +
∫ x

0

xt√
x − t

f(t) dt = g(x), 0 ≤ x ≤ 1,

where

g(x) = x(1 − x) +
16
105

x
7
2 (7 − 6x)

and f(x) = x(1− x) is the exact solution. The numerical
results are shown in Table 1 and Fig. 4. �

Let us consider examples with nonsmooth and singu-
lar solutions.

Example 5. (Pandey, 2009) Consider the fractional
Volterra integral equation:

f(x) =
1√
x

+ π −
∫ x

0

f(t)√
x − t

dt = x, 0 ≤ x ≤ 1,

which has f(x) = 1/
√

x as the exact solution. In this
case there is a singularity at the point x = 0. As discussed
in Section 5, the solution around this point is not so good
(see Fig. 5). Hence the numerical results in Table 1 have
been calculated in [0.1, 1]. As can be seen, our method
provides reasonable estimates even in this case with a sin-
gular solution. �

Example 6. Consider the following Abel integral equa-
tion of the first kind:

∫ x

0

f(t)√
x − t

dt = x,

with the exact solution f(x) = 2
π

√
x. Numerical results

are shown in Fig. 6 and Table 1, for some selected values
of m. �

Example 7. (Abdalkhania, 1990; Dixon, 1985) Consider
the following fractional Volterra integral equation:

f(x) +
∫ x

0

f(t)√
x − t

dt =
1
2
πx +

√
x, 0 ≤ x ≤ 1,

which has f(x) =
√

x as the exact solution. Numerical
results are shown in Table 1 and Fig. 7. �

As can be seen, in contrast to the singular solution
(Example 6), the method provides rather accurate results
for nonsmooth solutions (Examples 6 and 7).

7. Conclusion

Haar wavelets have been applied to study integral equa-
tions with a nonsingular kernel (Lepik, 2004; Malekne-
jad and Mirzaee, 2005). In this paper we use them to
solve the fractional Volterra integral equation which has
a weakly singular kernel. For this purpose, we general-
ized the operational matrix of integration to the case of
fractional integration. We considered various types of so-
lutions, with smooth, nonsmooth and even singular be-
haviors. In all the cases considered, the method provides
reasonable estimates. Numerical examples and their er-
ror analysis show that more accurate results are obtained
when finer resolutions are used. We hope the method to
be generalized to the case of fractional Fredholm inte-
gral equations, which is the interest of current applications
in computational chemistry (Chiodo, 2007; Chuev, 2006;
2007; 2008).
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Fig. 4. Approximate solutions of Example 4 for selected values of m.

Table 1. Approximate norm-2 of the absolute error, ‖em(x)‖2, for m = 8, 16, 32, 64, 128.
Examples ‖e8(x)‖2 ‖e16(x)‖2 ‖e32(x)‖2 ‖e64(x)‖2 ‖e128(x)‖2

Example 2 3.7602e+000 9.5290e-005 2.3838e-005 5.9609e-006 1.4936e-006
Example 3 1.3111e-003 4.8933e-004 1.7606e-004 6.1280e-005 2.1571e-005
Example 4 4.3628e-004 1.1572e-004 3.4342e-005 1.4039e-005 9.0411e-006
Example 5 1.2696e+001 3.7150e-003 1.0089e-003 2.6852e-004 8.4154e-005
Example 6 6.9314e-004 1.9918e-004 5.7015e-005 1.6171e-005 4.6829e-006
Example 7 1.5713e-003 4.5647e-004 1.3244e-004 3.8332e-005 1.1353e-005
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Fig. 5. Approximate solutions of Example 5 for selected values of m.
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Fig. 6. Approximate solutions of Example 6 for selected values of m.
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Fig. 7. Approximate solutions of Example 7 for selected values of m.
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Lepik, Ü. and Tamme, E. (2004). Application of the Haar
wavelets for solution of linear integral equations, Dy-
namical Systems and Applications, Proceedings, Antalya,
Turkey, pp. 494–507.
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Appendix

Evaluating ṽ

The fractional integral part of (1) can be written as

1
Γ(α)

∫ x

0

(x − t)α−1k(x, t)f(t) dt ∼= ṽh(x), (33)

where ṽ = [ṽ0, ṽ1, . . . , ṽm−1]T . According to Eqn. (7),
we have

ṽi

= 2j

∫ 1

0

[ 1
Γ(α)

∫ x

0

(x−t)α−1k(x, t)f(t) dt
]
hi(x) dx,

(34)

for i = 2j + k. Substituting f(t) ∼= hT (t)c and (23) into
Eqn. (34), we obtain

ṽi

∼= 2j

∫ 1

0

[ 1
Γ(α)

∫ x

0

(x − t)α−1 hT (x)Kh(t) hT (t)cdt
]

· hi(x) dx

= 2j

∫ 1

0

hT (x)K M
[ 1
Γ(α)

∫ x

0

(x − t)α−1h(t) dt
]

· hi(x) dx,

where the m × m matrix M is introduced in (14). Now,
by using (15), we have

ṽi
∼= 2j

∫ 1

0

hT (x)K M Pα
mh(x) hi(x) dx

= 2j

∫ 1

0

hT (x)Ah(x) hi(x) dx,
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where A = K M Pα
m = [aij ]m×m. It is obvious that

hT (x)Ah(x) is a 1 × 1 matrix, and:

hT (x)Ah(x)hi(x)

=
m∑

m1=2

m∑
n1=m1

(an1(m1−1) + a(m1−1)n1)

· hn1−1(x)hm1−2(x) +
m∑

i1=1

ai1i1h
2
i1−1(x)

=
m∑

n1=2

(a1n1 + an11)hn1−1(x)h0(x)

+
m∑

m1=3

m∑
n1=m1

(an1(m1−1)

+ a(m1−1)n1)hn1−1(x)hm1−2(x)

+
m∑

i1=1

ai1i1h
2
i1−1(x)

=
m∑

n1=2

(a1n1 + an11)hn1−1(x)

+
m∑

m1=3

m∑
n1=m1

(an1(m1−1) + a(m1−1)n1)

· ρn1−1m1−2hn1−1(x)

+
m∑

i1=1

ai1i1h
2
i1−1(x),

where ρn1m1 is defined in (13). Therefore

ṽi
∼= 2j

[ m∑
n1=2

(a1n1 + an11)
∫ 1

0

hn1−1(x)hi(x) dx

+
m∑

m1=3

m∑
n1=m1

(an1(m1−1) + a(m1−1)n1)

· ρn1−1m1−2

∫ 1

0

hn1−1(x)hi(x) dx

+
m∑

i1=1

ai1i1

∫ 1

0

h2
i1−1(x)hi(x) dx

]

= (a1(i+1) + a(i+1)1)

+
i∑

m1=2

(am1(i+1) + a(i+1)m1)ρi(m1−1)

+ 2j
m∑

i1=i+2

ai1i1 ρi1i
1
2l

,

where i1 = 2l + w for l, w ∈ {0} ∪ N and 0 ≤ w < 2l.
Specifically,

ṽ0 = a11 +
m∑

i1=2

ai1i1

1
2l1

,

for i1 − 1 = 2l1 + z, where l1, z ∈ {0} ∪ N and
0 ≤ z < 2l1 .
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