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Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined
with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical
Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based
on correlation. However, they are different in that DCCA is a supervised method utilizing class label information, while
CCA is an unsupervised method. It has been shown that the classification performance of DCCA is superior to that of CCA
due to the discriminative power using class label information. On the other hand, Linear Discriminant Analysis (LDA) is a
supervised dimension reduction method and it is known as a special case of CCA. In this paper, we analyze the relationship
between DCCA and LDA, showing that the projective directions by DCCA are equal to the ones obtained from LDA with
respect to an orthogonal transformation. Using the relation with LDA, we propose a new method that can enhance the
performance of DCCA. The experimental results show that the proposed method exhibits better classification performance
than the original DCCA.

Keywords: canonical correlation analysis, dimension reduction, discriminative canonical correlation analysis, feature fu-
sion; linear discriminant analysis.

1. Introduction

Dimension reduction is a widely used preprocessing step
in pattern recognition and data mining. It can help to
avoid the curse of dimensionality and give a compact rep-
resentation of original data with a limited loss of infor-
mation. Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) are traditional dimen-
sion reduction methods which use data scatter informa-
tion (Jolliffe, 1986; Duda et al., 2001). PCA finds a pro-
jective direction giving the greatest total scatter of data,
and LDA searches for a projection vector that maximizes
class separability in the reduced dimensional space by
maximizing between-class scatter and minimizing within-
class scatter.

However, for undersampled problems where the
number of data samples is smaller than the data dimen-
sion, scatter matrices used in LDA become singular and
their inverses are not defined. In order to overcome the
problems caused by the singularity of scatter matrices,
several methods have been proposed, where the singular-
ity problem is avoided by performing the maximization
of between-class scatter and the minimization of within-
class scatter one after the other (Chen et al., 2000; Yu

and Yang, 2001; Yang and Yang, 2003; Howland and
Park, 2004). Comparative studies of generalized LDA
methods can be found in the works of Park and Park
(2008) or Ye (2005). While PCA and LDA are linear
dimension reduction methods, nonlinear dimension re-
duction methods using kernel based approaches or local
learning algorithms have been developed for data with
nonlinear structures (Billings and Lee, 2002; Baudat and
Anouar, 2000; Sugiyama, 2006; Nie et al., 2007). In ker-
nel methods, an original data space is transformed to a
feature space by an implicit nonlinear mapping through
kernel functions so that any linear dimension reduction
methods formulated with inner product computations can
be performed in the transformed feature space.

Recently, graph based dimension reduction meth-
ods have been actively investigated (He and Niyogi,
2003; Hou et al., 2009; Yan et al., 2007; Pardalos and
Hansen, 2008). Locality Preserving Projection (LPP) (He
and Niyogi, 2003) pursues the minimization of the lo-
cal scatter by minimizing the distances between near
points. LPP is different from other manifold-based di-
mension reduction methods such as Isomap (Tenenbaum
et al., 2000) or LLE (Roweis and Saul, 2000) in the sense
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that it is a linear method and the transformation is ex-
plicitly composed. Various modifications of the objec-
tive function in LPP have been proposed, for example,
by adding the maximization of the global scatter of dis-
tant points (Yan et al., 2007), or orthogonal and smooth
regularization (Hou et al., 2009).

When the data are described by multiple feature sets,
dimension reduction combined with feature fusion be-
comes necessary (Yang et al., 2003; Sun et al., 2005;
Garthwaite, 1994). The union of multiple feature sets ob-
tained from various sources can make the data dimension
large. Canonical Correlation Analysis (CCA) is a feature
fusion method based on correlation (Hotelling, 1936). It
finds directions which maximize the correlation between
feature vectors of two feature sets (Sun et al., 2005).
While CCA is an unsupervised feature fusion method,
Discriminative Canonical Correlation Analysis (DCCA)
is a supervised feature fusion method (Sun et al., 2008).
It utilizes class information by maximizing the correlation
between feature vectors in the same class and minimiz-
ing the correlation between feature vectors belonging to
different classes.

It is known that Linear Discriminant Analysis (LDA)
can be considered a special case of CCA. When the sec-
ond feature set corresponding to the original feature set is
constructed by class label information, performing CCA
gives the same results as LDA. Based on the relation be-
tween CCA and LDA, we analyze the relationship be-
tween DCCA and LDA, showing that the projective di-
rections by DCCA are equal to the ones obtained from
LDA with respect to an orthogonal transformation. On
the other hand, LDA is optimal for data which have nor-
mal class distributions but may not work well for data with
complex class structures. Similarly, DCCA can fail when
the data have nonnormal class distributions. We propose a
discriminative feature fusion method that can be effective
for the data with general class distributions. Our proposed
method can reflect complex class shapes by using local
neighborhood scatters within classes instead of the global
within-class scatter.

This paper is organized as follows. In Section 2, a
brief review of LDA, CCA and DCCA is given. In Sec-
tion 3, a theoretical analysis of DCCA is given by re-
vealing the relation of DCCA and LDA. In Section 4, we
propose an improved method of DCCA which can be ap-
plied effectively for data with nonnormal class distribu-
tions. In Section 5, experimental results show that the pro-
posed method exhibits better classification performance
than DCCA. Discussions are given in Section 6.

2. Reviews of LDA, CCA and DCCA

2.1. LDA. The goal of LDA is to find a linear trans-
formation that maximizes class separability in the reduced
dimensional space (Duda et al., 2001). Hence the criterion

for dimension reduction in LDA is to maximize between-
class scatter and minimize within-class scatter. The scat-
ters are measured by using scatter matrices. Denoting by
xi

j the j-th example in class i, the data set X is given as

X = [x1
1, . . . , x

1
n1

, . . . , xr
1, . . . , x

r
nr

] ∈ R
p×n. (1)

The between-class scatter matrix Sb, within-class scatter
matrix Sw and total scatter matrix St are defined as

Sb =
r∑

i=1

ni(xi − x)(xi − x)T ,

Sw =
r∑

i=1

ni∑

j=1

(xi
j − xi)(xi

j − xi)T ,

St =
r∑

i=1

ni∑

j=1

(xi
j − x)(xi

j − x)T ,

where n =
∑r

i=1 ni, and

xi =
1
ni

ni∑

j=1

xi
j ,

x =
1
n

r∑

i=1

ni∑

j=1

xi
j

are the class means and the global mean, respectively.
The objective function of LDA can be formulated as

a maximization problem,

arg max
G∈Rp×l

|GT SbG|
|GT SwG| , (2)

where the data dimension is reduced from p to l by a linear
transformation such that GT : x �−→ GT x. It is well
known that the eigenvectors corresponding to the r − 1
largest eigenvalues of

Sbg = λSwg (3)

form the columns of a linear transformation matrix G for
LDA (Fukunaga, 1990; Duda et al., 2001).

2.2. CCA. CCA is an unsupervised feature fusion
method for two feature sets describing the same data ob-
jects (Sun et al., 2005). CCA finds projective directions
which maximize the correlation between the feature vec-
tors of two feature sets.

Given a data set with n pairs of feature vectors

{(xi, yi), i = 1, . . . , n} ,

the centered data are denoted as

X = [x1 − x, . . . , xn − x] ∈ R
p×n,

Y = [y1 − y, . . . , yn − y] ∈ R
q×n,
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where x = 1
n

∑n
i=1 xi and y = 1

n

∑n
i=1 yi are the means

of xis and yis, respectively. The objective function of
CCA(X,Y) is expressed as

arg max
gx,gy

gT
x XY T gy

√
gT

x XXT gx

√
gT

y Y Y T gy

, (4)

which can be restated as

arg max
gx,gy

gT
x XY T gy (5a)

gT
x XXT gx = 1, gT

y Y Y T gy = 1. (5b)

After finding a pair of projective directions,
(gx1, gy1), satisfying (5), the second pair of projective di-
rections can be found by solving the optimization problem

arg max
gx,gy

gT
x XY T gy (6a)

gT
x XXT gx = gT

y Y Y T gy = 1, (6b)

gT
x1XXT gx = gT

y1Y Y T gy = 0. (6c)

Repeating the above process is converted to the solving of
the paired eigenvalue problem

XY T
(
Y Y T

)−1
Y XT gx = λXXT gx, (7)

Y XT
(
XXT

)−1
XY T gy = λY Y T gy,

and the eigenvectors (gxi, gyi), i = 1, . . . , l, correspond-
ing to the l largest eigenvalues are the pairs of projective
directions for CCA (Sun et al., 2005). Hence

{(gxi)T X, i = 1, . . . , l}

and
{(gyi)T Y, i = 1, . . . , l}

compose the feature sets extracted from X and Y by CCA.
The number l is determined as the number of nonzero
eigenvalues.

2.3. DCCA. While CCA does not use class label in-
formation, DCCA is a supervised feature fusion method
which aims at improving classification performance by
utilizing class information (Sun et al., 2008). DCCA uses
two types of correlations between two feature sets, maxi-
mizing the correlation between feature vectors in the same
classes and minimizing the correlation between feature
vectors in different classes.

We are given two centered feature sets X ∈ R
p×n

and Y ∈ R
q×n such as

X =
[
x1

1 − x, . . . , x1
n1

− x, . . . , xr
1 − x, . . . , xr

nr
− x

]
,

Y =
[
y1
1 − y, . . . , y1

n1
− y, . . . , yr

1 − y, . . . , yr
nr

− y
]
,

(8)

where xi
j denotes the j-th example in class i. When Cw

and Cb denote the correlations between the same classes
and between different classes, respectively, such that

Cw =
r∑

i=1

ni∑

k=1

ni∑

l=1

(
xi

k − x
) (

yi
l − y

)T

and

Cb =
r∑

i=1

r∑

j=1,j �=i

ni∑

k=1

nj∑

l=1

(
xi

k − x
) (

yj
l − y

)T
,

an objective function of DCCA (X, Y ) is defined as

arg max
gx,gy

gT
x Cwgy − gT

x Cbgy (9a)

gT
x XXT gx = 1, gT

y Y Y T gy = 1. (9b)

By simple computation, we can get the relation

Cb = −Cw,

and the problem (9) is simplified to

arg max
gx,gy

gT
x Cwgy, (10a)

subject to

gT
x XXT gx = 1, gT

y Y Y T gy = 1. (10b)

Similarly as in CCA, the problem (10) can be solved by
the eigenvalue problems

Cw(Y Y T )−1CT
wgx = λ2XXT gx, (11)

CT
w (XXT )−1Cwgy = λ2Y Y T gy.

For any d ≤ min(p, q, r), the eigenvectors (gxi, gyi), i =
1, . . . , d, corresponding to the d largest eigenvalues are the
ones that satisfy the objective function (10), and therefore

{(gxi)T X, i = 1, . . . , d}
and

{(gyi)T Y, i = 1, . . . , d}
form the feature sets extracted from X and Y by DCCA.
For high dimensional data where the number of classes, r,
is smaller than the number of features, the rank of Cw is
generally r− 1 and we can get r− 1 nonzero eigenvalues,
indicating d = r − 1.

2.4. Solving coupled eigenvalue problems. The cou-
pled eigenvalue problems in (11) can be solved by Singu-
lar Value Decomposition (SVD) (Sun et al., 2008). Let

H = (XXT )−
1
2 Cw(Y Y T )−

1
2 , (12)

u = (XXT )
1
2 gx, v = (Y Y T )

1
2 gy,

rank(H) = s.
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Then the equations in (11) can be written as

HHT u = λ2u,
HT Hv = λ2v.

Let the SVD of H be

H = UDV T =
s∑

i=1

λiuiv
T
i ,

where ui and vi are the column vectors of orthogonal
matrices U and V , respectively. This means that uis
are the eigenvectors of HHT and vis are the eigenvec-
tors of HT H . Hence gxi = (XXT )−

1
2 ui and gyi =

(Y Y T )−
1
2 vi yield the solution for the problem (11). The

problem (7) in Section 2.2 can be solved in the same way.

3. Analysis of the relation between DCCA
and LDA

For labeled data, when the second feature set correspond-
ing to the original feature set is composed of label in-
formation, performing CCA for those two feature sets is
equal to applying LDA to the original feature set (Sun and
Chen, 2007). Based on the relation between CCA and
LDA, we derive a relation between DCCA and LDA.

3.1. DCCA(X, Y ) equals CCA(X, C) + CCA(Y, C).
Suppose we are given data sets denoted by (8), and the ma-
trix C represents class label information of the data points
such that

C = [ c1, . . . , c1

︸ ︷︷ ︸
n1

, . . . , cr, . . . , cr

︸ ︷︷ ︸
nr

],

where ci ∈ R
r is a column vector whose i-th element

is 1 and the others are zero. By denoting the projec-
tive directions obtained from DCCA(X, Y ), CCA(X, C)
and CCA(Y, C) as (gd

x, gd
y), (gcx

x , gcx
c ) and (gcy

y , gcy
c ),

respectively, the objective functions for DCCA(X, Y ),
CCA(X, C) and CCA(Y, C) are

DCCA (X, Y ) : arg max
gd

x,gd
y

(
gd

x

)T
Cwgd

y ,

s.t.
(
gd

x

)T
XXT gd

x = 1,(
gd

y

)T
Y Y T gd

y = 1,

CCA (X, C) : arg max
gcx

x ,gcx
c

(gcx
x )T

XCT gcx
c ,

s.t. (gcx
x )T

XXT gcx
x = 1,

(gcx
c )T

CCT gcx
c = 1,

CCA (Y, C) : arg max
gcy

y ,gcy
c

(
gcy

y

)T
Y CT gcy

c ,

s.t.
(
gcy

y

)T
Y Y T gcy

y = 1,

(gcy
c )T

CCT gcy
c = 1.

When xi = 1
ni

∑ni

j=1 xi
j and yi = 1

ni

∑ni

j=1 yi
j are

the class means, we let

X̂ =
[
n1

(
x1 − x

)
, . . . , nr (xr − x)

]
,

Ŷ =
[
n1

(
y1 − y

)
, . . . , nr (yr − y)

]
.

Then Cw, XCT , Y CT and CCT can be written as

Cw =
r∑

i=1

ni∑

k=1

ni∑

l=1

(
xi

k − x
) (

yi
l − y

)T

=
r∑

i=1

ni

(
xi − x

)
ni

(
yi − y

)T

= X̂Ŷ T ,

XCT =
r∑

i=1

ni∑

j=1

(
xi

j − x
) (

ci
)T

=
r∑

i=1

ni

(
xi − x

) (
ci

)T

= X̂I = X̂,

Y CT = Ŷ ,

CCT =
r∑

i=1

ni∑

j=1

ci(ci)
T

=
r∑

i=1

nic
i(ci)

T

=

⎡

⎢⎢⎢⎣

n1

n2

. . .
nr

⎤

⎥⎥⎥⎦ .

(13)

As in Section 2.4, we define H as

Hd =
(
XXT

)− 1
2 Cw

(
Y Y T

)− 1
2 ,

ud =
(
XXT

) 1
2 gd

x, (14a)

vd =
(
Y Y T

) 1
2 gd

y ,

Hcx =
(
XXT

)− 1
2 XCT

(
CCT

)− 1
2 ,

ucx =
(
XXT

) 1
2 gcx

x , (14b)

Hcy =
(
Y Y T

)− 1
2 Y CT

(
CCT

)− 1
2 ,

ucy =
(
Y Y T

) 1
2 gcy

y . (14c)

From (13) and (14), we get

HcxCCT HT
cy

=
(
XXT

)− 1
2 XCT

(
CCT

)− 1
2 CCT

· (CCT
)− 1

2 CY T
(
Y Y T

)− 1
2

=
(
XXT

)− 1
2 X̂Ŷ T

(
Y Y T

)− 1
2

=
(
XXT

)− 1
2 Cw

(
Y Y T

)− 1
2

= Hd.
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Since the rank of X̂ and Ŷ is generally r − 1, so is the
rank of Cw. Therefore, Hd, Hcx and Hcy have rank r−1.
Now let SVDs of Hcx, Hcy and Hd be

Hcx = UcxDcxV T
cx,

Hcy = UcyDcyV
T
cy ,

Hd = UdDdV
T
d =

r−1∑

i=1

ud
i λ

d
i (v

d
i )T ,

respectively. Then Hd can be written as

Hd = Hcx

(
CCT

)
HT

cy

= Ucx DcxV T
cxCCT VcyDcy︸ ︷︷ ︸

A

UT
cy

=
r−1∑

i, j=1

ucx
i αiju

cy
j

T
,

where ucx
i and ucy

i denote the i-th column vectors of Ucx

and Ucy, respectively. Here αij is the (i, j)-th element of
the matrix A = DcxV T

cxCCT VcyDcy. Since the column
vectors of Ucy are orthonormal,

Hdu
cy
k =

r−1∑

i=1

ucx
i αik, k = 1, . . . , r − 1.

Hence {ucx
i , i = 1, . . . , r−1} spans the range space

of Hd and is a basis of the range space of Hd (Anton
and Busby, 2003). Since both

{
ud

1, ud
2, . . . , ud

r−1

}
and{

ucx
1 , ucx

2 , . . . , ucx
r−1

}
are bases of the range space of Hd,

there exists an orthogonal matrix Qx satisfying
[
ucx

1 , ucx
2 . . . , ucx

r−1

]
Qx =

[
ud

1, ud
2, . . . , ud

r−1

]
.

From (14) it follows that

gd
xi = (XXT )−

1
2 ud

i , gcx
xi = (XXT )−

1
2 ucx

i ,

and therefore

[gd
x1, · · · , gd

x(r−1)]

= (XXT )−
1
2 [ud

1, ud
2, . . . , ud

r−1]

= (XXT )−
1
2

[
ucx

1 , ucx
2 . . . , ucx

r−1

]
Qx

= [gcx
x1, · · · , gcx

x(r−1)]Qx.

This shows that the projective directions for X in
DCCA(X , Y ) are equivalent to the projective directions
for X in CCA(X , C) with respect to an orthogonal trans-
formation.

Similarly, working with HT
d instead of Hd, we can

get an orthogonal matrix Qy such that
[
ucy

1 , ucy
2 . . . , ucy

r−1

]
Qy =

[
vd
1 , vd

2 , . . . , vd
r−1

]
.

This implies that the projective directions for Y in
DCCA(X , Y ) are equivalent to the projective directions
for Y in CCA(Y , C) with respect to an orthogonal trans-
formation.

3.2. CCA and LDA. The relation between CCA and
LDA can complete the analysis of the relation between
DCCA and LDA. Recall from (7) that gcx

x is a solution
obtained from CCA(X,C) such that

XCT
(
CCT

)−1
CXT gcx

x = λXXT gcx
x . (15)

From (13), we get

XCT
(
CCT

)−1
CXT

= X̂

⎡

⎢⎣

1
n1

. . .
1

nr

⎤

⎥⎦ X̂T

=
r∑

i=1

ni

(
xi − x

)(
xi − x

)T

= Sb,

and St = XXT . Hence (15) becomes

Sbg
cx
x = λStg

cx
x ,

and, since St = Sb + Sw,

Sbg
cx
x = λStg

cx
x ,

Sbg
cx
x = λ (Sb + Sw) gcx

x ,

Sbg
cx
x =

λ

1 − λ
Swgcx

x .

Accordingly, the vector gcx
x from CCA(X,C) becomes the

solution obtained by LDA(X) (Sun and Chen, 2007).

3.3. Equivalence of DCCA(X, Y ) and LDA(X) +
LDA(Y ). Combining the discussions from Sections 3.1
and 3.2, we can conclude that the projective directions ob-
tained from DCCA(X ,Y ) are equal to the projective di-
rections by LDA performed on X and Y with respect to
orthogonal transformations.

For a comparison of computational complexities,
major computational procedures in DCCA(X ,Y ) and
LDA(X) + LDA(Y ) are the computation of inverse ma-
trices and singular value decomposition. The computa-
tion of inverse matrices is needed for both DCCA(X ,Y )
and LDA(X) + LDA(Y ). While DCCA(X ,Y ) requires
only the SVD of H in (12), LDA(X) and LDA(Y ) have to
perform the SVD of S−1

w Sb separately. Hence DCCA is
computationally more efficient than LDA(X) + LDA(Y ).

4. Improved method

The scatterness of data points within a class is calculated
using deviations from the class mean. When class distri-
butions have normal distributions, class means can well
represent data points in a class. But when the shape of a
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Table 1. 2D artificial data.

Feature set feature class 1 (blue o) class 2 (green x) class 3 (red �)

X x1 [0, 0.7] [0, 2] [0.5, 1.2]
x2 [-1, 0] [0.5, 1.5] [-0.5, 0.3]

Y y1 [0.5, 1.5] [0, 0.5] [0.4, 0.8]
y2 [0.5, 1.5] [0, 0.5] [0, 0.2]

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

Fig. 1. Visualization of artificially generated data. The left panel displays the data samples by the features in X and the right one draws
them using the features in Y .

class is complex, this may fail. In this section, we pro-
pose an improved method for feature extraction which is
especially effective for data with non-normal class distri-
butions.

We consider using within-class nearest neighbor-
hood scatter, denoted as Snw, that is a measure of within-
class distribution using nearest neighbors (Fukunaga and
Mantock, 1983). Snw is defined as

Snw =
r∑

i=1

ni∑

j=1

(
xi

j − zxi
j

) (
xi

j − zxi
j

)T

, (16)

where z1
xi

j
, . . . , zk

xi
j

is the k-nearest neighbors of xi
j

among the data points in the same class as xi
j and

zxi
j

=
1
k

k∑

l=1

zl
xi

j
.

Within-class nearest neighborhood scatters in the
projection space of X and Y become gT

x SX
nwgx,

gT
y SY

nwgy, when SX
nw and SY

nw are the within-class near-
est neighborhood scatters in X and Y , respectively. These
scatters should become smaller for the improvement of
classification performance. Hence the objective function
of DCCA can be modified as the problem of maximizing

f (gx, gy, λ)

= gT
x Cwgy − λ

2
(
gT

x SX
nwgx + gT

y SY
nwgy

)
.

By taking the derivatives of f (gx, gy, λ) with re-
spect to gx and gy and setting them as zeros, we obtain

∂f

∂gx
= Cwgy − λSX

nwgx = 0, (17)

∂f

∂gy
= CT

wgx − λSY
nwgy = 0. (18)

From (18), we get

gy =
1
λ

(
SY

nw

)−1
CT

wgx. (19)

Using gy with (19) in (17), we obtain

Cw

(
SY

nw

)−1
CT

wgx = λ2SX
nwgx.

By applying the same procedure for gy , we have
eigenvalue equations such that

Cw

(
SY

nw

)−1
CT

wgx = λ2SX
nwgx,

CT
w

(
SX

nw

)−1
Cwgy = λ2SY

nwgy.

Solving the above equations, r−1 pairs of eigenvec-
tors (gx, gy) corresponding to the largest eigenvalues give
the solution for the proposed method. By minimizing the
within-class scatter using nearest neighbors, the proposed
method can make more powerful performance in classifi-
cation problems with complex class structures.
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5. Experimental results

5.1. DCCA(X, Y ) and LDA(X) + LDA(Y ). In or-
der to illustrate the relationship between DCCA(X ,Y ) and
LDA(X) + LDA(Y ), we generated artificial data. They
are composed of three classes, each of which has 100 data
samples. The data are described by two feature sets X
and Y which have two features, respectively. For each
feature, data samples were uniformly distributed in the
ranges described in Table 1. The left part of Fig. 1 dis-
plays the data samples by the feature set X and the right
one draws them using the features in Y . We performed
DCCA(X ,Y ) and LDA(X) + LDA(Y ) for the data in Ta-
ble 1. Since the number of classes is three, {gd

x1, g
d
x2} and

{gd
y1, g

d
y2} from DCCA(X ,Y ), {gx

x1, g
x
x2} from LDA(X),

and {gy
y1, g

y
y2} from LDA(Y ) can be computed. As we

proved in Section 3, we can show the equivalence relation-
ship between {gd

x1, g
d
x2} and {gx

x1, g
x
x2} for an orthogonal

matrix Q1 such that

[
gd

x1 gd
x2

]
= Q1

[
gx

x1 gx
x2

]
,

[ −0.0369 −0.1457
−0.0685 0.0709

]

=
[

0.9858 0.1678
−0.1678 0.9858

] [ −0.0119 −0.1499
0.0794 0.0585

]
.

Similarly, an orthogonal matrix Q2 completes the relation
between {gd

y1, g
d
y2} and {gy

y1, g
y
y2} such that

[
gd

y1 gd
y2

]
= Q2

[
gy

y1 gy
y2

]
,

[
0.1375 −0.1472
0.0290 0.1686

]
=

[ −0.8827 −0.4699
−0.4699 0.8827

]

·
[ −0.0523 −0.1946

−0.1048 0.1352

]
.
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Fig. 2. Sensitivity for the parameter k. The value of k is varied
from 1 to 99 on the x-axis and the average prediction
accuracies by new DCCA are shown on the y-axis.

5.2. Performance comparison. Using both artificial
and real data, we compared the performances of the pro-
posed method denoted as new DCCA with CCA, DCCA
and PLS (Wegelin, 2000; Garthwaite, 1994), which is a
feature fusion method by partial least squares. The test is
proceeded through in three steps as follows:

1. Compute projection vectors {gd
x1, . . . , g

d
x(r−1)}

and {gd
y1, . . . , g

d
y(r−1)} using the training set by

DCCA(X , Y ), where r is the number of classes.

2. The training data are projected onto each projection
vectors, and by concatenating the projected vectors
as

{[gd
x1, . . . , g

d
x(r−1)]

T X, [gd
y1, . . . , g

d
y(r−1)]

T Y }
2(r − 1)-dimensional vectors are obtained. For test
data, they are projected in the same way.

3. The test data are classified in the projected space. We
applied a 1-nearest neighbor classifier and a linear
support vector machine with the regularization pa-
rameter C = 1.

For CCA, PLS, and new DCCA, similar steps were fol-
lowed.

The first test was performed using a multiple fea-
ture data set from the UCI machine learning repository
(http://mlearn.ics.uci.edu/MLRepository
.html). The dataset has handwritten digit data that con-
sist of 6 feature sets. It has 10 classes and each class
contains 200 data samples. Detailed information of the
6 feature sets is given in Table 2. For the experiments,
any 2 feature sets are paired to construct X and Y , and
therefore there are 15 pairs of different combinations.
For each combination, 100 data samples per class are
randomly selected for training and the remaining are used
for testing. The splitting to training and testing sets is
repeated 10 times and the average prediction accuracies
over 10 times running are reported in Table 3. We set
the number of neighbors k as 10 for the within-class
nearest neighbor scatter in new DCCA. However, Fig. 2
shows that the number of neighbors did not make great
impacts on classification performance. In Fig. 2, when k
was ranged from 10 to 50, average prediction accuracies
by new DCCA did not differ greatly. As shown in Table
3, the proposed method is superior to other methods
compared in most cases, while DCCA utilizing class label
information gives higher prediction accuracies than the
unsupervised feature fusion method CCA.

The data for the second experiment were constructed
by using several data sets from UCI, which are summa-
rized in Table 4. The goal of the Isolet and Letimg data
sets is to recognize alphabet letters by either speech or let-
ter image, and the other data sets are for the recognition
of handwritten digits. In order to construct X and Y , we

http://mlearn.ics.uci.edu/MLRepository
.html
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Table 2. Description of the multiple feature data set.
feature name feature # description

fac 216 profile correlations
fou 76 Fourier coefficients of character shapes
kar 64 Karhunen–Love coefficients
mor 6 morphological features
pix 240 pixel averages in 2 x 3 windows
zer 47 Zernike moments

Table 3. Comparison of prediction accuracies (%) for the multiple feature data set.
by using the 1-NN classifier by using SVM

X Y CCA PLS DCCA new DCCA CCA PLS DCCA new DCCA

fac fou 81.3 93.7 98.2 98.6 93.0 96.4 97.1 98.4
fac kar 93.5 93.6 97.7 97.9 95.9 96.4 97.1 97.7
fac mor 75.9 88.0 93.8 97.9 80.8 93.0 91.4 97.6
fac pix 83.1 93.7 97.4 97.8 97.1 96.7 96.8 97.4
fac zer 85.9 95.4 97.7 97.7 88.9 96.9 97.6 97.6
fou kar 90.2 96.9 97.2 98.3 96.4 95.9 95.0 97.3
fou mor 75.9 43.4 81.6 84.3 79.2 74.1 80.4 83.6
fou pix 73.8 97.4 96.7 98.4 89.3 96.7 94.8 97.3
fou zer 80.0 80.9 84.9 86.2 87.2 82.2 84.1 86.6
kar mor 81.9 62.5 92.6 97.2 84.5 94.6 89.1 96.6
kar pix 91.4 97.4 94.2 96.6 94.5 96.8 93.5 95.1
kar zer 91.6 82.6 96.0 96.4 94.7 92.5 95.5 95.9
mor pix 75.0 71.2 90.9 97.2 79.7 94.5 87.9 96.8
mor zer 73.7 71.8 81.1 81.7 79.1 79.0 81.1 82.7
pix zer 82.3 83.6 95.3 96.7 87.2 93.4 95.0 95.9

average 82.4 83.5 93.0 94.9 88.5 91.9 91.7 94.4

Table 4. Description of letters or digits recognition data sets from UCI.
name feature # description

Isolet 617 isolated letter speech recognition
Letimg 16 letter image recognition
Pendigit 16 pen-based recognition of the handwritten digits data set
Optdigit 64 optical recognition of the handwritten digits data set
Semdigit 256 Semeion handwritten digit data set

Table 5. Comparison of prediction accuracies (%) for the pairs constructed from the data in Table 4.
by using the 1-NN classifier by using SVM

X Y CCA PLS DCCA new DCCA CCA PLS DCCA new DCCA

Isolet Letimg 74.2 96.2 95.7 98.1 80.6 97.5 90.5 96.0
Pendigit Optdigit 97.1 97.1 98.4 98.6 97.9 98.0 97.2 97.8
Pendigit Semdigit 91.4 95.6 96.3 97.3 94.0 94.3 94.3 95.9
Optdigit Semdigit 80.9 96.6 97.2 98.5 95.6 96.6 96.6 98.7

paired any 2 among the data sets having the same goals,
making combinations of 4 pairs as in Table 5. For a pair
of Isolet and Letimg, we selected 100 data samples for
training and 100 data samples for testing randomly from
each alphabet class of two data sets. The test was repeated
10 times as in the previous experiment. The same process
was performed for the other pairs of data sets. The accura-
cies are shown in Table 5. It also shows that the proposed

method improved the classification accuracy of DCCA.

The last experiment is to test the performance of the
proposed method for the data with complex class struc-
tures. The data were generated artificially so as to show
the difference between DCCA and the new DCCA. The
two top row parts of Fig. 3 represent two feature sets
X and Y , respectively, where some classes have multi-
ple modes. The projective directions obtained by DCCA
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Fig. 3. Comparison of the proposed method with DCCA for the data with complex class structures.

were drawn by black dash-dot lines and the projective di-
rections by new DCCA were drawn by green solid lines.
The two bottom row parts of the figure show data points in
the reduced dimensional space by DCCA and new DCCA.
New DCCA was able to find discriminant directions, since
it tried to minimize within-class scatter using local neigh-
borhoods.

6. Conclusion

In this paper, we analyzed the relation between DCCA and
LDA, showing that DCCA for two feature sets X and Y
can be obtained by applying LDA to X and Y separately
up to an orthonormal transformation. We also proposed a
new feature extraction method for data sets with nonnor-
mal class distributions. The experimental results demon-
strate that the classification performance can be improved
by the proposed method.
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