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This paper focuses on the model order reduction problem of second-order form models. The aim is to provide a reduction
procedure which guarantees the preservation of the physical structural conditions of second-order form models. To solve
this problem, a new approach has been developed to transform a second-order form model from a state-space realization
which ensures the preservation of the structural conditions. This new approach is designed for controllable single-input
state-space realizations with real matrices and has been applied to reduce a single-input second-order form model by
balanced truncation and modal truncation.
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Notation

XT is the transpose of the matrix X .
X̄ and |X | denote respectively the conjugate and the mod-
ulus of the complex matrix X.
X > 0 (resp. X ≥ 0) is a positive definite (resp. semi-
definite) matrix.
X = diag(x1, x2, . . . , xn) is a diagonal matrix with en-
tries x1, x2, . . . , xn.
λi(X) is the i-th eigenvalues of the matrix X .
Re(z) is the real part of the complex number z.
O and I are respectively the zero and the identity matrix
with adequate dimensions.

1. Introduction

The main purpose of Model Order Reduction (MOR) is
to reduce the complexity of a model while preserving its
behaviour as much as possible, usually according to an
approximation error (Schilders, 2008). Depending on the
research domain, MOR seeks different goals. In control
theory, the goals of MOR are to save computational simu-
lation costs and/or obtain simplified control laws. There-
fore, only the behaviour of the system is preserved, and,
generally, the specific structure defined by the physical
system is lost. In other research domains such as elec-
tric circuit design, mechanical system design, fluid dy-

namics, thermodynamical processes or structural analy-
sis, the goal of MOR is to simplify the model description.
Therefore, the structure of the system must be preserved.
In these domains, a particular class of structured models
describes systems with a structure defined by the physical
laws: Second-Order Form Models (SOFMs). Parameters
of these models are generalized mass, damping and stiff-
ness which can be linked to the parameters of mechan-
ical, electrical, fluid or thermodynamical systems (Dorf
and Bishop, 2008, Chapter 2). If a system is described by
several differential equations, SOFMs are represented in a
matrix form. In this case, generalized mass, damping and
stiffness matrices must satisfy the structural conditions.

In control theory, the reduction procedures are gener-
ally based on the well-known moment matching, Krylov’s
subspace, the singular value or the eigenvalue (see, e.g.,
Antoulas, 2005; Ersal et al., 2007; Fortuna et al., 1992; Li
and White, 2001). These methods are efficient in terms of
the approximation error of the reduced model. The main
drawback is the difficulty to find a physical system corre-
sponding to the reduced model.

Contrary to the control theory approach, the re-
duction procedures used in the structural analysis ap-
proaches ensure the physical feasibility of the reduced
model. For instance, the Guyan reduction, dynamic re-
duction or improved reduced systems are methods which
preserve the second-order form and the structural condi-
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tions (Koutsovasilis and Beitelschmidt, 2008). However,
these methods are generally less efficient in terms of the
approximation error of the reduced model.

For two decades, studies in control theory have
adapted MOR procedures for structured systems and, in
particular, for SOFMs. The main goal is to reduce the
model with an efficient approximation error while pre-
serving the second-order form. Some use structure preser-
vation techniques to reduce a model (Bai et al., 2008; Li
and Bai, 2006), others deal directly with SOFMs (Freund,
2005; Salimbahrami, 2005). An interesting technique of
MOR based on singular values is the well-known balanced
truncation. This method ensures the preservation of stabil-
ity, controllability and observability properties in the re-
duced model. Moreover, upper and lower bounds of the
approximation error are given. A first adaptation of bal-
anced truncation for the SOFM was proposed by Meyer
and Sirnivasan (1996). Further, Chahlaoui et al. (2006)
improved the method with the SOBT (Second-Order Bal-
anced Truncation) algorithm.

Between classical balanced truncation and SOBT,
differences remain in Gramians. SOBT methods are based
on the definition of two pairs of second-order Grami-
ans, called position and velocity Gramians. Stykel (2006)
as well as Reis and Stykel (2007) proposed methods to
balance models according to one or both of the Grami-
ans pairs, namely, SOBTp and SOBTpv for position and
position-velocity, respectively. If the adaptation differs,
according to the authors, three remarks can be made: First,
the approximation error of the reduced model is gener-
ally greater than the approximation error of the model re-
duced through classic balanced truncation. Secondly, the
bound of the approximation error cannot be computed yet.
Thirdly, the structural conditions are not necessarily pre-
served.

The aim of this paper is to propose a new method to
reduce an SOFM. This method is designed for controllable
single-input models with real parameters and helps to pre-
serve the structural conditions as well as the properties
and the approximation error of the balanced truncation.

Section 2 present SOFMs, structural conditions and
reduction framework. Section 3 describes a new method
to transform a single-input model into an SOFM. Sec-
tion 4 presents balanced truncation and modal truncation
for SOFM reduction with the preservation of the struc-
tural conditions. Based on two examples of the SLICOT
Benchmark1, Section 5 gives numerical results preceding
the conclusion.

2. Problem presentation

Several mathematical formulations have been developed
to model mechanical systems. A common representation

1Available at www.icm.tu-bs.de/NICONET/index.html.

is the state-space one due to its simplicity of manipulation.
But, in the reduction procedure, the physical interpretation
of the model is generally lost. To keep this physical inter-
pretation after the reduction step, the SOFM formulation
of Linear Time Invariant (LTI) systems is considered. The
general formulation of SOFM is given by

Σsofm :
{ Mq̈ + Cq̇ + Kq = Fu,

y = G1q + G2q̇ + G3q̈,
(1)

with

q ∈ R
nq×1, M, C, K ∈ R

nq×nq ,

F ∈ R
nq×m, G1, G2, G3 ∈ R

p×nq ,

where M, C and K are respectively the mass, damp-
ing and stiffness matrices of the system, q is the vector
of the coordinates with dimension nq , m is the number
of inputs and p the number of outputs. To ensure the
physical interpretation and the stability of the SOFM, the
structural conditions must be respected (Meyer and Sirni-
vasan, 1996):⎧⎪⎨

⎪⎩
M = MT > 0,

K = KT ≥ 0,

C = C1 + C2 with C1 = CT
1 ≥ 0, C2 = −CT

2 .

(2)

The structural condition for the mass matrix comes
from the system kinematic energy, given by Ek =
1
2 q̇TMq̇. It can be shown that M is symmetric and pos-
itive definite (all coordinates must have inertia). For the
same reason, the study of the potential energy given by
Ep = 1

2 q̇TKq̇ implies that K is symmetric and positive
semi-definite (possibility of a “dampingless” coordinate).
Gyroscopic forces fC2 = −C2q arise when rotors are
present or when q is defined in a rotative frame. Dissi-
pative forces fC1 = −C1q never add energy to the sys-
tem, and therefore C1 is positive semi-definite (Hughes
and Skelton, 1980). Finally, the symmetry of matrices can
be obtained by action-reaction principle between coordi-
nates.

In this study, G3 and C2 are assumed to be zero and
the system is single-input, i.e., F is an nq-dimensional
vector. Since M is positive definite, M is invertible.

The aim of the reduction is to find a new SOFM:

Σ̂sofm :
{ M̂¨̂q + Ĉ ˙̂q + K̂q̂ = F̂ u,

ŷ = Ĝ1q̂ + Ĝ2
˙̂q,

(3)

with

q̂ ∈ R
n̂q×1, M̂, Ĉ, K̂ ∈ R

n̂q×n̂q ,

F̂ ∈ R
n̂q×1, Ĝ1, Ĝ2 ∈ R

p×n̂q ,

where we have n̂q < nq, M̂ = M̂T > 0, Ĉ = ĈT ≥ 0,
K̂ = K̂T ≥ 0, and such that the following properties are
satisfied (Gugercin, 2004):
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1. The approximation error ||y − ŷ|| is small, and there
exists a global error bound.

2. System properties (stability, passivity, structure, etc.)
are preserved.

3. The procedure is computationally efficient.

In this paper, the approximation error is evaluated us-
ing the H∞-norm of the relative error model.

The system (1) can be written in the following state-
space realization Σss = [ A B

C O ]:

Σss :

{
ẋ = Ax + Bu,

y = Cx,
(4)

with

A =
(

O I

−M−1K −M−1C
)

∈ R
2nq×2nq ,

B =
(

O

M−1F

)
∈ R

2nq×1,

C =
(

G1 G2

) ∈ R
p×2nq .

The reduced SOFM is also rewritten in the state-space re-

alization Σ̂ss =
[

Â B̂
Ĉ O

]
such that

Σ̂ss :

{
˙̂x = Âx̂ + B̂u,

ŷ = Ĉx̂,
(5)

with

Â ∈ R
2n̂q×2n̂q , B̂ ∈ R

2n̂q×1, Ĉ ∈ R
p×2n̂q .

To have the same approximation error as for the first-
order model reduction, the reduction procedure is based
on the state-space realization (4) of the SOFM. From the
reduced state-space realization (5), the proposed solution
consists in deducing an SOFM which preserves the struc-
tural conditions. The different steps of the process are
summarized by the following diagram:

Σsofm
Equation (4)−−−−−−→ Σss

Section 4−−−−−→ Σ̂ss
Section 3−−−−−→ Σ̂sofm.

3. Second-order form reconstruction from a
single-input state-space realization

The transformation of an SOFM into an state-space re-
alization can be easily performed (see Eqn. (4)) but the
inverse transformation requires more attention. Sev-
eral methods have been presented (Friswell, 1999; Houl-
ston, 2006; Salimbahrami, 2005), but none of these pre-
serve the structural conditions. To the authors’ knowl-
edge, the first method to transform a state-space realiza-
tion into a second-order form model was proposed by
Meyer and Sirnivasan (1996). In this paper, it is shown

that for all minimal single-input state-space realizations
there exists a second-order form realization. If A has dis-
tinct eigenvalues, the second-order form realization may
be constructed such that both C and K are diagonals. Ac-
cording to the authors, the proposed method is not numer-
ically attractive.

In this section, a new approach to find an SOFM from
some single-input state-space realization is proposed. The
approach ensures the preservation of the structural condi-
tions if the state-space is stable and controllable. As in the
work of Meyer and Sirnivasan (1996), the diagonalization
of A must be achieved, and therefore A is assumed to be
diagonalizable, which is the case for most physical sys-
tems. However, there exist particular systems for which
diagonalization cannot be performed, e.g., when critical
damping occurs (Tisseur and Meerbergen, 2001; Gohberg
et al., 1982). A sufficient condition to ensure A diagonal-
ization is that A must have 2nq distinct eingenvalues.

The proposed method is presented in four steps:

1. diagonalization of the state matrix A,

2. computation of the second-order form,

3. guarantee of the realness of the matrices,

4. extraction of the SOFM from the new state-space re-
alization.

3.1. First step: Diagonalization of the state matrix A.
The first step expresses a state-space realization in its
modal basis. Therefore a state-space realization

[
A B
C O

]
becomes a new state-space

[
Ad Bd

Cd O

]
where the state ma-

trix Ad is diagonal (assuming that A has 2nq distinct ein-
genvalues).

Consider the eigenvalue decomposition of A ∈
R

2nq×2nq . Due to the realness of A, the eigenvalues are
real or come in nc complex conjugate pairs. We can order
them such that

Φ−1AΦ = Ad =
(

Λ1 O

O Λ2

)
, (6)

Λ1 =
(

Λc O

O Λr1

)
∈ C

nq×nq ,

Λ2 =
(

Λ̄c O

O Λr2

)
∈ C

nq×nq ,

where

• Λc ∈ C
nc×nc and Λ̄c ∈ C

nc×nc are diagonal matri-
ces of the complex eigenvalues,

• Λr1 ∈ R
(nq−nc)×(nq−nc) and Λr2 ∈

R
(nq−nc)×(nq−nc) are two diagonal matrices of

the real eigenvalues.
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With block partition of the matrices Φ et Φ−1 such
that

Φ =
(

Φ1 Φ2

)
, Φ−1 =

(
Φi1
Φi2

)
, (7)

with Φ1, Φ2 ∈ C
2nq×nq and Φi1, Φi2 ∈ C

nq×2nq , matri-
ces Bd and Cd are obtained by

Bd =
(

Φi1
Φi2

)
B, Cd = C

(
Φ1 Φ2

)
.

3.2. Second step: Computation of the second-order
form. Since Eqn. (4) is a state-space realization of an
SOFM, the transformation must establish the appropriate
location of the zero and the identity matrix into Ad and
Bd. A first solution was proposed by Friswell (1999) for
an SOFM without velocity and acceleration observation
matrices (G2 = G3 = O). Based on the work of Prells
and Lancaster (2005) about Structural Preserving Equiv-
alence (SPE) transformation for vibrating systems, Houl-
ston (2006) proposed the following transformation matrix:

T =
(

X
XAd

)−1

, (8)

with X ∈ R
nq×n being a full rank matrix. Noting that

XAd

(
X

XAd

)−1

=
(
O I

)
, (9)

T transforms the state matrix Ad into a state-space real-
ization satisfying Eqn. (4):

AT = T−1AdT =
(

O I

AT1 AT2

)
,

BT = T−1Bd =
(

BT1

BT2

)
, (10)

CT = CdT,

The condition that BT1 = O helps to determine the
matrix X . According to (4), BT1 must be equal to zero.
Therefore, considering the block partition of T−1, X must
satisfy

XBd = O. (11)

Friswell (1999), Meyer and Sirnivasan (1996) as well
as Salimbahrami (2005) seek to find X respecting (11)
directly. Here, a block partition of X into two matrices
X1 and X2 such that X =

(
X−1

1 X−1
2

)
gives

(
X−1

1 X−1
2

) (
Φi1B
Φi2B

)
= O,

X−1
1 Φi1B = −X−1

2 Φi2B. (12)

In the SIMO case, Φi1B and Φi2B are vectors. Conse-
quently, the solution to Eqn. (12) is not unique. Among
all the solutions, if the model is controllable, setting

X1 = −diag
(

bd1, bd2, . . . , bdnq

)
,

X2 = diag
(

bdnq+1, bdnq+2, . . . , bdn

)
, (13)

where bdi is the i-th component of vector Bd, allows find-
ing a solution where X1 and X2 are directly constructed
from Bd without computation.

From (13), it is clear that
{

X−1
1 Φi1B = −1nq×1,

X−1
2 Φi2B = 1nq×1,

(14)

where 1nq×1 is an nq column vector with all entries equal
to 1.

To show the existence of X−1
1 and X−1

2 , examine

the state-space realization
[

Ad Bd

Cd O

]
. In a modal basis, the

state-space realization represents a set of several indepen-
dent differential equations. In the SIMO case, since Ad

is a diagonal matrix of a controllable model, all differen-
tial equations are controllable. This implies that the vector
Φ−1B has non-zero entries.

Finally, as X1, X2, Λ1 and Λ2 are diagonal,

T−1 =
(

X−1
1 X−1

2

X−1
1 Λ1 X−1

2 Λ2

)
,

T =
(

X1Λ2 −X1

−X2Λ1 X2

)

·
(

(Λ2 − Λ1)−1 O

O (Λ2 − Λ1)−1

)
.

Therefore, T transforms the state-space realization[
Ad Bd

Cd O

]
into a new state-space realization

[
AT BT

CT O

]
:

• Matrix AT ,

AT = T−1AdT =
(

O I

−Λ1Λ2 Λ2 + Λ1

)
(15)

�
(

O I

AT1 AT2

)
,

where AT1 and AT2 are diagonal,

AT1 = −Λ1Λ2 = −
( |Λc|2 O

O Λr1Λr2

)
,

AT2 = Λ1 + Λ2 =
(

Λc + Λ̄c O

O Λr1 + Λr2

)
.

Moreover, AT1 and AT2 have negative entries due to the
stability condition.



Extracting second-order structures from single-input state-space models. . . 513

• Matrix BT ,

BT = T−1Bd =
(

X−1
1 Φi1 + X−1

2 Φi2
X−1

1 Λ1Φi1 + X−1
2 Λ2Φi2

)
B.

(16)

Since X1 and X2 are defined such that
X−1

1 Φi1B = −1nq×1 and X−1
2 Φi2B = 1nq×1, we

get

BT =
(

Λ2 − Λ1 O

O Λ2 − Λ1

) (
O

1nq×1

)
. (17)

Clearly, the entries of BT are real or purely imaginary
numbers.

• Matrix CT ,

CT = C
(

Φ1X1Λ2 − Φ2X2Λ1 X1Λ2 − X2Λ1

)
(

(Λ2 − Λ1)−1 O

O (Λ2 − Λ1)−1

)
. (18)

Finally, AT , BT and CT have the required structure,
but their realness is not yet guaranteed. This is the aim of
the next section.

3.3. Third step: Guarantee of the realness of the ma-
trices. By examining Eqn. (17), it can be noticed that
complex entries of BT are provided by (Λ1 −Λ2) (due to
the structure of Λ1 and Λ2 from Eqn. (6)).

To have real entries in BT , the transformation matrix
U−1 applied to BT must eliminate (Λ1 − Λ2):

U =
(

Λ2 − Λ1 O

O Λ2 − Λ1

)
.

The transformation U transforms the state-space realiza-

tion
[

AT BT

CT O

]
into a new state-space realization

[
Af Bf

Cf O

]
:

• Matrix Af ,

Af = U−1AT U =
(

O I

−Λ2Λ1 Λ2 + Λ1

)
. (19)

Since Λ2 and Λ1 are diagonal, AT remains un-
changed.

• Matrix Bf ,

Bf = U−1BT =
(

O

1nq×1

)
. (20)

• Matrix Cf ,

Cf = CT U

= C
(

Φ1X1Λ2 − Φ2X2Λ1 −Φ1X1 + Φ2X2

)
.

(21)

In order to prove the realness of Cf , the block par-
titioning of Φ1, Φ2, Φi1 and Φi2 into real and complex
parts yields

Φ1 =
(

Φc Φr1

)
, Φ1 =

(
Φ̄c Φr2

)
,

where Φc, Φ̄c ∈ C
nq×nc , and Φr1, Φr2 ∈ R

nq×(nq−nc).

Φi1 =
(

Φic
Φir1

)
, Φi2 =

(
Φ̄ic
Φir2

)
,

where Φic, Φ̄ic ∈ C
nc×nq , and Φir1, Φir2 ∈

R
(nq−nc)×nq .

Index c refers to the complex part and index r refers
to the real part. Since the entries of the diagonal matrices
X1 and X2 are respectively the entries of the two follow-
ing column vectors −Φi1B and Φi2B, the first nc rows of
−Φ1X1 are complex conjugates of first nc rows of Φ2X2

and the last nq−nc rows of −Φ1X1 and of Φ2X2 are real.
Hence, −Φ1X1 + Φ2X2 is a matrix with real entries.

Complex and real block partitioning of Λ1 and Λ2

yields

Λ1 =
(

Λc O

O Λr1

)
∈ R

nq×nq ,

Λ2 =
(

Λ̄c O

O Λr2

)
∈ R

nq×nq . (22)

Therefore the first nc rows of Φ1X1Λ2 are the complex
conjugates of the first nc rows of −Φ2X2Λ1 and the last
nq −nc rows of Φ1X1Λ2 and −Φ2X2Λ1 are real. Hence,
Φ1X1Λ2 − Φ2X2Λ1 is a matrix with real entries. Thus
Cf is a matrix with real entries.

3.4. Fourth step: Extraction of the second-order form
matrices. This last step consists in the extraction of M,
C, K, F , G1 and G2 of the second-order form model from

the state-space realization
[

Af Bf

Cf O

]
.

With no loss of generality, assuming M = I to nor-
malize the SOFM gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = I,

C = −Λ1 − Λ2,

K = Λ1Λ2,

F = 1nq×1,

G1 = C (Φ1X1Λ2 − Φ2X2Λ1) ,

G2 = C (−Φ1X1 + Φ2X2) .

(23)

For a single-input, stable, controllable state-space re-
alization of an even dimension, with real matrices and A
diagonalizable, an SOFM can be determined. The stabil-
ity condition ensures that M, C and K will be positive
definite. The realness of A ensures that M, C and K will
be real. Moreover, M, C and K are diagonal. Conse-
quently, M = MT , C = CT and K = KT . Therefore, the
deduced SOFM meets the structural conditions.
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The symmetry of M, C and K is ensured with no
other condition but the even dimension of the original ma-
trix A. Therefore, all single-input state-space realizations
of even dimensions can be formulated in a second-order
form with diagonal matrices. The matrices will have real
coefficients if A is real, and will be positive definite if the
original realization is stable.

The whole process is summarized in Algorithm 1.
Note that the presented algorithm must solve an eigen-
value problem. Other steps are the ordering and multipli-
cation of matrices. Therefore, this algorithm fails only if
no-distinct eigenvalues appear.

Algorithm 1 State-space Realization to a Second-Order
Model (SS2SOFM).
Input: A, B, C
Output: M, C,K, F, G1, G2

if B /∈ R
2nq×1 or A /∈ R

2nq×2nq or Re(λi(A)) ≥ 0
then

return
else

solve ΦA = ΛΦ
if λi(A) �= λj(A) ∀ i �= j then

construct Λ1 = diag(Λc, Λr1),
Λ2 = diag(Λ̄c, Λr2) (Eqn. (6))
and associated matrices Φ1, Φ2 (Eqn. (7))

compute Bd =
(

Φ1 Φ2

)
B

construct X1 = diag(bd1, . . . , bdnq) and
X2 = diag(bdnq+1, . . . , bdn) (Eqn. (13))

set M = I

set C = Λ1Λ2

set K = −(Λ1 + Λ2)
set F = 1nq×1

set G1 = C (Φ1X1Λ2 − Φ2X2Λ1)
set G2 = C (Φ2Λ1 − Φ1Λ2)

else
return

end if
end if

With Eqn. (4), an SOFM can be computed in a state-
space realization. Thanks to Algorithm 1, the reverse
transformation is available. Therefore, the SOFM can be
reduced by reducing the associated state-space represen-
tation. The next section applies this method to reduce a
model by modal truncation and balanced truncation.

4. Reduction of a single-input SOFM

A state-space realization can be reduced using two projec-
tion matrices P ∈ R

2n̂q×2nq and Q ∈ R
2nq×2n̂q to trans-

form the original model into a state-space realization of a
lower dimension. The projection is applied to the system

as follows:

Â = PAQ, B̂ = PB, Ĉ = CQ. (24)

Among all the methods to define projection matrices,
two methods are under consideration—balanced trunca-
tion and modal truncation.

4.1. Balanced truncation with the preservation of
the structural conditions. Balanced truncation neglects
the least controllable and observable states of the system
based on the reachability Gramian Wr and the observabil-
ity Gramian Wo. The Gramians satisfy the following two
Lyapunov equations:

AWr + WrA
T + BBT = 0,

AT Wo + WoA + CT C = 0.
(25)

In order to truncate the least controllable and least observ-
able states, balanced truncation computes the transforma-
tion matrices P and Q, which balances the system, i.e.,
computes a model where the Gramians are equal and di-
agonal (Wr = Wo = diag(σi), where σi are the Hankel
singular values).

To compute P and Q, let first the Cholesky decom-
position be Wr = RT

c Rc and Wo = RT
o Ro. Then the sin-

gular value decomposition of RoR
T
r = UΣV T computes

the Hankel singular values Σ = diag(σi). Ordering U and
V such that σi occur in decreasing order allows the trun-
cation of the system according to the negligible Hankel
singular values, i.e., the truncation of the least controllable
and observable states using the following two matrices:

{
Q denotes the first 2n̂q columns of RT

r V Σ− 1
2 ,

P denotes the first 2n̂q rows of Σ− 1
2 UT Ro.

(26)

For more information about balanced systems and
balanced truncation, see the work of Moore (1981) and
Glover (1984).

If the original model is real, stable and controllable,
balanced truncation ensures that the reduced state-space
realization will have the same properties. Therefore, Al-
gorithm 2 helps to balance and truncate an SOFM with the
efficiency equivalent to classic state-space balanced trun-
cation and with the preservation of the structural condi-
tions.

4.2. Modal truncation. Modal truncation consists in
analyzing and selecting dominant modes of the original
system. Hence, the projection matrices P and Q are de-
fined by the eigenvalues decomposition Φ−1AΦ:

{
Q denotes the first 2n̂q columns of Φ,

P denotes the first 2n̂q rows of Φ−1.
(27)
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Algorithm 2 Balanced Truncation with the Preservation
of the Structural Conditions (BTPSC).
Input: M, C,K, F, G1, G2

Output: M̂, Ĉ, K̂, F̂ , Ĝ1, Ĝ2

compute A, B and C from Eqn. (4)
compute Wr and Wo from the Lyapunov Eqn. (25)
compute P and Q from Eqn. (26)
compute Â, B̂ and Ĉ from Eqn. (24)
compute (M̂, Ĉ, K̂, F̂ , Ĝ1, Ĝ2) = SS2SOFM(Â, B̂, Ĉ)
from Algorithm 1

For the modal truncation of a state-space realization, a rule
for the truncation is currently to eliminate the eigenval-
ues which have the fewest real parts. For a second-order
modal truncation, the same rule applies but, in addition,
to preserve the even dimension, the eigenvalues are trun-
cated by pair. If the truncated eigenvalue is complex, the
conjugate eigenvalue must also be truncated. If the trun-
cated eigenvalue is real, the next eigenvalue which has the
fewest real parts must be also truncated.

According to these rules, Algorithm 3 computes a
second-order modal truncation with the preservation of
the structural conditions.

Algorithm 3 Modal Truncation with the Preservation of
the Structural Conditions (MTPSC).
Input: M, C,K, F, G1, G2

Output: M̂, Ĉ, K̂, F̂ , Ĝ1, Ĝ2

compute A, B and C matrix from Eqn. (4)
solve ΦA = ΛΦ
for j = 1 to nq do

select λi the eigenvalue with the greatest real part
compute Λ(2j − 1, 2j − 1) = λi

if λi is complex then
Λ(2j, 2j) = λ̄i

else
select λi real with the greatest real part
compute Λ(2j, 2j) = λi

end if
end for
compute Φ according to Λ
compute P and Q according to (27)
compute Â, B̂ and Ĉ from Eqn. (24)
compute (M̂, Ĉ, K̂, F̂ , Ĝ1, Ĝ2) = SS2SOFM(Â, B̂, Ĉ)
from Algorithm 1

5. Numerical examples

To show the effectiveness of the proposed approach, con-
sider two numerical examples of a single-input SOFM
reduction using SLICOT benchmark models (Chahlaoui
et al., 2002):

• The building model is a model of an eight-floor build-
ing where the generalized coordinates are the dis-
placement in the x direction, the y direction, and one
rotation of each floor.

• The clamped beam model is a model of a clamped
beam where the input is a force applied to the free
end and the output is the resulting displacement.

The proposed methods are compared with the Guyan
reduction (Guyan, 1964) and the Improved Reduction
System (IRS) method (Friswell et al., 1995) on the one
hand, and with three Second-Order Balanced Truncation
(SOBT) methods on the other.

In order to compare these methods, an approximation
error is computed. The criterion used is the relative error
between the original model and the reduced model given
by

||Σsofm − Σ̂sofm||H∞

||Σsofm||H∞
, (28)

where ||Σsofm − Σ̂sofm||H∞ is the H∞-norm of the error
model defined by the difference between the truncated and
the original model and ||Σsofm||H∞ is the H∞-norm of
the original model. The approximation errors of SOBT,
SOBTp, SOBTpv come from the work of Reis and Stykel
(2007).

1. The Guyan reduction is based on a sub-structuring
partition of the undamped model (i.e., C = 0) into two
sets of complementary generalized coordinates:

( M11 M12

M21 M22

) (
q̈1

q̈2

)
+

( K11 K12

K21 K22

) (
q1

q2

)

=
(

F11 F12

F21 F22

) (
u1

u2

)
, (29)

where vector q1 includes the generalized coordinates
which are kept and q2 includes the generalized coordi-
nates which are neglected. The omission of the equivalent
inertia terms of the neglected coordinates (i.e., M21q̈1 +
M22q̈2 = 0) in (29) gives the dependence between the
kept and neglected coordinates:

q2 = −K−1
22 K12q1. (30)

Therefore, the reduction matrix Tg is
(

q1

q2

)
=

(
I

−K−1
22 K21

)
q1 = Tgq1. (31)

This reduction matrix is applied to the original SOFM as
follows:⎧⎪⎨

⎪⎩
M̂ = T T

g MTg,

Ĉ = T T
g CTg,

K̂ = T T
g KTg,

and

⎧⎪⎨
⎪⎩

F̂ = T T
g F,

Ĝ1 = G1Tg,

Ĝ2 = G2Tg.

(32)
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2. The IRS method takes account of the inertia terms in the
neglected part of the reduced model. The undamped free
vibration problem of the reduced model M̂q̈1 + K̂q1 = 0
gives

q̈1 = − M̂−1K̂q1. (33)

By differentiating (30),

q̈2 = −K−1
22 K21q̈2. (34)

Substituting (33) and (34) in (29) gives

q2 =
(
K−1

22

(M21 −M22K−1
22 K21

)M̂−1K̂

− K−1
22 K21

)
q1. (35)

The formulation K−1
22

(M21 −M22K−1
22 K21

)
can

be replaced by SMTg with

S =
(

0 0
0 K−1

21

)
.

Finally, the reduction matrix is

Tirs =Tg + SMTgM̂−1K̂. (36)

This reduction matrix is applied to the original SOFM as
follows:⎧⎪⎨

⎪⎩
M̂ = T T

irsMTirs,

Ĉ = T T
irsCTirs,

K̂ = T T
irsKTirs,

and

⎧⎪⎨
⎪⎩

F̂ = T T
irsF,

Ĝ1 = G1Tirs,

Ĝ2 = G2Tirs.

(37)

3. SOBT reduction. Three Second-Order Balanced Trun-
cation (SOBT) methods are considered. These are based
on the definition of a pair of second-order Gramians,
called position and velocity Gramians. The first defini-
tion of second-order Gramians is given by Meyer and Sir-
nivasan (1996). Since the work by Sorensen and An-
toulas (2004), other definitions of Gramians have been
given, which are mostly used. There are different balanc-
ing techniques for second-order form models. Based on a
state-space realization approach, Chahlaoui et al. (2006)
balance both the position and velocity Gramians with an
SOBT algorithm. Stykel (2006) as well as Reis and Stykel
(2007) deal directly with the SOFM. According to Grami-
ans, which are equal and diagonal, two algorithms are pre-
sented. The first one, called SOBTp, balances position
Gramians, while the second one, called SOBTpv, balances
the position and velocity Gramians. Note that, in order to
preserve the structural conditions of an SOFM, SOBTpv
helps to compute a symmetric second-order reduced form
model if the original SOFM is symmetric. A symmetric
SOFM meets the structural conditions, and its input ma-
trix is the transpose of its output matrix, i.e., G2 = 0 and

F = GT
1 . In the same way, Yan et al. (2008) present

the Second-order Balanced truncation for Passive Order
Reduction (SBPOR) algorithm which preserves the struc-
tural conditions in the symmetric case. However, neither
of these techniques of second-order balanced truncation
fulfils the structural conditions for nonsymmetric SOFMs.

5.1. Building model. The building model has nq = 48
generalized coordinates, m = 1 input and p = 1 output.
The reduced model has a dimension of nq = 4 general-
ized coordinates. The matrices computed by Algorithm 2
(BTPSC) are

M̂ = I, (38)

Ĉ =

⎛
⎜⎜⎝

0.55 0 0 0
0 0.58 0 0
0 0 1.06 0
0 0 0 1.71

⎞
⎟⎟⎠ , (39)

K̂ =

⎛
⎜⎜⎝

33.32 0 0 0
0 27.98 0 0
0 0 183.55 0
0 0 0 591.61

⎞
⎟⎟⎠ , (40)

F̂ = 1nq×1, (41)

Ĝ1 =
( −0.005 0.004 −0.008 −0.021

)
, (42)

Ĝ2 =
(

0.001 0.003 0.004 0.002
)
. (43)

As expected, the three matrices M̂, Ĉ and K̂ are positive
definite, diagonal with real entries. The input matrix F̂
and the output matrices Ĝ1 and Ĝ2 have real entries. Be-
cause M̂, Ĉ and K̂ are all diagonal, the reduced model
is composed of four independent elementary oscillators
where the output is a linear combination of position and
velocity.

Table 1 gives the relative error for a fourth-order
reduced model computed by BTPSC, MTPSC, SOBT,
SOBTp, SOBTpv, Guyan and IRS. The last column in-
dicates if the reduced model respects the structural condi-
tions.

Figure 1 presents the Bode diagram of a full-order
building model with the model reduced using BTPSC

Table 1. Relative errors for a fourth-order reduced model of a
building.

Reduction Relative Structural
method error conditions

BTPSC 0.144 yes
MTPSC 0.319 yes
SOBT 0.352 no
SOBTp 0.349 no
SOBTpv 0.295 no
Guyan 0.823 yes
IRS 0.757 yes
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Fig. 1. Bode diagram of the full-order building model and its reduced model with BTPSC and MTPSC algorithms.

and MTPSC algorithms. In low frequencies, the MTPSC
model, best approximates the original model while the
BTPSC model has the best approximation in high frequen-
cies.

5.2. Clamped beam model. The second model is a
clamped beam model with nq = 348 generalized coordi-
nates, m = 1 input and p = 1 output. The reduced model
has a dimension of nq = 17 generalized coordinates. The
relative error of the reduced models computed by BTPSC,
MTPSC, SOBT, SOBTp, SOBTpv, Guyan and IRS algo-
rithms is presented in Table 2. Again, the best relative
error is given by BTPSC.

Figure 2 presents the Bode diagram of the original
model, the reduced model computed using BTPSC and
MTPSC. The BTPSC reduced model approximates the
original model in all frequencies for the magnitude and in
low frequencies for the phase. Unlike the BTPSC reduced
model, the MTPSC reduced model does not approximate
the original model over 1Hz in a satisfactory way.

Table 2. Relative errors for a seventeenth-order reduced model
of a clamped beam.

Reduction Relative Structural
method error conditions

BTPSC 1.75e−5 yes
MTPSC 1.27e−3 yes
SOBT 1.31e−4 no
SOBTp 1.63e−4 no
SOBTpv 4.69e−4 no
Guyan 9.93e−1 yes
IRS 2.12 yes

6. Conclusion

In this paper, the problem of SOFM reduction has been
investigated using an equivalent state-space realization of
the SOFM. To obtain a reduced model in a second-order
form, a new method to transform a single-input state-
space with an even dimension into a SOFM has been pro-
posed. If the reduced model is stable, controllable, with
real entries and a diagonalizable state matrix A, the SOFM
meets the structural conditions, and hence, the reduced
model is physically feasible.

This solution is suitable for single-input systems;
therefore, the application field remains limited. An ex-
tension of the method to multi-input systems will be con-
sidered in further studies.
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