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The paper presents a new approach to the generation of test signals used in service diagnosis. The tests make it possible to
isolate faults, which are isolable only if the system is brought into specific operating points. The basis for the test signal
selection is a structure graph that represents the couplings among the external and internal signals of the system and the fault
signals. Graph-theoretic methods are used to identify edges that disappear under certain operating conditions and prevent
a fault from changing the system behavior at this operating point. These operating conditions are identified by validuals,
which are indicators obtained during the graph-theoretic analysis. The test generation method is illustrated by a process
engineering example.
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1. Introduction

Service diagnosis is carried out in repair shops in order
to identify a faulty component to be replaced. It differs
from process diagnosis in the sense that the primary sys-
tem objectives do not have to be met during the diagnos-
tic process. Thus, specific signals can be applied to fa-
cilitate the isolation of specific faults. Increasing system
complexity entails severe problems for this task. Strong
interactions among components, nonlinear dynamics and
a large number of possible fault scenarios impede the se-
lection of dedicated tests for fault detection and isolation.
Different faults may cause similar behavior of the faulty
plant and, therefore, are difficult to be distinguished by a
model-based diagnostic method.

This paper proposes a method for test signal gen-
eration that is based on determining operating points, in
which the influence of specific faults on the input-output
(I/O) behavior of the system under consideration is re-
duced. The method uses a structural model of the system
that represents the relation among the external and inter-
nal signals and the faults. The structural representation is
used to find particular operating regions, in which some

of the interactions among these signals are not active and,
hence, prevent a specific fault from influencing the I/O-
behavior, whereas other faults remain in the cause effect
chains from the inputs towards the outputs. If the sys-
tem is brought into such an operating region, specific fault
candidates can be excluded or validated.

In the literature, there are only a few publications
that deal with the selection of dedicated test signals for
service diagnosis of dynamical systems (e.g., Clever and
Isermann, 2008). In a broader view, service diagnosis can
be interpreted as a kind of active diagnosis in which the
diagnostic unit may influence the input signal u(t) via the
input generator by some signal v(t) (Fig. 1).

Active diagnosis has been investigated, for example,
by Niemann and Poulsen (2005), and with the goal of
maintaining system operability by Zhang (1989) as well
as Campbell and Nikoukhah (2004). In contrast to these
publications, the present paper is based on a structural
representation of faulty dynamical systems, which results
from a generalization of the structural modeling method
described by Blanke et al. (2006). Like in the work of
Krysander et al. (2008), it combines structural analysis
with the goal of fault isolation in order to find permanent
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Fig. 1. Active diagnosis.

single faults.

The combination of active diagnosis and structural
methods was introduced by Laursen et al. (2008) by in-
vestigating the isolability properties of hybrid systems in
all their discrete operation modes. This method utilized
the individual system structures that correspond to the dif-
ferent discrete modes of the hybrid system. Bayoudh et
al. (2008; 2009) propose to abstract the continuous dy-
namics of hybrid systems to obtain purely discrete-event
models and to apply discrete-event techniques for diagno-
sis. Finding inputs that allow refining the diagnostic result
is reached by formulating the active diagnosis problem as
a conditional planning problem.

The present paper deals with nonlinear continuous
systems, which do not have a priori defined operation
modes. A method for identifying a set of operating points,
in which the continuous system has a particular system
structure, is developed together with a method to steer the
potentially faulty system into these operating points. The
specific dynamical properties of the system that are asso-
ciated with these operating points are then used to distin-
guish otherwise indistinguishable faults.

In an earlier paper of the authors (Ungermann et al.,
2010a), the more specific idea of excluding the influence
of the fault variables from the structural model was used
for the diagnosis of automotive systems. The present pa-
per details the approach presented by Ungermann et al.
(2010b), which is much more general in the sense that the
focus is not on edges adjacent to fault variables, but on
arbitrary edges in the structure graph. This corresponds to
finding operating regions, in which the whole incidence
matrix M = [MX MK MF ] of the graph defined by
Ungermann et al. (2010a) changes.

The structure of the paper is as follows. Section 2
explains the analytical and structural models of dynam-
ical systems used. Section 3 briefly reviews the idea of
consistency-based diagnosis and structural analysis for
fault diagnosis. Section 4 describes the main idea of
searching for structural changes of the system and iden-
tifying the corresponding operating points. The method is
summarized in Section 5 in two algorithms and applied in

Section 6 to a process engineering example.

2. Modeling framework

2.1. System behavior. The system behavior B is the
union of all I/O pairs allowed by a system. For static SISO
systems, the behavior B may be represented by curves in
the I/O space. For MIMO systems, the behavior is a map
defined on the union of vector pairs {u, y}. As such a
representation is not possible for dynamical systems, a set
representation is chosen in the union of the vector func-
tion pairs {u(t), y(t)} (Fig. 2). Obviously, a system’s be-
haviorBfi in the case of fault fi is generally different from
the behavior B0 in the nominal case.

Y

U

B0

Bf1

{u(t), y(t)}

Fig. 2. System behavior B.

2.2. Analytical model. When deriving an analytical
model of a system, one describes the system behavior by
a set of variables zj ∈ Z and a set of constraints ci ∈ C
relating these variables to each other. For dynamical sys-
tems, constraints ci include the relation between variables
z and their time derivative ż.

Four types of variables are used to describe a faulty
system: unknowns x ∈ X , inputs u ∈ U , outputs y ∈ Y
and faults f ∈ F :

Z = X ∪ U ∪ Y ∪ F . (1)

One writes

K = U ∪ Y (2)

for the known variables. Constraints are represented in the
form

ci : 0 = hi(x, u, y, f), (3)

where hi is a scalar function. The mapping

var : 2C−→2Z (4)

associates a set of constraints with the set of variables oc-
curring in these constraints.

An operating point is a tuple (x ∈ X , u ∈ U , y ∈ Y)
that does not contradict the set of constraints C. A set of
operating points is called the operating region.

The set C of constraints contains a qualitative fault
model with fi signifying a fault value. By convention,
fi = 0 ∀i holds in the nominal case.
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2.3. Structural model. The structure graph is a quali-
tative representation of the physical couplings among the
inputs, the internal variables (e.g., state variables) and
the outputs of a dynamical system. In the following,
the idea of this representation is briefly reviewed (Blanke
et al., 2006).

The structure graph is a bipartite graph

G = (Z ∪ C, E) (5)

with two kinds of vertices that represent the variables (Z)
or the constraints (C), respectively. If the variable zj ap-
pears in the constraint ci, there is an undirected edge e ∈ E
between the vertex ci and the vertex zj in the graph. The
graph can be represented by its incidence matrix M with
the ij-th element mij equal to “1” if there is an edge be-
tween ci and zj:

mij =
{

1, zj ∈ var({ci})
0, zj /∈ var({ci}). (6)

By analogy to the partition (1) and (2) of the vari-
ables, the incidence matrix can be partitioned as M =
[MX MK MF ].

An edge between a variable zj and a constraint ci

does not mean that zj influences the manifold defined by
ci at all operating points. On the contrary, the exceptional
cases where such influences break down are the main basis
for the construction of tests in Section 4.

3. Diagnosis

3.1. Behavior and consistency. The idea of
consistency-based diagnosis is to check whether or not a
measured I/O pair {u(t), y(t)} is contained in the sys-
tem’s nominal behaviorB0. In model-based diagnosis, the
behavior B0 is described by a set C of constraints which is
the union of the equations of the system’s physical model.
If the measured I/O pair {u(t), y(t)} does not belong to
the behavior B0, it contradicts the model C and the system
is known to be faulty (fault detection). Similarly, if the
I/O pair contradicts the model Cfi , which has been set-
up for the fault fi, and the single fault assumption holds,
the system is known not to be subject to the fault fi (fault
identification).

3.2. Structural analysis. The I/O pair can be inconsis-
tent with the set C of constraints only if the model is over-
constrained. The analysis of the structure graph is a tool
to find over-constrained subsets C+ ⊆ C of the constraint
set C according to Dulmage and Mendelsohn (1958), as it
will be reviewed in the following.

A matching is a subset of edges M ⊆ E of the struc-
ture graph with the property that no two edges in M have
a common vertex. A matching M on the structure graph
is called complete with respect to the unknown variables

if there are as many edges in the set M as unknown vari-
ables in C: |M| = |X ∩ var(C)|. A matching is said to
be complete with respect to the constraints if there are as
many edges in M as constraints in C: |M| = |C|.

According to Blanke et al. (2006), a set CD ⊆ C of
constraints is called structurally just-constrained if there
is a matching on its graph that is complete with respect to
the unknown variables and complete with respect to the
constraints. In that case, the set CD is marked by a super-
script 0 and denoted by C0

D.
If there is a matching on the graph that is complete

with respect to the unknown variables, but no matching
exists that is complete with respect to the constraints, CD

is said to be structurally over-constrained. In that case, it
is marked by a superscript + and denoted by C+

D .
According to Krysander et al. (2008), an over-

constrained set C+
D ⊆ C is called minimal structurally

over-constrained if no proper subset of C+
D is structurally

over-constrained. In the following, C+
MSO is used to denote

such a set of constraints.
A fault fi is said to be structurally detectable if there

is a set C+
MSO that is influenced by the variable fi:

∃C+
MSO : fi ∈ var(C+

MSO). (7)

Two faults fi and fj are called structurally isolable if
there is a set C+

MSO that is influenced by fi but not by fj :

∃C+
MSO : fi ∈ var(C+

MSO) ∧ fj /∈ var(C+
MSO). (8)

The properties of structural detectability and structural
isolability can be tested by means of conditions on the in-
cidence matrix M .

4. Local structures

An important observation is the fact that, for particular
values of some of the variables, other variables may not
have any impact on a constraint, although they appear in
this constraint. This fact can be seen in the simple exam-
ple

c1 : h1 = x1(t) − y1(t) + f1,
c2 : h2 = x2(t) − u2(t) + f2,
c3 : h3 = x1(t)x2(t) − u1(t) + f3,

(9)

which will be used for illustration purposes in the follow-
ing. For x1 = 0, the constraint c3 does not depend upon
the variable x2. Therefore, in the structural representation
of the constraint set C = {c1, c2, c3} under the assumption
that x1 = 0 holds, there is no edge between the constraint-
vertex c3 and the variable-vertex x2.

More generally, for a constraint ci in which the ele-
ments of the set

Zi = var({ci}) (10)
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appear as variables, it is possible to obtain a condition
cElim,k on the variables in the set Zi under which the
constraint ci can be simplified such that only a subset
Zp ⊂ Zi of variables actually appears in the simplified
version of ci. Such conditions cElim,k define operating re-
gions on the set Zi of variables.

For algebraic constraints, a constraint cElim,k defin-
ing an operating region can be found by derivation of ci

with respect to a variable zj ∈ Zi:

cElim,k : hElim,k =
d

dzj
hi = 0. (11)

If the system is restricted to the operating region defined
by (11), the variable zj does not influence the constraint
ci. Then, the edge ek between ci and zj can be removed
from the structure graph, which is the same as setting
mij = 0 in the incidence matrix. For the example (9),
one obtains

cElim,1 : hElim,1 =
d

dx2
h3 = x1(t) = 0, (12)

and one can remove the edge e1 between c3 and x2 in the
structure graph.

If not only a single edge ek but a set of edges Ep

can be eliminated from the structure graph, one finds a set
of constraints CElim,p defining an operating region under
which this is the case. The resulting structure graph is
called the local structure because it does not describe the
interaction of the variables in all the operating points but
merely in a particular operating region. The local structure
graph is denoted by

Gp = (Z ∪ C, E \ Ep) . (13)

The graph Gp has the incidence matrix Mp. It is valid
only in the operating region defined by (11). As the diag-
nosability properties of a dynamical system depend upon
the system structure, they may change with the structure
(Laursen et al., 2008). In the following section, an ap-
proach to construct tests using local system structures is
presented.

5. Test generation

5.1. Concept. The tests to be selected should isolate
faults from each other, which under normal operating con-
ditions are not distinguishable. The main idea is to bring
the system into a particular operating point where one
fault, say the fault fi, has an influence on a residual gen-
erator whereas another fault fj does not have any effect.
Then, the evaluation of the residual shows whether or not
the fault fi has occurred.

This particular operating region can be associated
with a local structure. This local structure is used to de-
termine residual generators, which are then called local

residual generators. In the best case, only a single fault
fi remains in the set of fault variables that may have an
impact on a local residual generator. Then, an analysis
of the system behavior at this operating point by checking
whether or not the local residual is zero shows whether the
fault fi is present.

The test selection method consists of two steps. First,
edges of the structure graph that may vanish are deter-
mined together with the corresponding condition (11).
Second, the test that brings the system at this operating
point is selected. Both steps are described in the preced-
ing paragraphs.

5.2. Determining potential structures. The following
algorithm computes all edges that may vanish in particu-
lar operating regions. The main idea is to check for each
edge in the structure graph whether or not it may vanish.
Then, a condition on the other known and unknown vari-
ables, which are adjacent to the concerned constraint, is
checked for contradiction with the nominal system and
stored. Conditions on fault variables are not stored, be-
cause these variables cannot be influenced by changing
the operating point.

Algorithm 1. [Find operating regions]

Given: The analytical model C which describes a
system’s nominal behavior and its behavior
in presence of the faults fi ∈ F .

Init: EElim = ∅, CReg = ∅.

Step 1: Compute the structure graph G = (Z∪C, E)
of the system.

Step 2: For each edge ek ∈ E in the structure
graph represented by a nonzero mij , apply
Eqn. (11) to compute a constraint cElim,k un-
der which edge ek disappears from the struc-
ture graph.

Step 2a: If cElim,k contradicts C, do not add ek to
EElim.

Step 2b: Otherwise, add ek to EElim and cElim,k to
CReg.

Result: A set of edges EElim that can be eliminated
and a set of constraints CReg defining the cor-
responding operating region.

If only edges adjacent to fault variables are consid-
ered, the presented approach is similar to the fault hiding
method delivered by Ungermann et al. (2010a). However,
the algorithm above yields more general operating condi-
tions because it is not restricted to such edges.
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5.3. Check for the operating region. If one wants to
use local residuals for diagnosis, one needs to check that
the system is in the operating region in which a particu-
lar local structure holds, and thus a local residual can be
applied. This test boils down to the decision whether the
system’s variables satisfy a constraint cElim,k ∈ CReg un-
der which an edge ek disappears. One, therefore, defines
the validual as follows.

Definition 1. The signal vk(t) is called a validual if the
relation vk(t) = 0 indicates that the fault free system is
in the operating region where the edge ek disappears from
the structure graph G.

The name validual was chosen for two reasons:
firstly, because vk(t) = 0 validates that the system is in
a particular operating region, and secondly, because the
procedure to compute it is similar to the one used for de-
termining a residual. Like residuals, a validual is com-
puted from the system input and output signals. It can be
obtained by structural analysis as explained in the follow-
ing.

The operating region defined by cElim,k ∈ CReg un-
der which the edge ek disappears from the structure graph
is known from Algorithm 1. It generally contains un-
known variables:

X ∩ var({cElim,k}) �= ∅. (14)

In order to decide whether a fault free system is in an oper-
ating region described by cElim,k , one needs to conclude
from known variables on the unknowns on the left-hand
side of Eqn. (14). It is therefore necessary to find a set
of constraints that is just-constrained with respect to the
unknowns belonging to the set (14), because such a set of
constraints allows computing the unknown variables. This
is the case if a subset C0

Ste,k ⊆ C with the property

X ∩ var({cElim,k}) ⊆ X ∩ var(C0
Ste,k) (15)

can be found. Eliminating these unknowns from the con-
straint set

C+
val,k = C0

Ste,k ∪ {cElim,k}, (16)

one obtains a condition on the known variables occurring
in the set

K ∩ var(C+
val,k ). (17)

This condition is unique if there is a complete matching
that is causal with respect to the unknowns (for the causal-
ity definition, cf. the work of Blanke et al. (2006)) on
the structure graph of C0

Ste,k . Then, by assuming all fault
variables to be zero, one can eliminate all unknowns from
C+
val,k by computing them with C0

Ste,k and injecting the re-
sult in cElim,k . Then the resulting expression becomes a
validual vk(t).

For the edge e1 in the example in (9), one finds the
constraint set C+

val,1 = {c1, cElim,1} and the correspond-
ing validual v1(t) = y1(t). In Section 6.3, the above pro-
cedure is exemplified with the Eqns. (30)–(34).

The constraint cElim,k is satisfied in the nominal case
if C+

val,k is satisfied, which is the case if vk(t) = 0 holds. In
analogy to the residual generator this procedure is called
the validual generator in the following.

If the validual is zero and there is no fault, the system
is in the operating region that corresponds to the structure

Gk = {Z ∪ C, E \ ek}. (18)

For reasons of fault isolability (see Section 5.7), one
wants the cardinality |C0

Ste,k | to be as small as possible.
This problem is solved by determining the smallest over-
constrained subset C+

val,k of constraints from

C ∪ {cElim,k} (19)

that contains cElim,k . In the work of Krysander et al.
(2008), a subset of equations no proper subset of which
is structurally over-constrained is called Minimal Struc-
turally Over-constrained (MSO). If a set of constraints is
MSO and contains cElim,k , it is the smallest possible set
of constraints satisfying the above properties. Hence, the
problem of identifying conditions on known variables that
allow us to guarantee a particular structure is transformed
into the well known problem of determining MSOs. The
following algorithm sums up this method.

Algorithm 2. [Find constraints for a validual]

Given: C, cElim,k ∈ CReg.

Step 1: Compute all MSOs C+
MSO,l of C ∪ {cElim,k}.

Step 2: Eliminate all MSOs that do not contain
cElim,k .

Step 3: Choose the smallest MSO: C+
val,k = C+

MSO,l
for which there is a complete causal match-
ing of the unknowns on the structure graph
of C0

Ste,k = C+
val,k \ cElim,k .

Result: C+
val,k .

By repeating this algorithm for all cElim,k ∈ CReg,
one can compute a total of |CReg| different validuals, each
corresponding to an eliminated edge. With different com-
binations of validuals being zero, a total of 2|EElim| lo-
cal structures Gp can be generated. Some of them might
not be realizable, because not all combinations of validu-
als can be simultaneously zero due to contradicting con-
straints in the set CReg.
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5.4. Computing local residual generators. A local
residual r(t) is a signal that is computed from the sys-
tem’s inputs and outputs. It is always zero in the fault
free case and the system is restricted to a specific operat-
ing region. If the system is in this operating region and
the signal r(t) is nonzero, one can infer on the presence
of a fault. Such an operating region is given by the one
that is associated with a particular local structure. Because
structural fault isolability properties are determined with
the structure graph, they may be different for different lo-
cal structures, and therefore some local structures may be
better for fault isolation than others. If an advantageous
local structure Gp out of the local structures that can be
reached by eliminating the edges Ep ⊆ EElim is selected,
structural analysis can be applied to Gp in order to com-
pute all MSOs C+

MSO,res,s for this local system structure.
A local residual rs(t) can then be computed by eliminat-
ing all unknown variables from the set C+

MSO,res,s by using
the description CElim,p of the corresponding operating re-
gion if necessary.

For the example (9) and the operating region (12),
the above procedure yields C+

MSO,res,1 = {c1, c3}, which
leads to the local residual r1(t) = −u1(t).

5.5. Test construction. The local residuals rs(t) de-
termined with C+

MSO,res,s can only be used for diagnosis if
the system is in an operating region where the local struc-
ture graph Gp = (Z ∪ C, E \ Ep) holds. This is the case
if all edges ek ∈ Ep disappear from G due to the system’s
inputs and outputs satisfying the corresponding constraint
sets C+

val,k . These constraint sets are satisfied if all the
validuals vk(t), k : ek ∈ Ep are zero.

A block diagram of the test principle, for an oper-
ating region in which the system’s local structure Gp is
valid, is shown in Fig. 3. Assume that two edges were
eliminated from G in order to get the reduced structure
Gp. For each edge, a validual vk(t) exists. If both valid-
uals are zero, the local structure holds and the local resid-
uals that were obtained from this local structure become
valid for fault diagnosis. Then, the current values r1(t)
and r2(t) of the local residuals are used in a decision logic
to conclude which fault is present.

5.6. Active diagnosis. The vector v(t) in Fig. 1 is
formed by the validuals vk(t) being the influence of the
diagnostic unit on the input generator. The input gener-
ator has to compute an input signal u(t) that makes the
relation v(t) = 0 hold. Three cases of input generators
can be distinguished:

• If the known variables in K ∩ var(C+
val,k) are inputs,

one can force the signals vk(t) to become zero by
applying inputs satisfying C+

val,k. The input generator
is a feed-forward controller.

u
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Fig. 3. Testing principle.

• If the set K ∩ var(C+
val,k) contains only outputs,

vk(t) = 0 may be reached by applying a controller
that makes the signal vk(t) vanish. The input gener-
ator is a feedback controller.

• If inputs and outputs appear in C+
val,k, one can solve

the set of constraints for the inputs, thus obtaining
a part of a control law steering the system in the
required operating region. For the remaining input
variables, signals have to be chosen that steer the sys-
tem’s output in a way satisfying C+

val,k.

5.7. Meaning of a nonzero local residual. Every local
residual generator is based on an MSO C+

MSO,res,s that is
calculated with the local system structure, which is valid
in the selected operating region. Assuming a single fault
scenario and the validual being zero, the corresponding
local residual may be nonzero for two reasons:

1. One of the faults in F ∩ var(C+
MSO,res,s) is present

(the system is in the particular operating region).

2. One of the faults in F ∩ var(C+
val,k ) is present (the

system is not in the particular operating region).

Therefore, one can conclude that if the validual vk(t) is
zero and the local residual rs(t) is nonzero, one of the
faults in the set

(F ∩ var(C+
val,k )) ∪ (F ∩ var(C+

MSO,res,s)) (20)

is present. Similar reasoning holds for structures in which
more than one edge is eliminated.

For a test for the example system (9), which con-
sists of the validual v1(t) and the local residual r1(t), the
set (20) is {f1, f3}. Note that, for this example, standard
approaches yield only one residual which is sensitive to
the faults {f1, f2, f3}. The new test therefore exhibits bet-
ter isolability properties than the standard approach.
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A particularly interesting case for fault isolation is
given if the condition

F ∩ var(C+
val,k ) = ∅ (21)

holds. In that case, the validual vk(t) obtained from C+
val,k

is not influenced by any fault. Then, a fault may not lead
to vk(t) = 0 although the system is not in the operating
region defined by cElim,k . Therefore, if the property (21)
is satisfied, and if the relation vk(t) = 0 holds, one can be
sure that the system is actually in the corresponding op-
erating region. Similarly, in the work of Laursen et al.
(2008) it is assumed that the property (21) holds when
steering a hybrid system in its discrete modes for fault iso-
lation purposes.

5.8. Special case: Fault hiding. Some input signals
may lead to particular validuals being zero thus signifying
that all edges between a fault variable and the remaining
graph disappear. In that case, the present I/O pair is inde-
pendent of the presence of the fault not only contained in
the faulty behavior but also in the nominal behavior. The
I/O pair is not changed by the presence of the fault, and
the fault is said to be hidden. This approach was originally
introduced by Riggins and Ribbens (1997) for linear sys-
tems on the basis of state-space models, and for nonlinear
systems by Ungermann et al. (2010a) based on structural
models.

Figure 4 illustrates this situation. The nominal sys-
tem behavior and the system behavior for two different
faults f1 and f2 are shown. If the inputs uA(t) and uB(t)
are applied, either f1 or f2 is hidden. Consecutively ap-
plying uA(t) and uB(t) allows us to distinguish between
the faults f1 and f2.
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yB1(t) �= yB0(t)
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Fig. 4. Fault hiding.

6. Example

In this section, the new approach for test generation is ap-
plied to a process engineering example.

6.1. System description and model. The system is
shown in Fig. 5. Two inflows qhot(t) and qcold(t) of water
of different temperatures Thot and Tcold(t) are controlled

qmid(t)

qbot(t)

L
(t

)

T (t)L
m

a
x

L
m

id

u1(t)
Thot

u2(t)
Tcold(t)

q h
o
t
(t

)

q c
o
ld

(t
)

Fig. 5. Tank.

by two valves u1(t) and u2(t). The water mixes in the
tank, where the fluid level L(t) and the fluid temperature
T (t) are measured as outputs y1(t) or y2(t), respectively.
Two pipes at the bottom and in the middle of the tank al-
low water to flow out of the tank (qmid(t) and qbot(t)) ac-
cording to Torriceli’s law. The temperature Thot, the area
A of the cylindric tank and the effective area of the pipes a
are parameters. The temperature Tcold(t) is unknown and
may vary in time. Faults that may occur in the system are
listed in Tab. 1.

Table 1. Faults in the system.
fi Fault

f1, f2 Leaking valve 1 / valve 2
f3 Heating broken (wrong Thot)
f4 Middle-pipe clogged
f5 Bottom-pipe clogged
f6 Offset of level sensor
f7 Offset of temperature sensor

The equations governing the system’s behavior are
given below. Note that only a qualitative model of the
faults is used—no values are introduced for the corre-
sponding fault variables. This means that only the way
a fault influences the system behavior is described by the
model, but the severity of the faults is not represented.

c1 : h1 = qhot(t) − u1(t) − f1,

c2 : h2 = qcold(t) − u2(t) − f2,

c3 : h3 = AL̇(t) − qhot(t) − qcold(t) + qmid(t) + qbot(t),

c4 : h4 = qbot(t) − (1 − f5)a
√

L(t),

c5 : h5 = qmid(t)

−
{

(1 − f4)a
√

L(t) − Lmid, L(t) > Lmid,
0, otherwise,

c6 : h6 = A(Ṫ (t)L(t) + T (t)L̇(t)) + T (t)qbot(t)
+ T (t)qmid(t) − Tcold(t)qcold(t)
− (1 + f3)Thotqhot(t),
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c7 : h7 = L(t) − y1(t) + f6,

c8 : h8 = T (t) − y2(t) + f7,

d1 : hd1 = L̇(t) − d
dt

L(t),

d2 : hd2 = Ṫ (t) − d
dt

T (t).

The analytical model of the system constitutes the
constraint set

C = {c1, c2, c3, c4, c5, c6, c7, c8, d1, d2} . (22)

The set of variables Z = K ∪ X ∪ F includes the known
variables

K = {u1, u2, y1, y2} , (23)

the unknown variables

X =
{
qhot, qcold, qmid, qbot, L, L̇, T, Ṫ , Tcold

}
(24)

and the faults

F = {f1, f2, f3, f4, f5, f6, f7} . (25)

The above model is valid for 273K < T (t) < 373K (no
freezing or boiling of the water) and 0 ≤ L(t) ≤ Lmax.

6.2. Structural analysis. The structure graph of the
system is depicted in Fig. 6. By applying the method of
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Fig. 6. Structure graph of the process engineering system.

Krysander et al. (2008) to the complete structure graph,
one obtains only one MSO:

C+
MSO = {c1, c2, c3, c4, c5, c7, d1}, (26)

which is sensitive to the faults

F ∩ var(C+
MSO) = {f1, f2, f4, f5, f6}. (27)

Therefore, the faults f3 and f7 are structurally non-
detectable, while the other faults are not structurally
isolable.

6.3. Determining tests with the proposed method. In
the first step, Algorithm 1 is used to determine all edges
that may vanish in particular operating regions along with
constraints describing these operating regions. The set of
edges ek obtained in Step 2 of the algorithm is given in
Tab. 2 together with their adjacent variable-vertex zj and
constraint-vertex ci and the condition cElim,k under which
the edge disappears.

Table 2. Edges in the graph that can be eliminated.
Edge zj ci Constraint cElim,k

e1 f5 c4 L(t) = 0

e2 L c4 L(t) → ∞
e3 f4 c5 L(t) ≤ Lmid ∨ L(t) → ∞
e4 L c5 L(t) ≤ Lmid ∨ L(t) → ∞
e5 T c6 AL̇(t) + qbot(t) + qmid(t) = 0

e6 qbot c6 T (t) = 0

e7 qmid c6 T (t) = 0

e8 Tcold c6 qcold(t) = 0

e9 qcold c6 Tcold(t) = 0

e10 f3 c6 Thotqhot(t) = 0

e11 Ṫ c6 L(t) = 0

e12 L c6 Ṫ (t) = 0

e13 L̇ c6 T (t) = 0

e14 T c6 L̇(t) = 0

The edges e2, e6, e7, e9 and e13 actually cannot be
eliminated because the corresponding condition requires
the temperatures to be zero or the level to be greater than
Lmax, which contradicts the region of the model validity.
Therefore, the set of edges that can actually be eliminated
is

EElim = {e1, e3, e4, e5, e8, e10, e11, e12, e14} . (28)

Note that some of the edges cannot be eliminated inde-
pendently of each other because the corresponding con-
straints cElim,k are the same. Therefore, not all of the
2|EElim| = 29 = 512 theoretically possible structures are
realizable. For example, it is not possible to eliminate the
edge e3 without eliminating the edge e4, because the con-
ditions cElim,3 and cElim,4 describing the corresponding
operating regions are identical.

In the following, one particular local structure is in-
vestigated, where the edges e3, e4 and e8 are eliminated.
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In Fig. 6 these edges are dashed. The local structure
Gp = {Z ∪ C, E \ {e3, e4, e8}} is valid if and only if
the system is in the operating region defined by

CReg = {cElim,3, cElim,4, cElim,8} . (29)

Algorithm 2 yields the constraint sets

C+
val,3 = {c7, cElim,3} , (30)

C+
val,4 = {c7, cElim,4} , (31)

C+
val,8 = {c2, cElim,8} . (32)

From these constraint sets, one can determine the
validuals

v3(t) = v4(t)=
{

0, y1(t) ≤ Lmid,
y1(t) − Lmid, y1(t) > Lmid,

(33)

v8(t) = u2(t). (34)

The validuals v3(t) and v4(t) are identical, because
the corresponding constraints cElim,3 and cElim,4 are the
same. In the local system structure Gp one finds eight
MSOs:

C+
MSO,res,1 ={c2, c3, c4, c5, c6, c7, c8, d1, d2},

C+
MSO,res,2 ={c1, c3, c4, c5, c6, c7, c8, d1, d2},

C+
MSO,res,3 ={c1, c2, c4, c5, c6, c7, c8, d1, d2},

C+
MSO,res,4 ={c1, c2, c3, c4, c6, c7, c8, d1, d2},

C+
MSO,res,5 ={c1, c2, c3, c5, c6, c7, c8, d1, d2},

C+
MSO,res,6 ={c1, c2, c3, c4, c5, c7, d1},

C+
MSO,res,7 ={c1, c2, c3, c4, c5, c6, c8, d1, d2},

C+
MSO,res,8 ={c1, c2, c3, c4, c5, c6, c8, d2}.

Note that the restriction of the system to the operat-
ing region results in the fact that significantly more MSOs
than in the general case can be found. Equation (20) al-
lows us to determine which faults may be present when a
local residual is nonzero. These are the fault variables that
occur in the constraint set C+

MSO,res,s , which is used to de-
termine a local residual rs(t), and the fault variables that
occur in the constraint sets C+

val,3, C+
val,4 and C+

val,8, which
are used to determine the validual generators. In Table 3,
these fault variables are given for each local residual gen-
erator.

In structural analysis, the signature matrix is used
to express which fault may be the reason for a nonzero
residual. Similarly, from Table 3 one can obtain a signa-
ture matrix for a test based on validuals and local residu-
als (see Table 4). From this matrix one can conclude that
faults that were not detectable or isolable using standard
structural analysis become so by steering the system in a
particular operating region.

Table 3. Sensitivity to the faults.
MSO Faults in C+

MSO,res,s Faults in C+
val,k

C+
MSO,res,1 f2, f3, f5, f6, f7 f2, f4, f6

C+
MSO,res,2 f1, f3, f5, f6, f7 f2, f4, f6

C+
MSO,res,3 f1, f2, f3, f5, f6, f7 f2, f4, f6

C+
MSO,res,4 f1, f2, f3, f5, f6, f7 f2, f4, f6

C+
MSO,res,5 f1, f2, f3, f6, f7 f2, f4, f6

C+
MSO,res,6 f1, f2, f5, f6 f2, f4, f6

C+
MSO,res,7 f1, f2, f3, f5, f7 f2, f4, f6

C+
MSO,res,8 f1, f2, f3, f5, f6, f7 f2, f4, f6

Table 4. Signature matrix if v3(t) = v4(t) = v8(t) = 0 holds.
rs f1 f2 f3 f4 f5 f6 f7

r1 1 1 1 1 1 1
r2 1 1 1 1 1 1 1
r3 1 1 1 1 1 1 1
r4 1 1 1 1 1 1 1
r5 1 1 1 1 1 1
r6 1 1 1 1 1
r7 1 1 1 1 1 1 1
r8 1 1 1 1 1 1 1

6.4. Simulation results. In Fig. 7, the local residuals
r1(t), r2(t), r5(t) and r6(t) along with the validuals v3(t),
v4(t) and v8(t) are shown for the fault free system and
for the system subject to the fault f2. The local residu-
als are obtained by elimination of the unknowns from the
corresponding sets of constraints C+

MSO,res,1, C+
MSO,res,2,

C+
MSO,res,5 and C+

MSO,res,6:

r1(t) =(Aẏ2y1(t) + ẏ1(t)(y2(t) − Thot)) (35)

+ a
√

y1(t)(y2(t) − Thot),

r2(t) =A(ẏ1(t)y2(t) + y1(t)ẏ2(t)) (36)

+ y2(t)a
√

y1(t) − Thotu1(t),

r5(t) =Thotu1(t) − Aẏ2(t)y1(t) − y2(t)u1(t), (37)

r6(t) =u1(t) − Aẏ1(t) − a
√

y1(t). (38)

As long as not all three validuals are zero, the local resid-
uals (35)–(38) cannot be used for fault isolation, because
the system is not in the operating region corresponding to
the structure that was used to determine these local resid-
uals. In the fault free case, all the three validuals are zero
for t > 175 s. This is the property that allows us to use
the local residuals for fault diagnosis. All four residuals
vanish as expected. In the case of the fault f2, all validuals
are zero for t > 230 s. Then the fact that r1(t) �= 0 holds
allows us to infer on the presence of one of the faults in
{f2, f3, f4, f5, f6, f7}.

Figure 8 shows the effect of the faults f1, f3 and f5

on the local residuals. In the case of the fault f3, the local
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Fig. 7. Test based on the elimination of the edges e3, e4 and e8:
nominal behavior and behavior in the case of fault f2.

residuals are nonzero if the validuals are zero. Hence, the
local residuals allow detecting fault f3. Note that with
the result of standard structural analysis in Section 6.2, the
detection of the fault f3 is not possible. Again, the specific
structure, which holds as long as the validuals v3(t), v4(t)
and v8(t) are zero, makes it possible to detect this fault.

Moreover, if the validuals are zero, the local residu-
als allow distinguishing between some faults. If some lo-
cal residuals are nonzero and the single fault assumption
holds, only a fault acting on all the nonzero local residuals
may be present. For example, if r2(t), r5(t) and r6(t) are
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Fig. 8. Test based on the elimination of the edges e3, e4 and e8:
fault scenarios f1, f3 and f5.

nonzero (black line in Fig. 8), the signature matrix of Ta-
ble 4 allows us to conclude that one of the faults f1, f2, f4

or f6 is present. This conclusion matches with the actually
simulated fault scenario f1.

In Fig. 7, one can also observe that, in the presence
of the fault f2, the local residual r2(t) is nonzero when
the validuals are zero. This illustrates the meaning of
Eqn. (20). Although f2 does not appear in the constraint
set C+

MSO,res,2, which was used to determine r2(t), the lo-
cal residual is sensitive to f2. This is because f2 appears
in the constraint set C+

val,8, which was used to determine
the validual v8(t).
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7. Conclusion

This paper describes a method for test generation based
on local system structures. It is shown that particular
input signals may steer a system in an operating region
where some of the edges in the structure graph disappear
and, hence, faults can be distinguished, which otherwise
cannot. In this way structural analysis makes it possi-
ble to identify operating regions together with specific lo-
cal residual generators. The main result of this work is
a method for determining signals from known variables
guaranteeing the presence of a particular local structure.
This was achieved by transforming the original problem
into that of finding MSOs and solving it with well known
methods (Krysander et al., 2008).

The presented approach offers a solution of the prob-
lem observed by Laursen et al. (2008) that the diagnostic
result can be wrong when steering in the corresponding
operating region fails.

A dynamical system may have a large number of dif-
ferent local structures, some of which entail different lo-
cal structural isolability properties. Future research will
therefore concentrate on the problem of identifying local
system structures that allow the isolation of faults which
are not isolable by using an arbitrary local structure.
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