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A model-based controller architecture for Fault-Tolerant Control (FTC) is presented in this paper. The controller architec-
ture is based on a general controller parameterization. The FTC architecture consists of two main parts, a Fault Detection
and Isolation (FDI) part and a controller reconfiguration part. The theoretical basis for the architecture is given followed by
an investigation of the single parts in the architecture. It is shown that the general controller parameterization is central in
connection with both fault diagnosis as well as controller reconfiguration. Especially in relation to the controller reconfigu-
ration part, the application of controller parameterization results in a systematic technique for switching between different
controllers. This also allows controller switching using different sets of actuators and sensors.
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1. Introduction

Fault-Tolerant Control (FTC) (Blanke et al., 2003) and
high performance feedback control (Tay et al., 1997),
have been considered to be two distinct areas. In the high
performance control area, the efficiency requirements are
satisfied by the use of more advanced design methods.
These include methods such as, e.g., H2, H∞, LMI-
design, μ-synthesis, etc. (Maciejowski, 1989; Skogestad
and Postlethwaite, 2005; Zhou et al., 1995). The price is
complex controllers, where re-tuning of single parts is im-
possible. Using simpler controller architectures consisting
of P, PI, PID controllers, etc., it is reasonably simple to
re-tune single parameters in connection with implemen-
tation. The controller parameters are transparent to the
operator, so redesign is possible. That is not the case for
more advanced and complex controller architectures. This
is one of the main reasons why advanced controllers are
not always applied in real applications.

Fault-tolerant controllers deal with a concept for han-
dling faulty situations by suitable reconfiguration of the
feedback controller applied. If a fault is detected and iso-
lated, we want to change from a high performance con-
troller to a safe-mode controller. The change must be done
in a reliable way, so that closed-loop stability can be guar-
anteed through the change. A number of different con-
cepts have been described in books and papers (Blanke
et al., 1997; 2000; 2003; Niemann and Stoustrup, 2002;

2005; Stoustrup and Niemann, 2001).
The central issue in FTC is making the feedback con-

troller tolerant with respect to faults or changes in the sys-
tem and/or the instrumentation. This can be done on the
basis of either a passive approach or an active approach.
In the former, the nominal controller will be able to sta-
bilize the system for possible faults. This is equivalent to
robust feedback control. In the latter, the feedback con-
troller is redesigned or reconfigured on the basis of the
results from detection and isolation of faults. This con-
cept is more complex than the passive approach, but in
general it is also possible to handle a much larger number
of faults. This architecture is shown in Fig. 1.

A number of different controller architectures for
FTC have been suggested in the literature. One of
the architectures is based on the Youla–Jabr–Bongiorno–
Kucera (YJBK) parameterization described by Niemann
and Stoustrup (2002; 2005), Stoustrop and Niemann
(2001) as well as Zhou and Ren (2001). Here, the con-
troller reconfiguration is obtained by design/redesign of
the YJBK transfer matrix. The controller architecture is
shown in Fig. 2.

The starting point for this paper is the mentioned
FTC architecture shown in Fig. 2. Instead of using a stan-
dard nominal controller as the normal-mode controller, it
has been selected as a safe-mode ONE. The reconfigura-
tion controller is then designed to enhance performance
in the system. This will allow a very fast switch from a
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Fig. 1. Simple block diagram of fault-tolerant control including
a residual generator, a decision block and a controller-
change block.
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Fig. 2. Block diagram of fault-tolerant control including an FDI
block and a controller-modification block.

normal-mode controller to a safe-mode one just by remov-
ing the reconfiguration loop in the controller architecture.
The FTC set-up shown in Fig. 2 takes the form shown in
Fig. 3.

The FTC block diagram shown in Fig. 3 can be con-
sidered from a more general point of view. The connection
between the three different operation modes (that does not
include the start-up mode and the close-down mode) is
shown in Fig. 4.

The diagram shows that an FTC architecture should
allow switching from one operation mode to one of the
two other operation modes. It is required that a switch
from the “Normal mode” operation to the “Safe mode”
operation should be fast in the event of faults. This is very
important in cases where faults result in unstable closed-
loop feedback systems. The switching is done on-line,
i.e., it is hot switching. This requires that the switch-
ing be done as a bump-less transfer between the differ-
ent modes. This is to avoid introduction of large tran-
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Fig. 3. Block diagram of a fault-tolerant controller with a safe-
mode controller as the central controller.

sients in the closed-loop system. As indicated in Fig. 4,
only the switching from “Normal mode” to “Safe mode”
is required to be fast in the event of faults in the system.
In general, it will not be possible to guarantee that this
switching is done as a bump-less transfer due to the re-
quirement for fast switching.

Another issue is the sensors and actuators applied. In
many cases, the feedback controller applied for the nor-
mal mode will in general be based on other sets of sensors
and actuators than the safe-mode controller. The FTC ar-
chitecture needs therefore to be able to handle changes
in the sensors and actuators in connection with controller
switching.

A similar concept can be used in relation to high per-
formance controllers. Here, the nominal controller can be
a robust one based on reliable sensors and actuators. As
in the FTC case, the performance can be obtained by us-
ing a suitable transfer matrix for the free transfer matrix in

Safe mode Reconfiguration mode

Normal mode

fast
slow slow

slow

slow

slow

Fig. 4. FTC concept.
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controller parameterization. The free transfer matrix can
be included when the system is in the normal mode. The
matrix can then either be decoupled or redesigned when
the system is not in the nominal mode. This concept is in
line with the ideas of Tay et al. (1997).

The main difference between the FTC concept and
the high performance one described is how the free trans-
fer matrix in controller parameterization is changed. In
the FTC case, the change is a consequence of a fault di-
agnosis, whereas the change is typically handled by an
operator in the high performance case.

An important aspect in connection with both FTC
and high performance control is system uncertainties. In
general, the systems are given by

G = G(Δ),

where Δ describes the system uncertainties. Both fault di-
agnosis and controller design/redesign must be done with
respect to the uncertainties in the system.

The main focus in this paper is to investigate the FTC
controller architecture shown in Fig. 3 in greater detail.
The concept described will be investigated with respect to
fault diagnosis and controller reconfiguration. The change
of sensors and actuators in connection with reconfigura-
tion of the controller will also be investigated.

The rest of this paper is organized as follows. The
system set-up is given in Section 2, followed by some
preliminary results for controller parameterization in Sec-
tion 3. The set-up for fault diagnosis is considered in Sec-
tion 4. Active fault detection and active fault isolation are
considered in Sections 5 and 6, respectively. The last part
of the FTC architecture, controller reconfiguration, is con-
sidered in Section 7. Time aspects of the suggested FTC
architecture are discussed in Section 8.

The paper ends with some closing remarks in Sec-
tion 9.

2. System set-up

Let a general system be given by

G :

⎧
⎨

⎩

⎛

⎝
z
e
y

⎞

⎠ =

⎛

⎝
Gzw Gzd Gzu

Gew Ged Geu

Gyw Gyd Gyu

⎞

⎠

⎛

⎝
w
d
u

⎞

⎠ , (1)

where w ∈ R
r is an external input vector, d ∈ R

s is a
disturbance signal vector, u ∈ R

m is the saturated control
input signal vector, z ∈ R

t is an external output vector,
e ∈ R

q is the external output signal vector to be con-
trolled, and y ∈ R

p is the measurement vector.
Let the external output z and the external input w be

connected through the uncertain block Δ, i.e.,

w = Δz, (2)

where Δ describes the uncertainty in the system. It can
be a fully uncertain complex block or it can be structured,
(see, e.g., Skogestad and Postlethwaite, 2005). It is further
assumed that Δ is scaled such that

‖Δ‖ ≤ 1, ∀ω.

The general uncertain system G(Δ) is given by

G((Δ) = Fu(G, Δ), (3)

where Fu(·, ·) is an upper Linear Fractional Transforma-
tion (LFT), (cf. Skogestad and Postlethwaite, 2005). Let
the system be controlled by a stabilizing feedback con-
troller given by

K :
{

u = Kuyy. (4)

2.1. Parametric fault sets. Certain modeling aspects
have to be considered in connection with FDI. The task of
FDI depends on which parametric faults can occur simul-
taneously and which cannot. On the basis of the available
information as to which parametric faults can occur si-
multaneously at any time and which cannot, one divides
the set of all possible faults into a number of subsets. This
aspect has been discussed by Saberi et al. (2000) in con-
nection with additive faults. An equivalent definition of
parametric fault sets is given in the following. The mod-
eling of parametric faults can be described in the same
way as modeling uncertainties. Let θ be a diagonal ma-
trix given by θ = diag(θ1, . . . , θi, . . . , θk), representing
the parametric faults in the system. Let the connection be-
tween the external output and the external input be given
by

w = θz,

i.e., k = r = t.
It is assumed that every single parametric fault θi is

included in a parameter space, θi ∈ Θi, i = 1, · · · , k,
where Θi can be an interval Θi = [θ−i , θ+

i ]. Note that the
interval must include the nominal value for θi = 0. The
interval for Θi is a continuous one, where θi can take all
values between θ−i and θ+

i . This will not always be the
case. In other cases, the parametric fault can only take
a fixed number of values, i.e., Θi = {0, θi,1, θi,2, . . . }.
Furthermore, let Θi\0 = Θi\{0}, i.e., the nominal value
(the fault-free case) of θi is not included in Θi\0. We
will use the notation θi �= 0 as a short form for θ =
diag(0, . . . , 0, θi, 0, . . . , 0), i.e., θi �= 0.

Let us denote the set of all possible parametric faults
by k = {1, . . . , k}. Based on the known information, let
k be partitioned into � mutually exclusive and exhaustive
sets, Ωi, i = 1, 2, . . . , �. That is, let Ωi ∩ Ωj = ∅ for
i �= j, and Ω1 ∪ Ω2 ∪ · · ·Ω� = k. Also, let ki denote the
number of elements in Ωi. This leads us to defining the
following simultaneous occurrence property.
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Fig. 5. Closed-loop system.

Simultaneous occurrence property. Only those faults
that belong to any single set among the sets Ωi, i =
1, 2, . . . , �, can occur simultaneously at any given time.
This implies that certain faults belonging to a set, say Ωi,
and others that belong to a set, say Ωj , i �= j, cannot occur
simultaneously at any given time.

Two special and extreme cases of the general simul-
taneous occurrence property are interesting and important:
the fault set of simultaneous occurrence of property of
Type 1, where all possible faults can occur simultaneously
at any time, and the fault set of simultaneous occurrence
of property of Type 2, where every fault occurs by itself,
i.e., it never occurs simultaneously with any other fault.
The first case is the most general one. If it is possible to
handle it, we do not need to consider other cases. The
other case is the simplest one, but in general it will also be
the most realistic one. Both fault sets of Type 1 and Type
2 will be considered in this paper. Other types of paramet-
ric faults sets can be derived based on the results given in
this paper.

In the following, only system changes with respect to
faults will be considered, i.e., Δ = θ.

3. Parameterization of controllers

Parameterization of feedback controllers is considered in
the following. First, some simple calculations are derived,
followed by a more detailed analysis.

Let us consider the feedback system shown in Fig. 5.
The closed-loop transfer matrix Tcl is given by

Tcl = Ged + GeuKuy(I − GyuKuy)−1Gyd. (5)

Assume that K stabilizes G, i.e., Tcl is stable. Let R be
defined by

R = Kuy(I − GyuKuy)−1. (6)

The relation between Kuy and R is given by

Kuy = (I + RGyu)−1R.

Internal stability gives directly that R is stable (Boyd

and Barratt, 1991). Using R in (5) gives directly

Tcl = Ged + GeuRGyd. (7)

Including a free stable transfer matrix Q gives the
following closed-loop system:

Tcl = T1 + T2QT3, (8)

where T1, T2 and T3 are specific, stable transfer matrices
depending on G and K.

Let us define D and D̃ of appropriate dimensions in-
cluding the unstable poles from Gyu as zeros. D and D̃

are not unique. Any suitable choice of D and D̃ has the
property that, if Q is stable, then each DQD̃, GeuDQD̃,
DQD̃Gyd and GeuDQD̃Gyd is stable (Boyd and Bar-
ratt, 1991). Comparing with (7) gives

T2 = GeuD,

T3 = D̃Gyd.

Now, T1 can be selected as any closed-loop transfer
matrix achieved by a stabilizing feedback controller. This
results in the following closed-loop transfer matrix:

Tcl(Q) = Ged + GeuRGyd + GeuDQD̃Gyd, (9)

where Q is a free stable transfer matrix. It can be shown
that this is a parameterization of all stabilizing feedback
controllers for a given system in terms of the free stable
transfer matrix Q (Boyd and Barratt, 1991).

Implementation of parameterization can be done as
shown in Fig. 6. The complete feedback controller is
given as an LFT of Q, i.e.,

Kuy(Q) = Fl(K,Q).
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Fig. 6. Parameterization of all stabilizing controllers Kuy(Q)
for a given nominal system G.

The construction of the architecture in Fig. 6 requires
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that the transfer matrix from η to ε be zero in the nominal
case. If this is not satisfied, the closed-loop transfer ma-
trix will not be an affine matrix function of the free stable
transfer matrix Q. Further, the transfer matrix from d to ε
it is D̃Gyd and from η to e is GeuD. The (1, 1)-element
in K is the nominal feedback controller Kuy .

If K is selected such that the above conditions are
satisfied, then the controller architecture in Fig. 6 gives
a parameterization of all stabilizing linear controllers for
the nominal plant G in terms of the free stable transfer
matrix Q.

Let K be given by

K :
{ (

u
ε

)

=
(

Kuy Kuη

K̄εy K̄εη

)(
y
η

)

, (10)

where Kuy is the nominal feedback controller.

Based on K, the open-loop transfer matrices from d
and η to ε are then given by

ε = K̄εy(I − Gyu(θ)Kuy)−1Gyd(θ)d

+ (K̄εη + K̄εy(I − Gyu(θ)Kuy)−1Gyu(θ)Kuη)η,

(11)

where G(θ) has been applied. The condition that the trans-
fer matrix from η to ε must be zero in the nominal case
(fault free) gives the following condition for the selection
of Kuη, K̄εy and K̄εη:

0 = K̄εη + K̄εy(I − GyuKuy)−1GyuKuη. (12)

Instead of using ε directly as given by (10), ε can be
defined by

ε = Kεuu + Kεyy, (13)

with u given by (10). This gives the following description
of K:

K :
{ (

u
ε

)

=
(

Kuy Kuη

KεuKuy + Kεy KεuKuη

)(
y
η

)

.

(14)

The motivation for this small rewriting of ε is that we
want to use the vector ε in connection with fault diagnosis.
Introducing the measurement vector in (13) gives directly

ε = Kεuu + KεyGydd + KεyGyuu

= (Kεu + KεyGyu)u + KεyGydd.

A condition for using ε as a residual vector is that the
input vector u is decoupled from ε (Blanke et al., 2003),
i.e.,

Kεu + KεyGyu = 0. (15)

Applying the feedback controller K given by (14), ε

takes the following form:

ε = (KεuKuy + Kεy)(I − Gyu(θ)Kuy)−1Gyd(θ)d

+ (KεuKuη + (KεuKuy + Kεy)

× (I − Gyu(θ)Kuy)−1Gyu(θ)Kuη)η.

(16)

Using (15) in (16) gives

ε = Kεy(I − GyuKuy)(I − Gyu(θ)Kuy)−1Gyd(θ)d

+ Kεy((I − GyuKuy)(I − Gyu(θ)Kuy)−1Gyu(θ)

− Gyu)Kuηη

= Pεd(θ)d + S(θ)η.

(17)

S in the above equation is the dual transfer matrix
of Q. Equivalent to Q, it gives a parameterization of all
systems stabilized by given feedback controller. For more
details, see the works of Niemann (2003) and Tay et al.
(1997), where the dual parameterization has been consid-
ered in connection with the YJBK parameterization.

For the nominal case, (17) takes the following form:

ε = KεyGydd. (18)

From the above equation, we can see that the decoupling
condition in (15) also satisfies the condition in (15) in con-
nection with controller parameterization. This means that
the input vector ε to the free transfer matrix Q in controller
parameterization can also be applied as a residual vector
in connection with fault diagnosis. In the following, ε will
be named the residual vector.

The residual vector given by (17) is applied in con-
nection with both passive and fault diagnosis. In the pas-
sive case, the diagnosis is based on the transfer matrix
from d to ε, Pεd(θ), and in the active case on S(θ). This
will be investigated further in the next section. Based on
the above derivations, the block diagram shown in Fig. 6
now takes the form shown in Fig. 7.

The above parameterization cannot directly handle
a change in the employed sets of sensors and actuators.
As pointed out in Section 1, it is relevant to consider
changes of the sensors and actuators applied in connec-
tion with controller reconfiguration. The controller archi-
tecture shown in Figs. 6 or 7 needs to be extended to han-
dle the case where additional sensors and actuators can be
applied. The change of the sets of sensors and actuators
applied needs to be handled through the free transfer ma-
trix Q in the controller. This is because we do not want
to change the nominal (safe-mode) controller as it should
always be possible to return to this controller.

Let the system G be extended with additional inputs
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Fig. 7. Parameterization of all stabilizing controllers based on
the controller K given by (14).

ua and outputs ya. The general system in (1) is given by

G :
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(19)
The nominal controller for the extended system in

(19) is given by

K :
{

ū =
(

Kuy 0
0 0

)

ȳ, (20)

where

ū =
(

u
ua

)

, ȳ =
(

y
ya

)

.

The free transfer matrix Q in controller parameter-
ization needs to be extended with additional inputs and
outputs for handling the extended system. Q is then given
by

Q :
{ (

η
ua

)

=
(

Qηε Qηya

Quaε Quaya

)(
ε
ya

)

, (21)

where Qηε is the free transfer matrix in the standard con-
troller architecture in Figs. 6 or 7.

The architecture for controller parameterization in
the extended case is shown in Fig. 8. A more detailed
analysis of controller parameterization for this case is
given in connection with controller reconfiguration in Sec-
tion 7.

3.1. Closed-loop stability. The stability of the closed-
loop system is discussed briefly here. First, let us consider

G

K

Q

yuua ya

d e

ηε

Fig. 8. Parameterization of all stabilizing controllers for a nom-
inal system G with additional inputs ua and outputs ya.

the connection between the two transfer matrices Q and S.
The interpretation of S can be investigated on the basis of
a general controller parameterization. It turns out that S is
the open-loop transfer matrix from η to ε, i.e., closing the
loop around Q,

S = Fu(JK , Gyu(S)), (22)

where JK is given by

JK =
(

Kuy Kuη

KεuKuy + Kεy KεuKuη

)

,

see (14). As a direct consequence of (22), the stability of
the closed-loop system can be analyzed using Q and S.

The closed-loop system shown in Fig. 9 is not guar-
anteed to be stable by requiring that Q and S be stable
transfer matrices. Using the relation in (22), it can be
shown that the closed-loop system shown in Fig. 9 is sta-
ble if, and only if, the nominal feedback loop given by
(Gyu, Kuy) and the feedback loop given by (Q, S) are
both stable. This is shown in Fig. 10. This result was
also shown by Tay et al. (1997), who applied the YJBK
parameterization.

Gyu(S)

Kuy(Q)

yu

Fig. 9. Closed-loop feedback system including a parameteriza-
tion of all stabilizing controllers Kuy(Q) and S that de-
scribe a parameterization of all systems Gyu(S).
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Fig. 10. Two closed-loop feedback systems occur from con-
troller parameterization and a system change.

4. Fault diagnosis

The fault diagnosis part of the FTC architecture is con-
sidered in this section. The reliability of the final FTC
controller depends strongly on that of the diagnosis part.
The controller reconfiguration depends on the information
from the diagnosis.

The main focus in this section is on Active Fault Di-
agnosis (AFD). This area has been considered in a num-
ber of papers (Campbell et al., 2000; 2002; Campbell
and Nikoukhah, 2004b; Kerestecioglu and Zarrop, 1994;
Niemann, 2006b; Nikoukhah, 1994; 1998; Nikoukhah
et al., 2000; Poulsen and Niemann, 2008) and books
(Campbell and Nikoukhah, 2004a; Kerestecioglu, 1993;
Zhang, 1989).

AFD is based on inclusion of an auxiliary (test) in-
put signal into the system. The auxiliary input can be in-
jected into either the open-loop system or in the closed-
loop system. As output from the diagnosis system, a stan-
dard residual signal known from the passive FDI approach
is applied (Frank and Ding, 1994). Using the AFD ap-
proach of Niemann (2005; 2006b), as well as Poulsen and
Niemann (2008), the auxiliary input is injected into the
closed-loop system in such a way that the residual is de-
coupled from the auxiliary input in the nominal case. In
the event of parametric faults (system changes), the resid-
ual will contain a component related to the auxiliary input.

4.1. Active fault diagnosis set-up. An AFD set-up
based on controller parameterization in Section 3 is shown
in Fig. 11, where η is an excitation/auxiliary input vector
and ε is the error/residual vector.

By suitable selection of Kuη , it is possible to change
the placement of the auxiliary input vector η in the AFD
set-up shown in Fig. 11. By selecting Kuη = I , the aux-
iliary input is injected at the output point of the controller,
i.e.,

u = Kuyy + η.

Using Kuη = Kuy gives an injection at the input point of
the controller, i.e.,

u = Kuy(y + η).

G

Kuy

Kuη

yu

d e

Kεu Kεy

ε

η

Fig. 11. Controller structure including the residual vector ε and
the auxiliary input vector η.

From (17), we have directly that the connection be-
tween d, η, and ε is given by

ε = Pεd(θ)d + S(θ)η. (23)

This means that not only do we have a relation between η
and ε as a function of the parametric faults (system varia-
tions), but we also have a relation with the closed-loop sta-
bility in the event of parametric faults. A consequence of
this is that the faulty system is closed-loop stable if S(θ)
is stable, as discussed in Section 3.

Consider the closed-loop system shown in Fig. 11
with the two inputs d, η and the two outputs e, ε. Let the
relation between the inputs and outputs be given by

P :
{ (

e
ε

)

=
(

Ped(θ) Peη(θ)
Pεd(θ) S(θ)

)(
d
η

)

, (24)

where

Ped(θ) = Ged(θ)

+ Geu(θ)Kuy(I − Gyu(θ)Kuy)−1Gyd(θ),

Peη(θ) = Geu(θ)(I − KuyGyu(θ))−1Kuη

and Pεd(θ), S(θ) are given by (17).

Only the residual vector ε is important in connection
with AFD. As can be seen from (23) and (24), S(θ) is very
important in connection with the residual vector ε. Equiv-
alent to the definition of fault signature for additive faults
(Massoumnia, 1986), S(θ) will be called the fault signa-
ture matrix for parametric faults (Niemann, 2005; 2006b).
The reason behind it is that both fault detection and fault
isolation using an active method will be based directly on
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the fault signature matrix S(θ). This strong dependency
on S(θ) in connection with FDI is investigated in detail in
the following. Furthermore, the transfer matrix from dis-
turbance d to the residual vector ε is called the disturbance
signature matrix.

Inspired by the passive FDI approach, a parameter-
ization of the residual generators for AFD can be deter-
mined. Parameterization in the AFD case is obtained by
including a stable filter WI at the input vector η and a sta-
ble filter WO at the output vector ε. This approach can
be considered a generalization of the parameterization of
all residual generators in the passive FDI case. The pa-
rameterization of all residual generators in the AFD case
reflects the additional freedom obtained by using an aux-
iliary input vector in the set-up.

Including the pre- and the post-filter in the system
set-up, the closed-loop system given by (24) takes the fol-
lowing form:

PW :
{ (

e
εw

)

=
(

Ped(θ) Peη(θ)WI

WOPεd(θ) SW (θ)

)(
d
ηw

)

,

(25)
where SW (θ) = WOS(θ)WI .

The design of the pre- and post-filter strongly de-
pends on the number of parametric faults, inputs and out-
puts and the disturbance in the system. This will be con-
sidered in more detail in the following.

Finally, let us consider the connection with the pas-
sive FDI approach considered by, e.g., Frank and Ding
(1994). By moving the auxiliary input vector η from the
system shown in Fig. 11, the passive FDI set-up is ob-
tained. It was shown by Frank and Ding (1994) that all
residual vectors εw can be described by

εw = WO(Kεyy + Kεuu) = WOε, (26)

where WO is a stable and proper filter of suitable or-
der. Rewriting (26) by including the controller in the loop
gives (Niemann, 2003)

εw = WOPεdd. (27)

Here it is important to point out that fault detection and
fault isolation are based on the external disturbance d.
This can be seen from (27). A consequence of this is that
parametric faults will not necessarily be detected imme-
diately after the faults have occurred in the system. The
faults need to be observable from ε, which requires that
it be excited by the disturbance input d. If this is not the
case, it will not be possible to detect the faults using a
passive approach.

4.2. Active fault diagnosis. On the basis of the set-up
for active fault diagnosis in the closed-loop system given
in Section 4.1, general conditions for active fault diagnosis

are considered in this section.
We want to set up conditions for both fault detec-

tion and fault isolation based on the fault signature matrix.
However, it is not possible to measure the fault signature
matrix directly, as we only have the input/output vectors
(η, ε) available for the diagnosis. The diagnosis must be
carried out by considering the signature from the auxiliary
input in the residual vector. Isolation between different
fault situations can then only be obtained if it is possible
to separate the associated fault signatures in the residual
vector. This results in requirements for the auxiliary input
vector; it needs to excite the fault signature matrix enough
to separate different fault situations. This is equivalent to
excitation inputs in connection with system identification.

To be more specific, let S(θ, η) be the fault signature
space for a specific input η, i.e.,

εη = S(θ)η ∈ S(θ, η),

where the residual vector ε is separated into a part from
the auxiliary input η and a part from the disturbance d,
i.e.,

ε = εη + εd,

Based on the fault signature space, it is possible to set up
a definition for fault isolation. For a given input η, the two
faults θi and θj are isolable if

S(θi, η) ∩ S(θj , η) = ∅,
∀θi ∈ Θi\0, ∀θj ∈ Θj\0, i �= j.

(28)

(28) gives a separation in the fault signature output space.
An equivalent definition for fault isolation was also given
by Campbell and Nikoukhah (2004a). Fault detection is
also included in the above general definition as a special
case.

In many cases, it will not be possible to make a di-
rect separation on the basis of the residual output space.
Therefore, let the definition of the fault signature space be
generalized to

f(εη, η) = f(S(θ)η, η) ∈ Sf (θ, η), (29)

where f(εη, η) is a linear or a non-linear function of the
auxiliary input η and the signature from the input in the
residual output εη. The function can be, e.g., an evalua-
tion function of the residual vector in a specific frequency
range, in a specific direction, a statistical test, etc. Some
of these functions are applied in the following.

Based on the general definition of by fault signature
space given by (29), the definition of fault detection and
fault isolation given above is still valid.

It is important to point out that the auxiliary input η
must be selected/designed with respect to obtaining a fault
detection and/or a fault isolation. The design of the aux-
iliary input vector is a trade-off between maximizing the
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effect in the residual vector ε for fast detection and mini-
mizing the effect on the external output e. Another impor-
tant aspect in this connection is the design of the two input
and output filters WI and WO . By suitable design of these
two filters, it is possible to simplify both the detection as
well as the isolation problem. This is investigated in the
following.

4.3. Time to detect. The time between a fault occur-
ring in the system to when it is detected and a controller
switches to the safe-mode controller is very critical. The
FTC architecture suggested in Section 1 will allow a fast
switch from the nominal feedback controller to a safe-
mode controller. This leaves the diagnosis part of the ar-
chitecture as the most critical part with respect to time de-
lays. The aspect of time delay in connection with fault di-
agnosis and isolation will not be discussed in further detail
here. A more detailed analysis of the time delay problem
can be found in the work of Stoorvogel et al. (2001).

5. Active fault detection

First, let us consider the fault-detection problem in the
disturbance-free case. Detection is based on the equa-
tion for the residual vector in (23) or (24) with d = 0.
From (23) we have directly that the fault signature matrix
is equal to zero in the fault-free case and non-zero in the
faulty case, i.e.,

S(θ) = 0 for θ = 0
S(θ) �= 0 for θ �= 0.

(30)

Using f(·) as the identity function, we get directly
that the fault signature space in the fault-free case is empty
for all non-zero auxiliary inputs by using the simple ob-
servation from (30). This gives the following condition
for fault detection:

Fault detection:
S(0, η) = 0, ∀η �= 0

S(θ, η) �= 0, ∀η �= 0, for θ �= 0.
(31)

It is clear that using (31) gives a direct fault detec-
tion based on the fault signature space result in a direct
fault detection, i.e., detection based on an empty or a non-
empty fault signature space. The above condition in (31)
is independent of both the auxiliary input and the design
of the two filters WI , WO , assuming that the two filters
are non-zero and stable. Detection based on (31) gives a
complete decoupling of the signature from η in the resid-
ual vector.

In the case where disturbance is included, the simple
conditions cannot be applied directly. The fault signature
space will not be an empty space in the fault-free case due
to the disturbance. It will therefore be necessary to use a

statistical test on the residual vector. This is considered
below.

In the special case, where the number of residual sig-
nals is larger than the number of disturbance signals, i.e.,
p > s, it is possible to design WO such that we get p − s
disturbance-free residual signals in the nominal case. This
means that we can get exact disturbance decoupling in the
residual signals for θ = 0. Following (Saberi et al., 2000),
we have that it is possible to design WO such that

(
εw,1

εw,2

)

= WOPεd(0)d =
(

Pεwd

0

)

d. (32)

With this design of WO, we can use the last p − s resid-
ual signals εw,2 for active fault detection. Note that the
parametric faults will change the system and there will
be no guarantee for disturbance decoupling in the faulty
case. However, this will not change the detectability of
the faults. A non-zero εq,2 will always indicate paramet-
ric faults. Generically, it will be possible to detect all para-
metric faults from εw,2, but there is no guarantee. To see
this, consider the residual vector in the faulty case given
by

(
εw,1

εw,2

)

= WOS(θ)η + WOPεd(θ)d

=
(

SW,1(θ)
SW,2(θ)

)

η +
(

PW,εd,1(θ)
PW,εd,2(θ)

)

d,

(33)

where PW,εd,2(0) = 0. If SW,2(θ) depends on all para-
metric faults, it will be possible to detect all parametric
faults by using εw,2. The auxiliary input vector η just
needs to be selected such that it is possible to see a sig-
nature of η in the residual vector εw,2 in the faulty case,
i.e., the fault signature space needs to be non-empty for all
faults.

5.1. Stochastic active fault detection. In the case
where disturbance is included, the simple conditions can-
not be applied directly. The fault signature space will not
be an empty space in the fault-free case due to the distur-
bance. It will therefore be necessary to use a statistical test
on the residual vector. The detection (isolation) of faults
can then be based on the following hypothesis:

H0 : S(θ) = 0,
H1 : S(θ) �= 0.

(34)

Standard statistical test methods such as CUSUM or
GLR tests can be applied directly, but they will not be
optimal. That would be equivalent to using the passive
fault detection approach.

The statistical test methods must be dedicated to de-
tect if ε includes a signature from a specific, employed
auxiliary input or not. For simplifying this task, it is rele-
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vant to use simple auxiliary inputs. A periodic input will
in general be useful. The output in the residual vector will
also be periodic in the case of parametric faults in the sys-
tem. For optimizing the detection of a periodic signature
in the residual vector, let us only consider the residual vec-
tor at the specific frequency given by

η =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,ω

...
ai,ω

...
am,ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

sin(ω0t) = Aω sin(ω0t), (35)

where Aω is the input vector with the input amplitudes and
the frequency ω0 represents the tuning parameters in the
auxiliary input. The choice of tuning parameters should
also be related to the frequency distribution of noise such
that the signature of the residual is not covered by noise.
However, it is also possible to use other types of auxiliary
inputs than periodic signals. For example, this was done
in the approach used by Campbell and Nikoukhah (2004a)
as well as Zhang (1989).

Using the auxiliary input given by (35), the i-th resid-
ual signal is given by

εi = ξi, ξi ∈ N(0, σ2
i ) (36)

in the nominal case. If the parameter is changed (from
nominal values),

εi = |gi(S(θ), Aω)| sin(ω0t+φi)+ξi, ξi ∈ N(mi, σ̄
2
i ),

(37)
where gi(S(θ), Aω) =

∑p
j=1 Sij(θ)aj,ω and φi are re-

spectively the (non-zero) gain and phase shift through the
fault signature matrix S at the chosen frequency ω0 from η
to the εi. For brevity, we have omitted the dependence on
θ and ω0 in S = S(θ, ω0), φi = φi(θ, ω0), mi = mi(θ)
and σ̄i = σ̄i(θ). In general, mi will be zero. Both the am-
plitude and the phase of the periodic signal in εi depend
on θ and on the chosen frequency, ω0. The periodic signal
in εi is the signature of the periodic auxiliary input η.

Detection of parameter changes is then based on de-
tection of the signature from η in ε. Furthermore, isolation
of parameter changes may be possible from an investiga-
tion of the amplitude and phase of the signature in εi. In
some cases it may be necessary to include more than one
single periodic signal in η in order to isolate different pa-
rameter changes. Here we will only consider a single pe-
riodic auxiliary input vector.

Assume that the auxiliary input vector has been se-
lected, i.e., the amplitude vector Aω and the frequency
ω0 in (35) have been specified. The focus here will be
on how the hypothesis and the alternative in (34) can be
implemented. As mentioned in the previous section, the

approach taken here is to test whether the signature of the
auxiliary input is present in the residual. In order to do so,
the following two signals are formed:

si = εi sin(ω0t), ci = εi cos(ω0t), (38)

where, according to (37) and some trigonometric rela-
tions,

si = |gi(S(θ), Aω)|1
2

(
cos(φi) − cos(2ω0t + φi)

)

+ ξi sin(ω0t),

ci = |gi(S(θ), Aω)|1
2

(
sin(φi) + sin(2ω0t + φi)

)

+ ξi cos(ω0t).
(39)

From this it is clear that in the normal (or the fault-
free) situation

si = ξi sin(ω0t) ∈ N(0, σ2
i sin2(ω0t)),

ci = ξi cos(ω0t) ∈ N(0, σ2
i cos2(ω0t)).

Additionally, the two signals are white when a filter
parameterization is applied. The time average variance is
equal to 1

2σ2
i .

If a change has occurred, then the fault signature ma-
trix, S, will be different from zero and the two detection
signals, si, ci, will have a constant, deterministic compo-
nent

|gi(S(θ), Aω)|1
2

(
cos(φi)
sin(φi)

)

. (40)

This component can be used for detection and isolation.

Besides the mentioned component, the detector sig-
nals will also have a time varying deterministic compo-
nent

|gi(S(θ), Aω)|1
2

(− cos(2ω0t + φi)
sin(2ω0t + φi)

)

, (41)

which on the (time) average is zero. The effect of this
component can be eliminated by means of an averaging
or integration technique such as in the CUSUM method-
ology.

In the literature, the CUSUM technique is normally
connected with detection of changes in the mean and/or
variance in a signal. In the normal situation it is as-
sumed that the signal is white and has a specific mean
or variance (see Basseville and Nikiforov, 1993; Gustafs-
son, 2000). Detection is implementation of a sequential
test in which the inspection data are increased succes-
sively. CUSUM methods are normally based on simple
(specified) hypotheses and simple (specified) alternatives
which have to be given as tuning parameters. The simple



A model-based approach to fault-tolerant control 77

alternative then forms a situation that should be detected.
In a heuristic setting, CUSUM methods can be regarded
as being a test of whether the slope of the integral of the
signal in question is larger than a certain critical value. In
this work we have transformed the problem and we test
whether the mean of the vector (si ci)T has a zero mean
(vector) or has the component given in (40). Introduce the
tuning parameters B and γ. The detection can be imple-
mented as a CUSUM detection given by

d
dt

z =

⎧
⎪⎨

⎪⎩

0 for z = 0 and
δi

σ̄
− γ

2
< 0,

δi

σ̄
− γ

2
otherwise,

(42)

where

δi =

⎛

⎜
⎜
⎝

si

ci

−si

−ci

⎞

⎟
⎟
⎠ , σ̄2

i =
1
2
σ2

i .

The hypothesis H0 is accepted if z is smaller than the
threshold h, i.e.,

z ≤ log(B)
γ

= h,

where the inequality is to be understood component-wise.
The parameter B in this CUSUM detector is related to
the average length between false detections. The other
parameter, γ, is chosen as a typical lower limit for changes
to be detected. Furthermore note that the time average
variance of ci and si has been used in (42).

Normally, the CUSUM detector will not be imple-
mented in the continuous-time version given by (42).
Instead, a discrete-time version will be applied. The
discrete-time version of the CUSUM detector is given by

zt+1 = max
(
0, zt +

( δt

σ1
− 1

2
γ
))

. (43)

For more details, see the work of Poulsen and Niemann
(2008).

6. Active fault isolation

The fault isolation case is more complicated than the de-
tection case. The main reason for this is that the elements
in S(θ) in general depend on more than a single para-
metric fault. This was an advantage in the fault detection
case which makes it easy to detect faults. A consequence
of this is that it is generally impossible to isolate single
parametric faults directly by evaluating single elements in
S(θ). Isolation also depends on which parametric faults
can occur simultaneously and which cannot.

As in the fault detection case, we want to come up
with conditions for fault isolation based directly on the
fault signature matrices S(θ) or SW (θ) with respect to the

associated fault set type, so that it is possible to give sim-
ple fault signature output spaces that can be separated.

In contrast to the detection case, where the detection
condition can be derived on the basis of the general set-up
in Fig. 11, this is not possible for fault isolation. Here,
a more detailed set-up is needed to be able to come up
with conditions for fault isolation. This can be obtained
by using an FTC architecture based on the YJBK param-
eterization described in Appendix. Using the YJBK pa-
rameterization, the transfer matrices given in (14) for the
general parameterization are given by

Kuy = Ṽ −1Ũ ,

Kuη = Ṽ −1,

Kεu = −Ñ,

Kεy = M̃,

(44)

which gives the YJBK parameterization in (77).
Further, let the system G(θ) be described by (1) with

w = θz. The transfer matrices from d and η to ε are given
by (Niemann, 2003; 2006b)

Pεd(θ) = M̃(I − Gywθ(I − Gzwθ)−1GzuUM̃)−1

× (Gyd + Gywθ(I − Gzwθ)−1Gzd),

S(θ) = M̃Gywθ(I − (Gzw + GzuUM̃Gyw)θ)−1

× GzuM

= M̃Gywθ(I − Tzw,clθ)−1GzuM,

(45)

where Tzw,cl is the closed-loop transfer matrix from w to
z. The dimension of S(θ) is p × m, i.e., the same dimen-
sion as Gyu.

Based on these two transfer matrices, conditions for
fault isolation using the active approach are derived in the
following.

6.1. Direct fault isolation. Let us start with direct fault
isolation in the disturbance-free case. Including distur-
bance can be handled in the same way as in the fault de-
tection case considered in the previous section. By direct
fault isolation, we mean that a fault can be isolated directly
by a validation of a certain transfer function in S(θ), if it
is zero or not, equivalent to the detection case considered
above.

First, let the set of all possible faults be divided into
a number of fault sets as described in Section 2, depend-
ing on which faults can occur simultaneously and which
cannot.

Let us consider SW (θ). Using the fact that both
M̃Gyw and GzuM are two stable transfer matrices, it is
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possible to design WI and WO such that

GzuMWI =
(

ΛI

ΞI

)

, WOM̃Gyw =
(

ΛO ΞO

)
,

(46)
where ΛI and ΛO are two stable diagonal matrices of di-
mension m × m and p × p, respectively, and ΞI , ΞO are
two stable transfer matrices of suitable dimensions. Using
WI and WO satisfying (46) in SW (θ) gives directly

SW (θ) =
(

ΛO ΞO

)
θ(I − Tzw,clθ)−1

(
ΛI

ΞI

)

. (47)

Note that, if GzuM is right invertible, we can obtain a
complete diagonalization of GzuM by the design of WI .
Similarly, if M̃Gyw is left invertible, a complete diagonal-
ization of M̃Gyw can be obtained by the design of WO .

Let us assume that the dimension of the residual vec-
tor is greater than or equal to the dimension of the auxil-
iary input vector, i.e., p ≥ m. Furthermore, assume that
ki ≤ p − 1, i = 1, . . . , l, i.e., the number of faults in
the l-th fault sets Ωi is less than the number of residual
signals. Let θ, Tzw,cl and GzuM be rearranged and parti-
tioned into

θ = diag(θΩi , θΩ\i
),

Tzw,cl =
(

Tzw,cl,11 Tzw,cl,12

Tzw,cl,21 Tzw,cl,22

)

,

GzuM =
(

GM,1

GM,2

)

,

where θΩi includes the ki faults in fault set Ωi and θΩ\i

includes the other k − ki parametric faults. Now, let(
ΛO ΞO

)
be partitioned into

(
ΛO ΞO

)
=
(

Λ̃O Ξ̃O

)
,

where dim(Λ̃O) = p × ki. Using the fact that ΛO is a di-
agonal matrix,

(
ΛO ΞO

)
can then be partitioned into

(
ΛO ΞO

)
=
(

Λ̃O,1 Ξ̃O,1

0 Ξ̃O,2

)

, (48)

where dim(Λ̃O,1) = ki × ki. Using WO given by (46),
the fault signature matrix with respect to θΩi is given by

SW,i(θ) =
(

ΛO ΞO

)
(

θΩi 0
0 θΩ\i

)

×
(

I −
(

Tzw,cl,11 Tzw,cl,12

Tzw,cl,21 Tzw,cl,22

)

×
(

θΩi 0
0 θΩ\i

))−1(
GM,1

GM,2

)

WI ,

(49)

where the index i in SW,i(θ) is related to the separation of
Ω into Ωi and Ω\i. In the event of faults, either θΩi �= 0
or θΩ\i

�= 0, but not at the same time. SW,i(θ) in (49) will
be given by

SW,i(θ) =
(

SW,i,1(θ)
SW,i,2(θ)

)

=
(

Λ̃O,1

0

)

θΩi(I − Tzw,cl,11θΩi)
−1GM,1WI

(50)

for θΩi �= 0, or

SW,i(θ) =
(

SW,i,1(θ)
SW,i,2(θ)

)

=
(

Ξ̃O,1

Ξ̃O,2

)

θΩ\i
(I − Tzw,cl,22θΩ\i

)−1GM,2WI

(51)

for θΩ\i
�= 0. Equivalently, l − 1 other output filters are

designed with respect to the other l − 1 fault sets. The
l fault signature matrices SW,i(θ) given by (50) and (51)
can now be used for both fault-set isolation as well as fault
isolation in a specific fault set. The fault-set isolation can
be derived directly by using SW,i,2(θ). From (50), it is
clear that

SW,i,2(θ) = 0 for θ ∈ Ωi, i = 1, . . . , l

If the fault is not included in the given fault set, SW,i,2(θ)
will be non-zero, i.e.,

SW,i,2(θ) �= 0 for θ ∈/ Ωi, i = 1, . . . , l.

The above condition on SW,i,2(θ) will in general be
satisfied, because all elements in Ξ̃O,2 will in general be
non-zero. However, if Ξ̃O,2 includes a single column with
only zeros, it is still possible to get an isolation of the sin-
gle fault sets. It will only require that the fault set isolation
be combined with the isolation of the single faults in the
specific fault set. This aspect is considered later in this
section. Let h(·) be the identity function in the following,
the associated fault signature space for SW,i,2(θ) is given
by SW,i,2(θ, η). Therefore, the condition for fault-set iso-
lation is

Fault-set isolation:

SW,i,2(θ, η) = 0, ∀η �= 0
for θ ∈ Ωi

SW,i,2(θ, η) �= 0, ∀η �= 0
for θ ∈/ Ωi.

(52)

The last step is isolation of the single faults in the iso-
lated fault set Ωi. For simplicity, consider the case where
faults occur in Ω1. Assume that θi in Ω1 is non-zero. This
will give a non-zero element in ΛO,1θΩ1 at the diagonal
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element (i, i), i.e.,

ΛO,1θΩ1 = diag(0, . . . , ξiθi, 0, . . . , 0).

Further, the columns of Tzw,cl,11θΩ1 are given by

Tzw,cl,11θΩi = (0, . . . , tiθi, 0, . . . , 0),

where ti is the i-th column of Tzw,cl,11. This gives

(I − Tzw,cl,11θΩ1)
−1
(:,i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
1i

0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for θi = 0,

(I − Tzw,cl,11θΩ1)
−1
(:,i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,i

...
xi−1,i

xi,i

xi+1,i

...
xk,i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for θi �= 0,

where xς,i are non-zero transfer functions. Combine this
with the diagonal structure in ΛO,1θΩ1 ; the i-th row in
SW,1,1(θ) is only non-zero if θi is non-zero. When two
faults θi and θj have occurred in the system, the i-th and
the j-th row in SW,1,1(θ) will be non-zero, etc. This gives
a complete fault isolation in the fault set based on the fault
signature matrix given by (50).

Let the i-th row of SW,1,1(θ) be given by Si
W,1,1(θ).

The fault isolation conditions are as follows:

Si
W,1,1(θ) �= 0 for θi �= 0,

Sj
W,1,1(θ) = 0 for θi �= 0, θj = 0, i �= j

Following the line from fault-set isolation, let Si
W,1,1(θ, η)

be the associated fault signature space for Si
W,1,1(θ, η).

Based on this, the condition for fault isolation in the fault
set Ω1 is

Fault isolation in Ω1:

Si
W,1,1(θ, η) �= 0, ∀η �= 0

for θi �= 0,

Sj
W,1,1(θ, η) = 0, ∀η �= 0

for θi �= 0, θj = 0, i �= j.
(53)

The complete fault isolation consists of three steps:
a fault detection given by (31), a fault-set isolation given
by (52) and, finally, a fault isolation in a specific fault set
given by (53). This is shown in Fig. 12.

The only problem remaining is when HO,2 includes

WI S(θ) WO,1

WO,l

� � �
�
�

�
�

�

�

ηw η

...

ε

εΩ1,1

εΩ1,2

εΩl,1

εΩl,2

Fig. 12. Fault detection and isolation on the basis of fault occur-
rence in fault sets. Here ε is the residual vector for fault
detection, εΩ1,1 is the residual vector for fault isolation
in the fault set Ω1, εΩ1,2 is the residual signal applied
for isolation of the fault sets, εΩl,1 is the residual vec-
tor for fault isolation in the fault set Ωl, and εΩl,2 is the
residual signal applied for isolation of the fault sets.

a column with only zero elements. A consequence is that
there is a single fault that will not affect the residual output
from SW,Ωi,2η. Assume that this fault belongs to Ωj . If
the fault occurs by itself, there will be no signature from
η in both rΩi,2 and εΩj ,2, i.e., the two fault sets Ωi and
Ωj have been isolated. It might be possible to reject one
of the fault sets directly by using the knowledge about the
residual generators. If this is not possible, the isolation can
then be derived by using the two sets of residual signals
εΩi,1 and εΩj ,1, if ki > 1. The single fault will result
in a number of residual signals in εΩi,1 with a signature
from η, whereas only a single residual signal from εΩj ,1

will include a signature from η. Furthermore, the specific
signal will be known in advance.

Consider the special case where the faults only occur
by themselves, i.e., fault sets of simultaneous occurrence
of property of Type 2. In this case, an isolation of a fault
set is also an isolation of the fault, because the single fault
sets will only include a single fault. The complete fault
isolation consists then only of two steps: a fault detection
given by (31) and a fault isolation given by

Fault isolation:

SW,Ωi,2(θ, η) = 0, ∀η �= 0,
for θi �= 0,

SW,Ωj ,2(θ, η) �= 0, ∀η �= 0
for θi �= 0, i �= j.

(54)

Consider again the fault signature matrix given in
(45); it might be concluded that making the fault isola-
tion by using input filters WI instead of the output filters
WO is dual. This is correct if we only consider SW (θ)
in isolation. If the isolation problem instead is considered
from an input/output point of view, the two cases will not
be dual. The reason is very simple. When the fault isola-
tion is derived by using WI , the isolation is derived by an
investigation of the transfer matrix from the single aux-
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iliary inputs to the residual output. This means that an
auxiliary signal must be applied sequentially on the sin-
gle inputs. Alternatively, different auxiliary inputs can be
applied on the different inputs. The disadvantage with the
first method is that the isolation time will increase. In the
other approach, a number of different detection tests need
to be applied to detect the different signatures from the
inputs.

Let ηi, i = 1, . . . , m be the m auxiliary inputs. They
can be identical or different. Using the same notation as
above, the fault signature matrices in (50) and (51) are
given by

SW,Ω1(θ) =
(

SW,Ω1,1(θ) SW,Ω1,2(θ)
)

= WOGM̃,1(I − θΩ1Tzw,cl,11)−1θΩ1

× ( ΞI,1 0
)

(55)

for θΩ1 �= 0, or

SW,Ω1(θ) =
(

SW,Ω1,1(θ) SW,Ω1,2(θ)
)

= WOGM̃,2(I − θΩ2−l
Tzw,cl,22)−1

× θΩ2−l

(
HI,1 HI,2

)

(56)

for θΩ2−l
�= 0. Furthermore, let the fault signature out-

put space for SW,Ωi(θ)ηj , j = 1, . . . , m be given by
SW,Ωi(θ, ηj). Based on this, the condition for fault-set
isolation is

Fault-set isolation:

SW,Ωi(θ, ηj) = 0, ∀ηj �= 0
j ∈ [ki + 1, m], for θ ∈ Ωi,

SW,Ωi(θ, ηj) �= 0, ∀ηj �= 0
j ∈ [ki + 1, m], for θ ∈/ Ωi.

(57)
The fault isolation is a fault set given by

Fault isolation in Ω1:

SW,Ω1,i(θ, ηi) �= 0, ∀ηi �= 0
for θi �= 0,

SW,Ω1,j(θ, ηj) = 0, ∀ηj �= 0
for θi �= 0, θj = 0, i �= j,

(58)
where SW,Ω1,i(θ, ηi) is the fault signature space for the
auxiliary input ηi.

6.2. Indirect fault isolation. It is important to point
out that the above fault-isolation approach, based on fault
sets, does not give an upper bound on the number of faults
that can be isolated. The limitation is on the number of
faults in the fault sets. It is required that the maximal num-
ber of faults ki in the fault sets satisfies

ki ≤ max{p, m} − 1, i = 1, . . . , l. (59)

If (59) is not satisfied, it is not possible to base the iso-
lation on a decoupling of the signature from the auxiliary
input in specific residual signals. Instead, the fault isola-
tion must be derived indirectly. This can be done by an
investigation of the signature from η in the residual out-
put space. This is not a possibility in the passive fault
isolation case, where the input to the system is not well-
defined and therefore there is not a well-defined signature
in the residual output.

To get fast fault isolation, it is possible to use opti-
mally designed auxiliary inputs, as considered by Camp-
bell and Nikoukhah (2004a). However, a good alternative
to this is again to use simple periodic inputs which give
simple signatures in ε that are easy to detect (Niemann and
Poulsen, 2006). Let us only consider fault sets of simulta-
neous occurrence of property of Type 2 in the following.

Assume that a simple periodic auxiliary input vector
η(ω0) is applied. The residual vector ε(ω0) will also be
periodic with the same frequency. The amplitude and the
phase of single signals in ε(ω0) will depend on θ through
S(θ). The single residual signals can then be investigated
in the complex plane.

Let the residual vector ε(ω0) be given by

εsc(ω0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1

c1

...
si

ci

...
sp

cp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where si and ci are given by (38). The single signals in εsc

will both include a constant part and a time-varying part.
The constant part is given by (40). The directions given
by (40) can now be applied for fault isolation. The nomi-
nal directions for the single faults given by εsc,nom(θi, ω0)
can be calculated. Based on this, the following condition
for isolation is given:

εnom,sc(θi, ω0) × ε̄sc(ω0) = 0 for θi �= 0,
εnom,sc(θi, ω0) × ε̄sc(ω0) �= 0 for θ �= 0, θi = 0,

(60)
where ε̄sc(ω0) is the mean value of εsc(ω0). In theory, an
unlimited number of faults can be isolated. In practice,
it will not be possible to isolate an unlimited number of
faults. The reason is that εsc(ω0) is a non-linear function
of θ. The direction of εsc(ω0) is not constant for different
values of θi. Instead, the isolation needs to be based on
sectors in the complex plane. Then (60) cannot be used
directly. Instead, isolation can be done by

î = arg min
i

εnom,sc(θi, ω0) × ε̄sc(ω0).
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In the general case, where there are p residual signals,
this means that εsc(ω0) is in a 2p dimension space. In the-
ory, it should be possible to isolate 2p − 1 simultaneous
faults, but in practice it will be less. To increase the sig-
nature space further, the auxiliary input can be extended
with other periodic input signals. Using, e.g., an auxiliary
input η with two periodic signals will give two residual
outputs ε(ω0) and ε(ω1) that can be applied for isolation,
i.e., the dimension of the signature space is increased by a
factor of 2.

7. Controller reconfiguration

The controller reconfiguration part of the FTC architec-
ture is considered in this section. The reconfiguration
is based on the diagnosis part, the controller is modified
when faults have been detected or isolated in the system.
The reconfiguration is derived by using the YJBK transfer
matrix Q.

Following the discussion in Section 1, the nominal
feedback controller Kuy is assumed to be a safe-mode
one. The nominal feedback is then obtained by a con-
troller switching using the YJBK parameterization. This
is described in the following.

7.1. Controller switching. One application of the
YJBK parameterization is controller switching, in which
the YJBK transfer matrix Q is used. It is possible to
change the nominal controller Kuy to another stabilizing
controller Kuy,i by suitable selection of Q. Assume the
existence of a co-prime factorization of the system and
the new controller

Gyu = NiM
−1
i = M̃−1

i Ñi, Kuy,i = UiV
−1
i = Ṽ −1

i Ũi

which satisfy the double Bezout equation given in (74).
Then a switching from Kuy to Kuy,i can be obtained by
using Qi given by (Niemann and Poulsen, 2009a; Nie-
mann et al., 2004)

Qi = M−1Mi(ŨiV − ṼiU) = Zi(ŨiV − ṼiU) (61)

or

Qi = Zi

(
Ũi −Ṽi

)
(

V
U

)

in (75). The transfer matrix Zi = M−1Mi is stable,
(Niemann and Poulsen, 2009a; Niemann et al., 2004).
In some special cases, we will have that M = Mi and
N = Ni and therefore with the result Zi = I .

An alternative to (61) is given by

Qi = (Ṽ Ui − ŨVi)Z̃i, (62)

where Z̃i = M̃iM̃
−1.

It should be pointed out that the stability properties

depend on the FTC concept applied. Using the FTC con-
cept described in Section 1, it will be more reasonable to
guarantee closed-loop stability both in the nominal case
as well as in the faulty case. In the latter, only the cen-
tral controller Kuy is applied. The closed-loop system
is stable if the faulty system is stabilized by Kuy . In
the former, where the system is controlled by Kuy(Q),
the closed-loop system is stable if the nominal closed-
loop system given by (Gyu, Kuy) is stable and Q is sta-
ble. If the nominal controller has been applied as the cen-
tral controller, the closed-loop stability of the faulty case
will require that the nominal closed-loop system given by
(Gyu, Kuy) and Q be stable together, and that closed-loop
system (Q, S(θ)) be stable. This is a direct consequence
of the stability result given in Section 3.1.

7.2. Sensor and actuator extension. The controller
architecture considered in Section 1 is based on a general
controller parameterization. This architecture does not di-
rectly allow a change in the sensor and/or actuator config-
uration. A change from a safe-mode or a reliable robust
controller to a controller with high performance will in
many cases also require a change of sensors and/or actua-
tors. To handle this problem, let us consider the extended
system G given by (19), where additional inputs ua and
outputs ya have been included.

On the basis of the partitioned system in (19) and the
feedback controller in (20), the following representation
of the eight co-prime matrices for the partitioned system
and controller can be derived (Niemann, 2006a):

Mext =
(

M M12

0 I

)

, Uext =
(

U 0
0 0

)

,

Next =
(

N N12

N12 N22

)

, Vext =
(

V 0
V21 I

)

,

Ṽext =
(

Ṽ Ṽ12

0 I

)

, Ũext =
(

Ũ 0
0 0

)

,

Ñext =
(

Ñ Ñ12

Ñ21 Ñ22

)

, M̃ext =
(

M̃ 0
M̃21 I

)

,

(63)

where the eight co-prime matrices will satisfy the double
Bezout equation.

This structure can be obtained directly by using an
observer-based feedback controller or by using the state
space description for general controllers given by Nie-
mann (2006a) and Tay et al. (1997). It is important to
point out that a general co-prime factorization of the par-
titioned system and controller will not have this struc-
ture. However, using the equations given above for the
observer-based feedback controller case or the equations
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for a general feedback controller of Tay et al. (1997), it
will always possible to obtain the structure given in (63).

The Bezout equation in (74) for the extended system
described by the co-prime matrices in (63) can be found
in the work of Niemann (2006a). The YJBK parameter-
ized controller given by (75) can now be developed for the
extended system. The controller takes the following form:

Kuy(Qext) = Uext(Qext)Vext(Qext)−1

=
(

K1(0) 0
0 0

)

+ Ṽ −1
ext Qext (Vext + NextQext)

−1 ,

(64)

where the YJBK transfer matrix Qext is given by

Qext =
(

Qεη Qεya

Quaη Quaya

)

, (65)

where Qεη = Q is the YJBK transfer matrix for the orig-
inal controller given by (75), Qεya is the YJBK transfer
matrix related with the additional sensors, Quaη is the
YJBK transfer matrix related with the additional actua-
tors, and Quaya is the YJBK transfer matrix related with
the additional actuators and sensors.

The transfer matrix from η to ε is zero in the nominal
case, (Niemann and Poulsen, 2009b). As a consequence,
the closed-loop transfer matrix will be an affine function
of the Q transfer matrix. Using the feedback controller
given by (64) on the partitioned nominal system G gives
the following closed loop:

e = Gedd + GeuKuy(Qext)(I − GyuKuy(Qext))−1Gydd

= Ted(Qext)d.

(66)

Furthermore, rewriting (66) gives the following equation
for the closed-loop transfer matrix

Ted(Q) = (T1 + T2QεηT3) + GeuM(Qext)Gyd, (67)

where

T1 = Ged+GeuUM̃Gyd, T2 = GeuM, T3 = M̃Gyd

and

M(Qext)

=
(

M̄11(Qext) MQεya + M12Quaya

QuaηM̃ + QuayaM̃12 Quaya

)

,

M̄11(Qext)

= M12QuaηM̃ + MQεyaM̃12 + M12QuayaM̃12

Here we have used the fact that the transfer matrix
from η to ε is zero. This shows that the above closed-loop
transfer matrix is an affine function in the YJBK transfer
matrix Qext when additional sensors and actuators are in-
cluded.

Note that T1 + T2QεηT3 represents the closed-loop
system when only the original measurement y and control
input u are applied.

It is clear from (64) that the controller architecture
will allow the use of other sensors and/or actuators than
the sensors and/or actuators used in connection with the
nominal controller Kuy.

7.3. Controller switching for extended systems. It is
possible to extend (61) or (62) to handle the case where the
two controllers do not apply the same set of sensors and
actuators. This is relevant in connection with optimizing
the closed-loop performance.

Consider the general case where the feedback con-
troller Kuy,i is based on a subset of measurements ȳ as
well as inputs ū given by yi and ui. For simplicity, let yi

and ui be assumed as the last signals in ȳ and ū, respec-
tively, i.e., the feedback controller Kuy,i is given by

ū =
(

0 0
0 Kuy,i

)

ȳ. (68)

Let the associated co-prime factorization of Gyu,i

(the transfer matrix from input ui to output yi) and Kuy,i

be given by

Gyu,i = NiM
−1
i = M̃−1

i Ñi, Ni, Mi, Ñi, M̃i ∈ RH∞,

Kuy,i = UiV
−1
i = Ṽ −1

i Ũi, Ui, Vi, Ũi, Ṽi ∈ RH∞.

(69)

Based on this feedback controller, the associated coprime
matrices in (69) are given by

Mext,i =
(

I 0
Mi,21 Mi

)

, Uext,i =
(

0 0
0 Ui

)

,

Next,i =
(

Ni Ni,12

Ni,12 Ni,22

)

, Vext,i =
(

I Vi,12

0 Vi

)

,

Ṽext,i =
(

I 0
Ṽi,21 Ṽi

)

, Ũext,i =
(

0 0
0 Ũi

)

,

Ñext,i =
(

Ñi Ñi,12

Ñi,21 Ñi,22

)

, M̃ext,i =
(

I M̃i,12

0 M̃i

)

.

(70)

Using these matrices in Qext,i given by (61) results in
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the following:

Qext,i = Zext,i(Ũext,iVext − Ṽext,iUext)

= Zext,i

((
0 0
0 Ũi

)(
V 0
V21 I

)

−
(

I 0
Ṽi,21 Ṽi

)(
U 0
0 0

))

,

Zext,i =
(

M M12

0 I

)−1(
I 0

Mi,21 Mi

)

∈ RH∞.

(71)

Note that the structure in Uext, Vext and in Ũext,i, Ṽext,i

is not the same. Therefore, it is not possible to multiply
the matrices by using the structure.

A special case is when the feedback controller Kuy,i

is only based on ya and ua. Using the co-prime matrices
in (70) and Qext,i given by (61) results in the following:

Qext,i = Zext,i(Ũext,iVext − Ṽext,iUext)

= Zext,i

((
0 0

ŨiV21 Ũi

)

−
(

U 0
Ṽi,12U 0

))

= Zext,i

( −U 0
ŨiV21 − Ṽi,12U Ũi

)

,

Zext,i =
(

M M12

0 I

)−1(
I 0

Mi,21 Mi

)

=
(

M−1(I − M12Mi,21) −M−1M12Mi

Mi,21 Mi

)

∈ RH∞.

(72)

Using the above equation for Qext,i, it is possible to
switch from a nominal feedback controller based on y, u
to a controller based on other sensors and actuators, with-
out decoupling the first controller Kuy. Kuy will still be
included as part of the new feedback controller.

8. Time aspects of the FTC architecture

Some time aspects of the suggested FTC architecture are
discussed in the following. The described FTC architec-
ture includes the following time steps:

1. t ∈ [0, t0[, start-up mode or safe mode. The safe-
mode controller Kuy is applied.

2. t ∈ [t0, tfault[, normal mode. The nominal controller
Kuy(Q) is applied, where Q is the performance part
of the controller shown in Fig. 3. The controller is
running in this mode until faults occur in the system.

3. t ∈ [tfault, tdetection[, the controller Kuy(Q) continues
to run in the normal mode until faults have been de-
tected in the system.

4. t ∈ [tdetection, tisolation[, the controller is running in the
safe mode until the faults have been isolated.

5. t ∈ [tisolation, . . . [, depending on the faults in the sys-
tem, the system will either be closed down or con-
tinue to operate with full or reduced performance.
This is obtained by re-including the performance
controller Q in the feedback controller. A reduced
performance requires a redesign of Q.

The third step is the most critical one in the FTC ar-
chitecture. Here the normal-mode controller is applied on
a faulty system. The time period from the faults first oc-
curring to when the faults are detected, Δt = tdetection −
tfault, is critical. This time period Δt will depend on both
the faults, the systems, and the residual generator and de-
tector applied. An analysis of the transient system re-
sponse in the case of faults when the nominal feedback
controller is applied gives an upper bound on how large
Δt can be accepted. It is not directly a matter of the
closed-loop system being unstable or not, but it is more
a matter of how much the system has moved away from
the nominal operation point. If the faulty system is closed-
loop stable, the system might run into different limitations
that will make it difficult to get the system back to the
normal operation point. Using AFD, it will in some cases
be possible to detect faults before they have affected the
closed-loop system. This could be faults that are slowly
increasing. Here quite a large Δt can be accepted.

The residual generator and change detector need to
be designed with respect to the upper bound on Δt. When
exact fault detection is possible (Saberi et al., 2000), an
upper bound on the time to detection can be derived.
This was done by Stoorvogel et al. (2001), who consid-
ered both the continuous-time as well as the discrete-time
case. In the former, the time to detection can be arbitrar-
ily small. In the latter, the maximal number of samples
required for detection depends on the order of the infinite
zeros in the system.

Normally, a statistical test needs to be applied on top
of a residual generator. Applying the CUSUM method
(Basseville and Nikiforov, 1993), the mean time to de-
tect can be calculated based on the ARL function. The
latter can be applied in connection with both the passive
as well as the active FD approach (Basseville and Niki-
forov, 1993; Poulsen and Niemann, 2008). As a conse-
quence, the mean time between false alarms cannot be
optimized; it will be a result of the selected mean time
to detection.

When faults have been detected, the performance
part of the controller is decoupled by removing Q from the
controller (in Step 4). The faults need to be isolated before
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it is possible to decide whether the system should con-
tinue in operation with reduced performance or whether it
should be closed down. In general, there will not be strong
limitations on the time used for isolation.

9. Closing remarks

A concept for FTC has been suggested in this paper. The
implementation of the FTC architecture has been based on
the YJBK parameterization. Both fault diagnosis as well
as controller reconfiguration can be based on the same set
of signal vectors in the architecture. The architecture al-
lows application of both passive and active fault diagnosis
methods. In connection with the controller reconfigura-
tion, it is shown how it is possible to switch to feedback
controllers using another set of sensors and actuators.
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Appendix

Co-prime factorization

A number of preliminary results for co-prime factorization
and parameterization are given in this appendix.

Co-prime factorization. Let a co-prime factorization of
the system Gyu from (1) and the stabilizing controller
Kuy from (4) be given by

Gyu = NM−1 = M̃−1Ñ , N, M, Ñ, M̃ ∈ RH∞,

Kuy = UV −1 = Ṽ −1Ũ , U, V, Ũ , Ṽ ∈ RH∞,

(73)

where the eight matrices in (73) must satisfy the double
Bezout equation given by (see Tay et al., 1997):

(
I 0
0 I

)

=
(

Ṽ −Ũ

−Ñ M̃

)(
M U
N V

)

=
(

M U
N V

)(
Ṽ −Ũ

−Ñ M̃

)

.

(74)

State space descriptions of the above eight co-prime
matrices can be derived. The standard description is based
on using an observer-based feedback controller (Tay et al.,
1997), but state space descriptions can also be derived for
other types of feedback controllers.

YJBK parameterization. Based on the above co-prime
factorization of the system Gyu and the controller Kuy ,
we can give a parameterization of all controllers that sta-
bilizes the system in terms of a stable transfer matrix Q,
i.e., all stabilizing controllers are given by using a right-
factored form (Tay et al., 1997):

Kuy(Q) = (U+MQ)(V +NQ)−1, Q ∈ RH∞, (75)

or by using a left-factored form:

Kuy(Q) = (Ṽ +QÑ)−1(Ũ+QM̃), Q ∈ RH∞. (76)

Using the Bezout equation, the controller given ei-
ther by (75) or by (76) can be realized as an LFT in the
parameter Q:

Kuy(Q) = Fl

((
UV −1 Ṽ −1

V −1 −V −1N

)

, Q

)

= Fl(JK , Q).
(77)

Dual YJBK parameterization. The dual YJBK param-
eterization gives a parameterization in terms of a stable
transfer matrix S of all systems stabilized by a given
controller. The dual YJBK parameterization was consid-
ered in detail by Niemann (2003), who also described the
connection between the dual YJBK transfer matrix and
changes in the system. The parameterization is given
by Niemann (2003) and Tay et al. (1997):

Gyu(S) = (N +V S)(M +US)−1, S ∈ RH∞, (78)

or by using a left-factored form:

Gyu(S) = (M̃ +SŨ)−1(Ñ +SṼ ), S ∈ RH∞. (79)

An LFT representation of (78) or (79) is given by

Gyu(S) = Fl

((
NM−1 M̃−1

M−1 −M−1U

)

, S

)

= Fl(JG, S).
(80)
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The interpretation of the dual YJBK transfer matrix
S can be investigated from the primal YJBK parameteri-
zation. It turns out that the dual YJBK transfer matrix S
is the open-loop transfer matrix from η to ε, i.e., closing
the loop around Q

S = Fu(JK , Gyu(S)) (81)

equivalent to (22).
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