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INFINITE–DIMENSIONAL SYLVESTER EQUATIONS: BASIC THEORY
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This paper develops a mathematical framework for the infinite-dimensional Sylvester equation both in the differential and
the algebraic form. It uses the implemented semigroup concept as the main mathematical tool. This concept may be
found in the literature on evolution equations occurring in mathematics and physics and is rather unknown in systems and
control theories. But it is just systems and control theory where Sylvester equations widely appear, and for this reason
we intend to give a mathematically rigorous introduction to the subject which is tailored to researchers and postgraduate
students working on systems and control. This goal motivates the assumptions under which the results are developed. As
an important example of applications we study the problem of designing an asymptotic state observer for a linear infinite-
dimensional control system with a bounded input operator and an unbounded output operator.
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1. Introduction

As a motivation for the problem intended to be studied
in this paper we provide the following finite-dimensional
example of an observer design based on the algebraic
Sylvester equation: Let us consider a finite-dimensional
control system described by the state space model

ẋ(t) = Ex(t) + Bu(t), x(0) = x0, (1a)

y(t) = Cx(t), (1b)

where (x(t))t≥0 ⊂ R
n is the state trajectory, (u(t))t≥0 ⊂

R
m is the control, (y(t))t≥0 ⊂ R

p is the output, E ∈
R

n×n, B ∈ R
n×m and C ∈ R

p×n are system matrices.
For the system (1) we can consider the following

asymptotic state observer:

ż(t) = Az(t) + Gy(t) + Hu(t), t ≥ 0, z(0) = z0,
(2)

where A ∈ R
n×n, G ∈ R

n×p, H ∈ R
n×m. One can

show that under suitable assumptions there exists a matrix
M ∈ R

n×n such that

lim
t→∞ ‖z(t)− Mx(t)‖Rn = 0. (3)

If, additionally, this matrix is non-singular, then

lim
t→∞ ‖M−1z(t) − x(t)‖Rn = 0. (4)

Let us notice that differentiation of the observation
error e(t) = z(t)−Mx(t) followed by substitution of (1)
and (2) leads to the differential equation:

ė(t) = Ae(t) + (AM − ME + GC)x(t)
+ (H − MB)u(t), e(0) = z0 − Mx0.

(5)

From this relation it follows that if there exists a matrix
M ∈ R

n×n satisfying the algebraic Sylvester equation

AM − ME = −GC (6)

and the condition H = MB, then the observation error
satisfies the homogeneous differential equation

ė(t) = Ae(t), e(0) = z0 − Mx0. (7)

It is known (Chen, 1984) that, if the matrix A is
asymptotically stable and has no common eigenvalues
with the matrix E, then the matrix equation (6) has a
unique solution M ∈ R

n×n and (3) holds. If, addition-
ally, the pair {−E, C} is observable, then we can choose
a controllable pair {A, G} such that the solution matrix
M ∈ R

n×n is non-singular. In this case also the condi-
tion (4) holds.
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The main goal of this paper is to extend the above ap-
proach to the infinite-dimensional case in which the con-
trol system is described by a state space model of the form
(1), with E and C being unbounded operators, and B
being a bounded operator. It turns out that in this case
the situation becomes extremely complicated and requires
the development of a suitable mathematical framework
within which the problem can be solved. For this pur-
pose it is useful to introduce the implemented semigroup
concept (see, e.g., Alber, 2001; Emirsajłow and Town-
ley, 2005; Phong, 1991) since it is a natural tool to study
the infinite-dimensional algebraic Sylvester equation. In
fact, we will start our considerations with the differential
Sylvester equation of the form

Ż(t) = AZ(t) + Z(t)E + F (t), t ≥ 0, Z(0) = Z0,
(8)

where (Z(t))t≥0, A, E and (F (t))t≥0 are linear opera-
tors acting in infinite-dimensional Hilbert spaces. The rea-
son is that this equation is closely related to the algebraic
Sylvester equation

AZ + ZE + F = 0, (9)

where the solutions Z and F are time-invariant.
The paper is divided into five sections. Section 1

is a short introduction and Section 2 presents the main
results on implemented semigroups. Then in Section 3
we provide all necessary results on infinite-dimensional
Sylvester equations in both the differential and the alge-
braic forms. The main example illustrating the applicabil-
ity of the general results to the observer design problem
is described in Section 4. The paper is concluded with
Section 5 containing some final remarks.

2. Implemented semigroup

In this section we introduce and characterize the notion
of an implemented semigroup (Alber, 2001; Emirsajłow
and Townley, 2005) as the main tool in the analysis of
infinite-dimensional Sylvester equations. In order to state
our results, we need to introduce the following notation
and assumptions:

• HA and HE are Hilbert spaces (identified with their
duals) with scalar products 〈·, ·〉A and 〈·, ·〉E , respec-
tively.

• H := L (HE , HA) is a Banach space of bounded
linear operators from HE into HA with the norm
‖·‖. (H, ‖·‖) stands for L (HE , HA) equipped with
the uniform operator topology (induced by ‖ · ‖) and
(H, τ) stands for L (HE , HA) equipped with the
strong operator topology τ , i.e., the topology induced
by the family of seminorms P = {ph}h∈B1(HE),
where ph(X) = ‖Xh‖A for X ∈ H and h ∈ HE ,
and B1(HE) is an open unit ball in HE .

• A is a linear, unbounded operator on HA gener-
ating a strongly continuous semigroup of operators
(T (t))t≥0 ⊂ L (HA). HA

1 = D(A) is a Hilbert
space with the scalar product 〈·, ·〉A1 = 〈(λI −
A)(·), (λI − A)(·)〉A and the norm ‖ · ‖A

1 , where
λ ∈ ρ(A).

• E is an unbounded linear operator on HE gener-
ating a strongly continuous semigroup of operators
(S(t))t≥0 ⊂ L (HE). As above, we define HE

1 =
D(E).

• HA
−1 is the completion of HA in the norm ‖ · ‖A

−1 =
‖(λI − A)−1(·)‖A induced by the scalar product
〈·, ·〉A−1 = 〈(λI − A)−1(·), (λI − A)−1(·)〉A, where
λ ∈ ρ(A).

• HE
−1 is the completion of HE in the norm ‖ · ‖E

−1 =
‖(λI − E)−1(·)‖E induced by the scalar product
〈·, ·〉E−1 = 〈(λI − E)−1(·), (λI − E)−1(·)〉E , where
λ ∈ ρ(E).

• (T (t))t≥0 ⊂ L (HA) restricts to a strongly con-
tinuous semigroup (T1(t))t≥0 ⊂ L (HA

1 ) and its
generator (A1, D(A1)) is the part of A in HA

1 ⊂
HA. Moreover, (T (t))t≥0 ⊂ L (HA) extends
to a strongly continuous semigroup (T−1(t))t≥0 ⊂
L (HA−1) with generator (A−1, D(A−1)), an exten-
sion of A, where D(A−1) = HA. Analogously,
we introduce (S1(t))t≥0 ⊂ L (HE

1 ) with genera-
tor (E1, D(E1)) and (S−1(t))t≥0 ⊂ L (HE−1) with
generator (E−1, D(E−1)), where D(E−1) = HE .

• H∼ := L (HE
1 , HA

−1) is a Banach space of bounded
linear operators from HE

1 into HA
−1 with the norm ‖ ·

‖∼. (H∼, ‖ · ‖∼ ) stands for L (HE
1 , HA−1) equipped

with the uniform operator topology (induced by
‖ · ‖∼) and (H∼, τ∼ ) stands for L (HE

1 , HA
−1)

equipped with the strong operator topology τ∼, i.e.,
topology induced by the family of seminorms P∼ =
{p∼h }h∈B1(HE

1 ), where p∼h (X) = ‖Xh‖HA
−1

for X ∈
L (HE

1 , HA−1) and h ∈ HE
1 .

Using the two strongly continuous semigroups
(T (t))t≥0 ⊂ L (HA) and (S(t))t≥0 ⊂ L (HE) gen-
erated by A and E, respectively, we can define another
semigroup.

Definition 1. The family (U(t))t≥0 ⊂ L (H), defined as

U(t)X = T (t)XS(t), X ∈ H, t ≥ 0, (10)

is called the implemented semigroup.

It turns out that the family (U(t))t≥0 ⊂ L (H) is a
semigroup and for every X ∈ H it satisfies the continuity
condition U(·)X ∈ C([0,∞); (H, τ)). Such a family is
said to be strongly τ -continuous. In general, this family
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is not a C0-semigroup (strongly ‖ · ‖-continuous in our
terminology) unless both operators A and E are bounded.
Since in infinite-dimensional systems and control theories
the really interesting case is when both A and E are un-
bounded, we confine our interest exclusively to this case.
This is the reason why in order to develop a relatively nice
mathematical framework we have to work with strong op-
erator topologies.

Definition 2. The infinitesimal generator A of the imple-
mented semigroup (U(t))t≥0 ⊂ L (H) is defined as the
limit

AX = τ - lim
t↘0

U(t)X − X

t
, X ∈ D(A), (11)

where D(A) ⊂ H is the domain of A defined as

D(A) =
{
X ∈ H : τ - lim

t↘0

U(t)X − X

t
exists

}
. (12)

In order to get more understanding what the domain
D(A) ∈ H and the generator A look like, we provide the
following results:

(a) X ∈ H belongs to D(A) if and only if the restriction
of X to HE

1 belongs to L (HE
1 , HA

1 ) and an exten-
sion of (AX +XE) ∈ L (HE

1 , HA) to HE belongs
to H.

(b) A has the following explicit representation:

(AX)h = AXh + XEh,

X ∈ D(A), h ∈ HE
1 ,

where by (a) the right-hand side of this equality is
well-defined in HA.

The basic properties of the implemented semigroup
can be summarized as follows:

(c) If X ∈ D(A), then (U(t)X)t≥0 ⊂ D(A) and it
is τ -continuously differentiable in t, i.e., U(·)X ∈
C1([0,∞); (H, τ)), and

d
dt

U(t)X = A(U(t)X) = U(t)(AX), t ≥ 0.

(13)

(d) The domain D(A) is bi-dense in H, which means
that for every X ∈ H there exists a ‖ · ‖-bounded se-
quence (Xn)n∈N ⊂ D(A) which is convergent to X
in (H, τ). It should be emphasized that, in general,
D(A) is not dense in (H, ‖ · ‖).

(e) The operator (A, D(A)) is bi-closed, which means
that for all sequences (Xn)n∈N ⊂ D(A) such that
(Xn)n∈N is ‖ · ‖-bounded and τ - limn→∞ Xn =
X ∈ H and (AXn)n∈N is ‖ · ‖-bounded and
τ - limn→∞ AXn = Y ∈ H we have X ∈ D(A)
and Y = AX .

(f) The following equality holds:

‖U(t)‖L (H) = ‖T (t)‖A‖S(t)‖E , (14)

where t ≥ 0, and, if ω0(T ) is the growth bound of
(T (t))t≥0 ⊂ L (XA), ω0(S) is the growth bound
of (S(t))t≥0 ⊂ L (XE) and ω0(U) is the growth
bound of (U(t))t≥0 ⊂ L (H), then

ω0(U) = ω0(T ) + ω0(S). (15)

(g) The following inclusion holds:

Cω0(T )+ω0(S) ⊂ ρ(A), (16)

where we use the notation

Cω := {λ ∈ C : Re λ > ω},

with ρ(A) denoting the resolvent set of A, while for
λ ∈ Cω0(T )+ω0(S) the resolvent is given by

R(λ,A)X := (λI −A)−1X (17)

=
∫ ∞

0

e−λtU(t)X dt

=
∫ ∞

0

e−λt T (t)XS(t) dt, X ∈ H,

where the integrals are convergent in (H, τ).

• Throughout the rest of the paper we assume that λ ∈
Cω0(T )+ω0(S). This condition is always satisfied for
sufficiently large λ ∈ R.

• H1 = D(A) denotes the Banach space with the norm

‖ X‖1 = ‖(λI − A)X‖, X ∈ D(A). (18)

In H1 we distinguish the uniform operator topology
induced by the norm ‖ · ‖1 and the strong operator
topology τ1 induced by a family of seminorms P1 =
{p1h}h∈B1(HE), where

p1h(X) = ph((λI − A)X) = ‖(λI − A)Xh‖A

for X ∈ D(A) and h ∈ HE .

• On H we define another norm

‖X‖� := ‖R(λ,A)X‖

for X ∈ H and another family of seminorms P� =
{p� h}h∈B1(HE), where

p� h(X) = ph(R(λ,A)X) = ‖(R(λ,A)X)h‖A

for X ∈ H and h ∈ HE , and we let τ� denote the
topology on H induced by the family P�.
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• H−1 is a Banach space defined as the completion of
H understood in the sense of equivalence classes of
‖ · ‖�-bounded and τ�-Cauchy sequences of H. The
norm on H−1 is defined by

‖X‖−1 = sup
p−1 h∈P−1

p−1 h(X), X ∈ H−1,

where P−1 = {p−1h}h∈B1(HE) is a family of semi-
norms p−1 h on H−1 defined by the limit

p−1 h(X) = lim
n→∞ p� h(Xn), h ∈ HE ,

(Xn)n∈N ⊂ H is any ‖ · ‖�-bounded and τ�-Cauchy
sequence from the equivalence class X . In H−1 we
distinguish the uniform operator topology induced by
the norm ‖·‖−1 and the strong operator topology τ−1

induced by a family of seminorms P−1 = {p−1h},
where h ∈ HE . (H−1, ‖ · ‖−1) stands for H−1

equipped with the uniform topology and (H−1, τ−1)
stands for H−1 equipped with the topology τ−1.

One can prove the following useful relations between
spaces H−1 and H:

(h) The topological space (H−1, τ−1) is sequentially
complete on ‖ · ‖−1-bounded sets, and the canonical
injection

(H, τ) ↪→ (H−1, τ−1) (19)

is bi-continuous and bi-dense, where bi-continuity
means that every ‖ · ‖-bounded sequence (Zn)n∈N ⊂
H such that τ - limn→∞ Zn = Z ∈ H is
‖ · ‖−1-bounded and τ−1- limn→∞ Zn = Z , and bi-
denseness means that for every Z ∈ H−1 there exists
a ‖ · ‖−1-bounded sequence (Zn)n∈N ⊂ H which is
τ−1-convergent to Z .

We can now define a natural extension of the imple-
mented semigroup. This extension will play a fundamen-
tal role in our further deliberations.

• (U−1(t))t≥0 ⊂ L (H−1) is a τ−1-continuous semi-
group defined as follows:

U−1(t)X := τ−1- lim
n→∞U(t)Xn

= τ−1- lim
n→∞ T (t)XnS(t), X ∈ H−1,

where (Xn)n∈N ⊂ H is ‖ · ‖−1-bounded and
convergent to X in (H−1, τ−1). Its generator
(A−1, D(A−1)) (cf. Definition 2) has the domain
D(A−1) = H and satisfies the condition

A−1X = AX = AX + XE, X ∈ D(A).

The resolvent R(λ,A−1) ∈ L (H−1) satisfies the
condition R(λ,A−1)X = R(λ,A)X for X ∈ H.
Moreover, we have

ω0(U−1) = ω0(U) = ω0(T ) + ω0(S).

The strongly τ−1-continuous semigroup
(U−1(t))t≥0 ⊂ L (H−1) characterized above is
a natural extension of the implemented semigroup
(U(t))t≥0 ⊂ L (H). Unfortunately, explicit representa-
tions of A−1 and (U−1(t))t≥0 in terms of A, E, (T (t))t≥0

and (S(t))t≥0 (or their extrapolations) are not immedi-
ately obvious and require some justification. In order to
deal with this problem, we explicitly define an imple-
mented semigroup (U∼(t))t≥0 ⊂ L (H∼) whose restric-
tion to H−1 coincides with (U−1(t))t≥0 ⊂ L (H−1).

• (U∼(t))t≥0 ⊂ L (H∼) is an implemented semi-
group on L (H∼) defined as follows:

U∼(t)X := T−1(t)XS1(t), X ∈ H∼ . (20)

It is clear that (U∼(t))t≥0 ⊂ L (H∼) and it is
strongly τ∼-continuous in time. By (A∼, D(A∼))
we denote its generator with the domain D(A∼).

The following results hold:

(i) X ∈ D(A∼) if and only if the restriction of X
to HE

2 = D(E1) belongs to L (HE
2 , HA), i.e.,

D(A∼) ⊂ H∼ ∩ L (HE
2 , HA), and the extension

of (A−1X + XE1) ∈ L (HE
2 , HA

−1) to HE
1 belongs

to H∼. Moreover, operator A∼ admits the following
explicit representation:

(A∼X)h = A−1Xh + XE1h, (21)

where X ∈ D(A∼), h ∈ HE
2 , and the right-hand

side of (21) is well-defined in HA
−1.

(j) We have

ω0(U∼) = ω0(T−1) + ω0(S1) = ω0(T ) + ω0(S)
= ω0(U)

and for λ ∈ Cω0(T )+ω0(S)

R(λ,A∼)X =
∫ ∞

0

e−λtU∼(t)X dt

=
∫ ∞

0

e−λtT−1(t)XS1(t) dt,

where X ∈ H∼ and the integrals are convergent in
(H∼, τ∼).

(k) The canonical injection

(H, τ) ↪→ (H∼, τ∼)

is bi-continuous and bi-dense, where bi-continuity
means that every ‖ · ‖-bounded sequence (Zn)n∈N ⊂
H such that τ - limn→∞ Zn = Z ∈ H is
‖ · ‖∼-bounded and τ∼- limn→∞ Zn = Z , and bi-
denseness means that for every Z ∈ H∼ there exists
a ‖ · ‖∼-bounded sequence (Zn)n∈N ⊂ H which is
τ∼-convergent to Z .
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(l) We have H ⊂ D(A∼), and A∼ admits the following
explicit representation

(A∼X)h = A−1Xh + XEh, (22)

where X ∈ H, h ∈ HE
1 , and equality holds in HA

−1.

(m) Every X ∈ H−1 can be uniquely identified with
an element in H∼ = L (HE

1 , HA−1), i.e., we have
H−1 ⊂ H∼, and the canonical injection

(H−1, τ−1) ↪→ (H∼, τ∼)

is bi-continuous and bi-dense, where bi-continuity
means that every ‖ · ‖−1-bounded sequence
(Zn)n∈N ⊂ H−1 such that τ−1- limn→∞ Zn = Z ∈
H−1 is ‖ · ‖∼-bounded and τ∼- limn→∞ Zn = Z ,
and bi-denseness means that for every Z ∈ H∼ there
exists a ‖ · ‖∼-bounded sequence (Zn)n∈N ⊂ H−1

which is τ∼-convergent to Z .

(n) The following relations hold:

(A−1X)h = (A∼X)h
= A−1Xh + XEh, (23)

where X ∈ H, h ∈ HE
1 ,

(U−1(t)X)h = (U∼(t)X)h
= T−1(t)XS1(t)h, (24)

where X ∈ H−1, t ≥ 0, h ∈ HE
1 ,

(R(λ,A−1)X)h = (R(λ,A∼)X)h

=
∫ ∞

0

e−λtT−1(t)XS1(t)h dt,

where X ∈ H−1, h ∈ HE
1 , and equalities hold

in HA−1.

3. Infinite-dimensional Sylvester equations

In this section we examine infinite-dimensional Sylvester
equations which are in a natural way related to the im-
plemented semigroup. The algebraic Sylvester equation
will play a crucial role in the observer design problem an-
alyzed in the next section. Throughout this section we
assume that

F ∈ H∼ = L (HE
1 , HA

−1).

3.1. Differential Sylvester equation. From (13) it im-
mediately follows that, if Z0 ∈ H1, then the expression

Z(t) = U(t)Z0 = T (t)Z0S(t), t ≥ 0, (25)

satisfies the following conditions:

Z(t) ∈ H1, Ż(t) = A(U(t)Z0) ∈ H, (26)

where t ≥ 0, Z(0) = Z0, which show that (Z(t))t≥0

can be viewed as a solution to the initial value problem
(26). However, the differentiation in (26) is understood in
(H, τ) and, in general, does not make sense in (H, ‖ · ‖).
This means that the notion of a classical strong solution
is inappropriate here since it would require the function
(Z(t))t≥0 to satisfy

Z(·) ∈ C1([0,∞); (H, ‖ · ‖)).
Nevertheless, the expression (25) can still be re-

garded as a strong solution of the initial value problem

Ż(t) = AZ(t), t ≥ 0, Z(0) = Z0 , (27)

but we have to consider this problem on (H, τ) rather
than on (H, ‖ · ‖). As usual we will refer to (27) as
the homogeneous Cauchy problem and, since we have
(Z(t))t≥0 ⊂ H1, then according to basic properties of
the implemented semigroup, we can rewrite the differen-
tial equation (27) in the more explicit form

Ż(t)h = AZ(t)h + Z(t)Eh, t ≥ 0, (28)

where Z(0) = Z0, h ∈ HE
1 , and the equality holds in

HA. In this case we will refer to the differential equation
(28) as the homogeneous differential Sylvester equation.

However, the main aim of this section is to study the
infinite-dimensional differential Sylvester equation with
an unbounded input, i.e.,

Ż(t) = A−1Z(t) + Z(t)E + F (t),
t ≥ 0, Z(0) = Z0,

where Z0 ∈ H, F (·) ∈ C([0,∞); (H∼, τ∼)). In partic-
ular, we study in detail the important case when the in-
put is time-invariant, i.e., F ∈ H∼, and for such inputs
we identify the class of the so-called admissible input ele-
ments. We also use the implemented semigroup approach
to study the algebraic Sylvester equation of the form

ωZ − A−1Z − ZE = F,

where ω > ω0(U) and F ∈ H∼. Our study makes direct
use of the extrapolation (extension) results for the imple-
mented semigroups and is presented in the next section.
Some basic results for the case with a bounded operator
F ∈ H can be also found in the work of Phong (1991).

3.2. Inhomogeneous differential Sylvester equation.
The first goal is to consider the inhomogeneous Cauchy
problem of the form

Ż(t) = A∼Z(t) + F (t), t ≥ 0, Z(0) = Z0 , (29)

where Z0 ∈ H and (F (t))t≥0 ⊂ H∼. Motivated by ap-
plications of (29) in infinite-dimensional systems and con-
trol theory, we are interested in solutions which satisfy
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the condition (Z(t))t≥0 ⊂ H. For an example of applica-
tion of the inhomogeneous differential Lyapunov equation
(Sylvester equation with E = A∗) in an optimal control
problem, see the work of Emirsajłow and Townley (2005).
From some previous results it follows that for Z ∈ H we
have A∼Z = A−1Z , and hence the differential equation
(29) becomes

Ż(t) = A−1Z(t) + F (t), t ≥ 0, Z(0) = Z0 , (30)

and can be written explicitly as

Ż(t)h = A−1Z(t)h + Z(t)Eh + F (t)h, t ≥ 0, (31)

where Z(0) = Z0 , h ∈ HE
1 , and the equality holds

in HA−1. The differential equation (31) is referred to as
the inhomogeneous differential Sylvester equation with an
unbounded input. The term “unbounded input” is justified
by the fact that we are looking for solutions (Z(t))t≥0

with values in H while the input function (F (t))t≥0 is
allowed to take values in a bigger Banach space H∼ which
contains H.

In order to state basic results on the strong solution,
we need the following additional definitions:

• H∼
1 = D(A∼) is a Banach space endowed with the

norm

‖Z‖∼1 := ‖(λI −A∼)Z‖∼, Z ∈ D(A∼), (32)

where λ ∈ Cω0(U).

• On H∼
1 we introduce a topology τ∼

1 induced by
a family of seminorms P∼

1 = {p∼1h(·)}h∈B1(HE
1 ),

where

p∼1h(Z) := p∼h ((λI −A∼)Z)

= ‖((λI −A∼)Z)h‖A
−1, (33)

Z ∈ H∼
1 and h ∈ HE

1 . (H∼
1 , ‖ · ‖∼1 ) stands for H∼

1

endowed with the norm topology. (H∼
1 , τ∼

1 ) stands
for H∼

1 endowed with the topology τ∼
1 .

Definition 3. Let us consider the inhomogeneous Cauchy
problem (29) on the topological space (H∼, τ∼) and as-
sume that Z0 ∈ H and F (·) ∈ C([0,∞); (H∼, τ∼)). A
function (Z(t))t≥0 is said to be a strong solution of (29)
if it satisfies the following conditions:

(i) Z(·) ∈ C1([0,∞); (H∼, τ∼)).

(ii) (Z(t))t≥0 ⊂ H∼
1 for t ≥ 0, Z(0) = Z0 and Ż(t) =

A∼Z(t) + F (t) holds in H∼ for every t ≥ 0.
It is also clear that every function (Z(t))t≥0 which is a
strong solution of (29) also satisfies the condition

Z(·) ∈ C([0,∞); (H∼
1 , τ∼

1 )). (34)

The following theorem characterizes the strong so-
lution of the differential equation (29). A detailed
proof of this result can be found in the work of
Emirsajłow (2005).

Theorem 1. Let F (·) ∈ C1([0,∞); (H∼, τ∼)). Then the
inhomogeneous differential Sylvester equation (31) has a
unique strong solution (Z(t))t≥0 given by the expression

Z(t) = U∼(t)Z0 +
∫ t

0

U∼(t − r)F (r) dr

= T−1(t)Z0S1(t)

+
∫ t

0

T−1(t − r)F (r)S1(t − r) dr. (35)

However, (35) takes values in H∼
1 = D(A∼), which

is larger than H, and an important problem is to charac-
terize inputs F (·) ∈ C([0,∞); (H∼, τ∼)) such that for
every Z0 ∈ H the differential Sylvester equation (31) has
a solution Z(·) ∈ C([0,∞); (H, τ)). In general, it is a
difficult and unsolved problem. However, a very useful
partial solution can be obtained by restating Theorem 1
for the space H−1. Before that, we point out that every
function (F (t))t≥0 such that F (·) ∈ C1([0,∞); (H, τ)),
also satisfies F (·) ∈ C1([0,∞); (H−1, τ−1)), which in
turn implies that F (·) ∈ C1([0,∞); (H∼, τ∼)).

Theorem 2. Let F (·) ∈ C1([0,∞); (H−1, τ−1)) and
Z0 ∈ H. Then the inhomogeneous differential Sylvester
equation (31) has a unique strong solution (Z(t))t≥0

which satisfies the condition

Z(·) ∈ C([0,∞); (H, τ)) ∩ C1([0,∞); (H−1, τ−1))
(36)

and can be expressed in the form

Z(t) = U−1(t)Z0 +
∫ t

0

U−1(t − r)F (r) dr

= T−1(t)Z0S1(t)

+
∫ t

0

T−1(t − r)F (r)S1(t − r) dr. (37)

Since in infinite-dimensional systems and control
theories the most important case of the differential
Sylvester equation (31) corresponds to a time-invariant in-
put F ∈ H∼, we will study this case in greater detail in
the next subsection. In order to be more precise, we are
interested in solutions (Z(t))t≥0 ⊂ H of the differential
equation

Ż(t) = A∼Z(t) + F, t ≥ 0, Z(0) = Z0, (38)

where Z0 ∈ H and F ∈ H∼. From the property (23)
we know that under the assumption (Z(t))t≥0 ⊂ H the
differential equation (38) becomes

Ż(t) = A−1Z(t) + F, t ≥ 0, Z(0) = Z0, (39)

and can be written explicitly as the infinite-dimensional
differential Sylvester equation with an unbounded input
element

Ż(t)h = A−1Z(t)h + Z(t)Eh + Fh, (40)

where h ∈ HE
1 , t ≥ 0, Z(0) = Z0 ∈ H, F ∈ H∼, and

the equality in (40) is understood in HA
−1.
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3.2.1. Admissible input elements. Since F ∈ H∼,
the strong solution of the differential equation (38) (or
the differential Sylvester equation (40)) takes values in
H∼

1 , which is larger than H. From the application point
of view, a very important problem is to characterize all
F ∈ H∼ such that for every Z0 ∈ H Eqn. (40) has a solu-
tion Z(·) ∈ C([0,∞); (H, τ)). Such elements F will be
called admissible input elements by a close analogy with
the concept of admissible control operators known in sys-
tems and control theories. For the latter concept and how
these two issues are related to each other, see, e.g., the
works of Emirsajłow and Townley (2000; 2005).

Since for every Z0 ∈ H we have (U∼(t)Z0)t≥0 =
(U(t)Z0)t≥0 ⊂ H, without loss of generality we can as-
sume Z0 = 0 and restrict our considerations only to the
forced term of the solution. For the sake of simplicity we
introduce a family ((MF )(t))t≥0 ⊂ H∼ defined as fol-
lows:

(MF )(t) :=
∫ t

0

U∼(t − r)F dr

=
∫ t

0

T−1(t − r)FS1(t − r) dr, (41)

where t ≥ 0 and F ∈ H∼.

Definition 4. F ∈ H∼ is said to be an admissible input
element for the differential Sylvester equation (40) if there
exist ε > 0 and C > 0 such that

(MF )(t) ∈ H, t ∈ [0, ε], (42)

sup
0≤t≤ε

‖(MF )(t)‖ ≤ C, (43)

and
τ - lim

t↘0
(MF )(t) = 0. (44)

The above concept of the admissibility of an input
element F ∈ H∼ has the following consequences.

Lemma 1. If F ∈ H∼ is an admissible input element for
the differential equation (40), then we have

(MF )(t) ∈ H, t ≥ 0, (45)

and
(MF )(·) ∈ C([0,∞); (H, τ)). (46)

The proof of this lemma is given in Appendix A.
Before stating the main theorem on the admissibility

of input elements F ∈ H∼, we need the following techni-
cal result.

Lemma 2. For F ∈ H∼ and t ≥ 0, the following identity
holds in H∼:

tF =
∫ t

0

U∼(t − r)F dr − tA∼
∫ t

0

U∼(t − r)F dr

+ A∼
∫ t

0

U∼(t − r)(
∫ r

0

U∼(r − s)F ds) dr,

where all integrals are Riemann τ∼-integrals.

The proof of this lemma is given in Appendix B.
The above lemma allows us to prove the following

important result characterizing all admissible elements.

Theorem 3. F ∈ H∼ is an admissible input element for
the differential equation (38) (equivalently, for the differ-
ential Sylvester equation (40)) if and only if

F ∈ H−1. (47)

Proof.
(Sufficiency) Let λ ∈ ρ(A) and F ∈ H−1. It follows
from the properties of the implemented semigroup that for
t ≥ 0

(λI −A−1)
∫ t

0

U−1(t − r)F dr

= λ

∫ t

0

U−1(t − r)F dr − U−1(t)F + F, (48)

which holds in H−1. Introducing Fλ := R(λ,A−1)F ∈
H and using definition (41), we obtain the following ex-
pression for t ≥ 0:

(MF )(t) =
∫ t

0

U−1(t − r)F dr

= λ

∫ t

0

U(t − r)Fλ dr

− (U(t) − I)Fλ. (49)

This expression shows that (42) holds. In turn, the
relations (43) and (44) also easily follow from (49) if we
use the basic properties of the implemented semigroup
(U(t))t≥0 ⊂ L (H). Thus, according to Definition 4,
F ∈ H−1 is an admissible input element for the differ-
ential equation (38), or equivalently, for the differential
Sylvester equation (40).

(Necessity) Let F ∈ H∼ be an admissible input element.
Lemma 2 for t = 1 yields

F =
∫ 1

0

U∼(1 − r)F dr −A∼
∫ 1

0

U∼(1 − r)F dr

+ A∼
∫ 1

0

U∼(1 − r)(
∫ r

0

U∼(r − s)F ds) dr,

and hence

F = (MF )(1)−A−1((MF )(1))+A−1((MMF )(1)).

Since the right-hand side of this equality belongs to H−1,
so does the left-hand side, i.e., F ∈ H−1. �

The above results lead to the following important
corollary.
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Corollary 1. Let Z0 ∈ H. The inhomogeneous differen-
tial Sylvester equation (40) has a unique strong solution

Z(·) ∈ C([0,∞); (H, τ)) ∩ C1([0,∞); (H−1, τ−1))

(hence also Z(·) ∈ C1([0,∞); (H∼, τ∼))) if and only if
F ∈ H−1, and this solution can be expressed in the form

Z(t) = U(t)Z0 +
∫ t

0

U−1(t − r)F dr

= T (t)Z0S(t)

+
∫ t

0

T−1(t − r)FS1(t − r) dr, t ≥ 0.

We see that the space H−1 plays a crucial role in
analysis of the differential Sylvester equation (40). De-
tailed analysis of this equation leads to very useful results
on the algebraic Sylvester equations, which are dealt with
in the next subsection.

3.3. Algebraic Sylvester equation. For algebraic
Sylvester equations we have the following results.

Proposition 1. Let ω > ω0(U) = ω0(T ) + ω0(S) and
F ∈ H∼. Then the algebraic equation

(ωI −A∼)Z = F, (50)

understood in H∼, or equivalently the Algebraic Sylvester
Equation (ASE)

ωZ − A−1Zh − ZEh = Fh, h ∈ HE
1 , (51)

which holds in HA
−1, has a unique solution Z ∈ H if and

only if
F ∈ H−1, (52)

or, equivalently,

R(ω,A∼)F ∈ H. (53)

Moreover, if the solution Z ∈ H exists, then it is given by
the expression

Z = R(ω,A∼)F
= R(ω,A−1)F

=
∫ ∞

0

e−ωtU−1(t)F dt

=
∫ ∞

0

e−ωtT−1(t)FS1(t) dt.

Proof. Since for λ ∈ Cω0(U) the operator (λI −A−1) is
an isometric isomorphism from H onto H−1 and

(λI −A∼)
∣∣
H = (λI −A−1),

it follows that the equation

(λI −A∼)Z = F ∈ H∼ (54)

has a solution Z ∈ H if and only if F ∈ H−1. More-
over, this solution is always unique. Using the explicit
representation (23), we can rewrite (54) in the form (51).
The condition (53) follows immediately from (54) since
R(λ,A∼) := (λI −A∼)−1 ∈ L (H∼). �

Remark 1. Proposition 1 shows that all elements F ∈
H−1 can be parameterized by the formula

F (Z) = λZ − A−1Z − ZE, Z ∈ H, (55)

where λ ∈ Cω0(U) is a fixed but arbitrary number.

In the very important case when the implemented
semigroup (U(t))t≥0 ⊂ L (H) is uniformly exponen-
tially stable (ω0(U) < 0), we can complement Proposi-
tion 1 as follows.

Corollary 2. Let ω0(U) = ω0(T ) + ω0(S) < 0 and F ∈
H∼. Then the algebraic equation

−A∼Z = F, (56)

understood in H∼, or equivalently the ASE

− A−1Zh − ZEh = Fh, h ∈ HE
1 , (57)

which holds in HA−1, has a unique solution Z ∈ H if and
only if F ∈ H−1. Moreover, if the solution Z ∈ H exists,
then it is given by the expression

Z = (−A∼)−1F (58)

= (−A−1)−1F (59)

=
∫ ∞

0

U−1(t)F dt

=
∫ ∞

0

T−1(t)FS1(t) dt. (60)

Some useful results for the solvability of the alge-
braic Sylvester equation (57) with a bounded operator
F ∈ H based on spectral properties of the operators A
and E in various special cases can be found in the work of
Arendt et al. (1994).

4. Asymptotic observer design

In order to study the infinite-dimensional version of the
observer design problem mentioned in Section 1, we intro-
duce the following additional notation and assumptions:

• The family (S(t))t∈R ⊂ L (HE) = HE is a
strongly continuous group with generator (E, D(E))
and the growth bound ω0(S) defined as follows:

ω0(S)
= inf{ω ∈ R : ∃Mω ≥ 1 :

‖S(t)‖HE ≤ Mωeω|t|, t ∈ R }.
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Consequently, the family (S(t))t≥0 ⊂ HE is
a strongly continuous semigroup with generator
(E, D(E)) and growth bound ω0(S) and the fam-
ily (S(−t))t≥0 ⊂ HE is a strongly continuous semi-
group with generator (−E, D(E)) and growth bound
ω0(S) (see Engel and Nagel, 2000).

• U and Y are additional Hilbert spaces called the out-
put and input spaces, respectively

• B ∈ L (U, HE) is a (bounded) input operator.

• C ∈ L (HE
1 , Y ) is an (unbounded) output operator.

Under the above assumptions, we consider the fol-
lowing infinite-dimensional control system:

ẋ(t) = Ex(t) + Bu(t), x(0) = x0, (61a)

y(t) = Cx(t), (61b)

where (x(t))t≥0 is the state trajectory, (u(t))t≥0 ⊂ U is
the control and (y(t))t≥0 ⊂ Y is the output.

For the system (61) we want to design an asymptotic
state observer based on the same idea as described in Sec-
tion 1 for the finite-dimensional control system. In order
to do that, we consider the following infinite-dimensional
dynamical system:

ż(t) = A−1z(t) + Gy(t) + Hu(t), z(0) = z0, (62)

where (z(t))t≥0 is the state trajectory, under the following
assumptions:

• The family (T (t))t≥0 ⊂ L (HA) = HA is a
uniformly exponentially stable strongly continuous
semigroup with generator (A, D(A)). In this case
the growth bound ω0(T ) is negative, i.e., ω0(T ) < 0.

• G ∈ L (Y, HA
−1) is an (unbounded) output operator.

• H ∈ L (U, HA) is a (bounded) input operator.

Let us notice that for x0 ∈ HE
2 and u(·) ∈

C2([0,∞); U) such that u(0) = 0 the trajectory (x(t))t≥0

and the corresponding output (y(t))t≥0 of the system (61)
enjoy the following regularity:

x(·) ∈ C1([0,∞); HE
1 ), y(·) ∈ C1([0,∞); Y ), (63)

and hence for z0 ∈ HA the trajectory (z(t))t≥0 of the
system (62) satisfies the condition

z(·) ∈ C([0,∞); HA) ∩ C1([0,∞); HA
−1). (64)

In the above considerations HE
2 denotes the domain

of E1 understood as an unbounded operator on HE
1 . The

corresponding definitions of the interpolation spaces HE
k

and HA
k as well as the extrapolation spaces HE

−k and HA
−k

for all k ∈ N may be found in the textbook by Engel and
Nagel (2000).

Under the above assumptions, Eqns. (61) and (62)
may be rewritten in the operator matrix form
[

ẋ(t)
ż(t)

]
=

[
E 0

GC A−1

] [
x(t)
z(t)

]
+

[
B
H

]
u(t),

(65)
where

[
x(0)
z(0)

]
=

[
x0

z0

]
∈ HE

2 × HA, (66)

and
GC ∈ L (HE

1 , HA
−1) = H∼, (67)

and hence the equality (65) is understood in HE × HA
−1

for every t ≥ 0.
In the next step we introduce new state variables

[x(t) e(t)]T defined by
[

x(t)
e(t)

]
=

[
I 0

−M I

] [
x(t)
z(t)

]
, t ≥ 0, (68)

where M satisfies the condition M ∈ L (HE , HA) = H.
This operator is to be chosen in such a way that the system
operator matrix becomes diagonal, i.e.,

[
ẋ(t)
ė(t)

]
=

[
E 0
0 A−1

] [
x(t)
e(t)

]
+

[
B
0

]
u(t),

(69)
where [

x(0)
e(0)

]
=

[
x0

−Mx0 + z0

]
. (70)

One can check that the following holds:
[

I 0
−M I

] [
I 0
M I

]
=

[
I 0
M I

] [
I

−M I

]

=
[

I 0
0 I

]

and hence the original state variables can be recovered by
means of the expression

[
x(t)
z(t)

]
=

[
I 0
M I

] [
x(t)
e(t)

]
, t ≥ 0. (71)

In order to find a suitable operator M ∈ H, we differen-
tiate the relation (68), and then substitute (65) and (71).
After simple manipulations we eventually obtain

[
ẋ(t)
ė(t)

]

=
[

E 0
A−1M − ME + GC A−1

] [
x(t)
e(t)

]

+
[

B
H − MB

]
u(t), (72)

[
x(0)
e(0)

]
=

[
x0

−Mx0 + z0

]
,
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which makes sense in HE × HA
−1 for every t ≥ 0. It

is clear now that Eqn. (72) becomes (69) if the operator
M ∈ H satisfies the following two operator equations:

A−1Mh − MEh = −GCh, h ∈ HE
1 , (73)

where the equality is understood in HA
−1, and

Hw = MBw, w ∈ U, (74)

where the equality is understood in HA. Since (73) has
the form of the algebraic Sylvester equation (57) (with E
replaced by −E), we can use Corollary 2 to see that, if

GC ∈ H−1 (75)

(note that H−1 is now defined by means of the operators
A and −E as opposite to A and E in the general setup of
Sections 2 and 3) and

ω0(T ) + ω0(S) < 0, (76)

then Eqn. (73) has a unique solution M ∈ H given by

M =
∫ ∞

0

T−1(t)GCS1(−t) dt. (77)

In the sequel we assume that the operators A, G and
H satisfy the conditions (75), (76) and (74) (i.e., H is
given by H = MB).

It is easy to notice that under the above assump-
tions we can extend the class of solutions of the sys-
tem (69) by assuming that x0 ∈ HE , z0 ∈ HA and
u(·) ∈ L2

loc(0,∞; U). Understanding the solution of this
system in the mild sense, we obtain

[
x(·)
e(·)

]
∈ C([0,∞); HE) × C([0,∞); HA), (78)

and hence, after taking (71) into account, it follows that
also the mild solution of (65) for x0 ∈ HE , z0 ∈ HA and
u(·) ∈ L2

loc(0,∞; U) satisfies the condition
[

x(·)
z(·)

]
∈ C([0,∞); HE) × C([0,∞); HA). (79)

We can now show that the dynamical system (62)
may become an asymptotic state observer of the system
(61). Since

e(t) = z(t) − Mx(t), t ≥ 0,

and

‖e(t)‖A = ‖T (t)e(0)‖A ≤ C1e
ω1t‖e(0)‖A, t ≥ 0,

(80)
where ω1 is an arbitrary constant satisfying the condition
0 > ω1 > ω0(T ), we get

lim
t→∞ ‖z(t) − Mx(t)‖A = 0. (81)

If, additionally, the operators A and G are such that M ∈
H has a bounded inverse M−1 ∈ L (HA, HE), then for
t ≥ 0 we have M−1e(t) = M−1z(t) − x(t) and the fol-
lowing condition holds:

lim
t→∞ ‖M−1z(t) − x(t)‖E = 0. (82)

This condition means that the system (62) is actually an
asymptotic state observer for the control system (61). The
rate of convergence (82) may be estimated by means of
the inequality

‖M−1z(t) − x(t)‖E

≤ ‖M−1‖L (HA,HE)‖z0 − Mx0‖AC1e
ω1t, t ≥ 0,

and it follows that this convergence may be arbitrarily fast
by a suitable choice of the growth bound ω0(T ) in the
observer (61) (since 0 > ω1 > ω0(T )).

In our considerations we have assumed that the com-
position of operators GC ∈ L (HE

1 , HA−1) = H∼ sat-
isfies the stronger condition (75). It turns out that for
this condition to be satisfied it is sufficient that C ∈
L (HE

1 , Y ) is an admissible output operator for the semi-
group (S(−t))t≥0 ⊂ HE and G ∈ L (Y, HA

−1) is an ad-
missible input operator for the semigroup (T (t))t≥0 ⊂
HA (see Emirsajłow and Townley, 2000; 2005). These
are very reasonable assumptions since in systems and con-
trol theories such conditions are widely explored. More-
over, these assumptions guarantee the well-posedness of
the system {−E, B, C} and the observer {A, H, G}.

In order to show that this is really the case, we prove
the following lemma.

Lemma 3. Let the operator F ∈ H∼ have the form

F := GKC ∈ H∼, (83)

where C ∈ L (HE
1 , Y ), G ∈ L (Y, HA−1), K ∈ L (Y ),

If for some t1 > 0 the operator G ∈ L (Y, HA
−1) satisfies

the condition

‖
∫ t1

0

T−1(t1 − r)Gw(r) dr‖A ≤ b(t1)‖w‖L2(0,t1;Y )

(84)
for w(·) ∈ L2(0, t1; Y ) , i.e., it is input admissible for
the semigroup (T (t))t≥0 ⊂ HA, and the operator C ∈
L (HE

1 , Y ) satisfies the condition

( ∫ t1

0

‖CS1(r − t1)h‖2
Y dr

)1/2

≤ c(t1)‖h‖E (85)

for h ∈ HE
1 , i.e., it is output admissible for the semigroup

(S(−t))t≥0 ⊂ HE , then for arbitrary K ∈ L (Y ) the
following holds:

F = GKC ∈ H−1. (86)
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Proof. The assumptions (84) and (85) imply that

‖
∫ t1

0

U∼(t1 − r)GKC dr h‖A (87)

= ‖
∫ t1

0

T−1(t1 − r)GKCS1(r − t1)h dr‖A

≤ b(t1)‖K‖L (Y )

( ∫ t1

0

‖CS1(r − t1)h‖2
Y dr

)1/2
(88)

≤ b(t1)c(t1)‖K‖L (Y )‖h‖E, h ∈ HE
1 , (89)

and hence the operator ((MGKC)(t))t≥0 ⊂ H∼, de-
fined by

(MGKC)(t) :=
∫ t

0

U∼(t− r)GKC dr, t ≥ 0, (90)

enjoys certain properties. Namely, by extending the in-
equality (89) by continuity to all h ∈ HE , we obtain

(MGKC)(t1) ∈ H,

and, since the functions b(·) and c(·) are non-decreasing
in the interval [0,∞), we have

(MGKC)(t) ∈ H, t ∈ [0, t1],
sup

0≤t≤t1

‖(MGKC)(t)‖ ≤ b(t1)c(t1)‖K‖L (Y ).

Next, by extending the inequality (88) by continuity to all
h ∈ HE , we easily obtain the condition

τ - lim
t↘0

(MGKC)(t) = 0.

According to Definition 4, the above three conditions
mean that the operator F = GKC ∈ H∼ is admissible
for the Sylvester equation (40) and hence it satisfies the
condition (86). �

Finally, we point out that in order to guarantee the ex-
istence of a bounded inverse M−1 ∈ L (HA, HE) of the
operator M ∈ L (HE , HA) one has to choose operators
A and G with the following additional properties:

• There exists γ > 0 such that

‖Mh‖A ≥ γ‖h‖E, h ∈ HE. (91)

• The adjoint operator M∗ ∈ L (HA, HE) satisfies

‖M∗h‖E > 0, (h 
= 0) ∈ HA. (92)

The condition (91) guarantees that M ∈ L (HE , HA)
is injective and has a closed range R(M) = R(M) ⊂
HA. In turn, the condition (92) guarantees that the range
R(M) is dense in HA. Both these conditions together

are equivalent to the fact that M ∈ L (HE , HA) is a bi-
jection and consequently has a bounded inverse M−1 ∈
L (HA, HE).

Using the explicit representation (77) of the operator
M we can rewrite (91) in the more explicit form

‖
∫ ∞

0

T−1(t)GCS1(−t)h dt‖A ≥ γ‖h‖E,

h ∈ HE
1 ,

and (91) in the form

‖
∫ ∞

0

S∗
−1(−t)C∗G∗T ∗

1 (t)h dt‖E > 0,

(h 
= 0) ∈ HA∗
1 ,

where the meaning of the operators ∗ is rather clear.
It seems that examination of the conditions (91) and

(92) for invertibility of the operator M may be feasible if
one works jointly with the Sylvester equation (73) and the
above explicit conditions.

5. Conclusion

This paper provides a basic theory of infinite-dimensional
Sylvester equations and develops a mathematical frame-
work within which we can work out observers for a large
class of infinite-dimensional control systems. It is clear
that there are still problems to be studied. A difficult open
problem it to guarantee the invertibility of the operator M .
In order to achieve this invertibility, effective methods of
how to choose the operators A and G of the observer have
to be developed.

In general, the observer design problem based on the
Sylvester equation (73) and Eqn. (74) has to be viewed
as a problem where operators E, B and C are given and
we are looking for operators A, G and M such that Eqns.
(73) and (74) hold and the conditions (91) and (92) are
satisfied.

On the other hand, infinite-dimensional Sylvester
equations are of its own interests since they appear in sev-
eral other control and systems theoretic problems. For
some finite-dimensional examples we refer to the work
of Gajic and Qureshi (2000). It is worth emphasizing that
the famous Lyapunov equation is just a special case of the
Sylvester equation. It seems that extending the concept of
an implemented semigroup to the time-varying case may
be a promising area of research.

For readers interested in the general mathematical
theory which makes use of implemented semigroups in
analysis of infinite-dimensional Sylvester and Lyapunov
equations we recommend the book by Emirsajłow (2005).
It also covers the problem of bounded perturbations in
both of the Sylvester equations.
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Finally, it should be mentioned that the implemented
semigroup is a special case of the so-called bi-continuous
semigroup studied by Kuehnemund (2001). However,
the level of generality in the discussion of Kuehnemund
(2001) makes the results of little use from the control ap-
plication point of view.
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Appendix A

Proof of Lemma 1

In order to prove (45), let us notice that every t > 0 can be
expressed in the form t = Nσ, where N ∈ N, σ ∈ (0, ε)
and ε is the constant from Definition 4. We have

(MF )(t)

=
∫ Nσ

0

U∼(Nσ − r)F dr

=
N∑

k=1

U∼((N − k)σ)
∫ kσ

(k−1)σ

U∼(kσ − r)F dr

=
N∑

k=1

U∼(N−k)(σ)
∫ σ

0

U∼(σ − r)F dr

=
N−1∑
i=0

U i(σ)(MF )(σ),

which shows that (MF )(t) ∈ H and

‖(MF )(t)‖ ≤
( N−1∑

i=0

‖U(σ)‖ i
L (H)

)
‖(MF )(σ)‖

=
1 − ‖U(σ)‖N

L (H)

1 − ‖U(σ)‖L (H)
‖(MF )(σ)‖,

where
∑N−1

i=0 ‖U(σ)‖ i
L (H) = N if ‖U(σ)‖L (H) = 1.

In turn, to prove (46) let us notice that for t ≥ 0 and
Δ ∈ (0, ε) we have

(MF )(t + Δ) − (MF )(t)

=
∫ t+Δ

0

U∼(t + Δ − r)F dr −
∫ t

0

U∼(t − r)F dr

= (U∼(Δ) − I)
∫ t

0

U∼(t − r)F dr

+
∫ Δ

0

U∼(Δ − r)F dr

= (U(Δ) − I)(MF )(t) + (MF )(Δ). (93)

Since for Δ ↘ 0 the right hand side of (93) is τ -
convergent to zero, we get

τ - lim
Δ↘0

(
(MF )(t + Δ) − (MF )(t)

)
= 0, (94)

which proves the continuity from the right. Furthermore,
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for t > 0 and Δ > 0 such that t − Δ > 0 we have

(MF )(t) − (MF )(t − Δ)

=
∫ t

0

U∼(t − r)F dr −
∫ t−Δ

0

U∼(t − Δ − r)F dr

=
∫ Δ

0

U∼(t − r)F dr

= U∼(t − Δ)
∫ Δ

0

U∼(Δ − r)F dr

= U(t − Δ)((MF )(Δ))
= T (t− Δ)((MF )(Δ))S(t − Δ).

Since for every h ∈ XE we obtain

ph((MF )(t) − (MF )(t − Δ))

= ‖T (t− Δ)((MF )(Δ))S(t − Δ)h‖A

= ‖T (t− Δ)((MF )(Δ))(S(t − Δ) − S(t))h

+ T (t − Δ)((MF )(Δ))S(t)h‖A

≤ ‖T (t− Δ)‖HA

(‖(MF )(Δ)‖‖(S(t − Δ)

− S(t))h‖E + ‖((MF )(Δ))S(t)h‖A
)
, (95)

where (T (t))t≥0 ⊂ HA is locally uniformly bounded and
((MF )(t))t≥0 ⊂ H is uniformly bounded in the neigh-
bourhood of origin, we get

τ - lim
Δ↘0

(
(MF )(t) − (MF )(t − Δ)

)
= 0. (96)

This proves the continuity from the left and thus (94) and
(96) together imply (46).

Appendix B

Proof of Lemma 2

Let (·)′ denote τ∼-differentiation and let all integrals be
understood as Riemann τ∼-integrals, i.e., integrals con-
vergent in (H∼, τ∼). Using integration by parts, we easily
obtain that

∫ t

0

U∼(t − r)F dr

=
∫ t

0

U∼(t − r)(rF )′ dr

= tF + A∼
∫ t

0

rU∼(t − r)F dr, t ≥ 0. (97)

Using integration by parts once again, we also obtain that

∫ t

0

rU∼(t − r)F dr

=
∫ t

0

r
( ∫ r

0

U∼(t − s)F ds
)′dr

= t

∫ t

0

U∼(t − r)F dr

−
∫ t

0

U∼(t − r)(
∫ r

0

U∼(r − s)F ds) dr,

(98)

where t ≥ 0. Since both the terms on the right-hand side
of (98) take values in D(A∼) = H∼

1 , we can substitute
(98) into (97) and obtain Lemma 2.
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