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We discuss basic notions of the ergodic theory approach to chaos. Based on simple examples we show some characteristic
features of ergodic and mixing behaviour. Then we investigate an infinite dimensional model (delay differential equation)
of erythropoiesis (red blood cell production process) formulated by Lasota. We show its computational analysis on the pre-
viously presented theory and examples. Our calculations suggest that the infinite dimensional model considered possesses
an attractor of a nonsimple structure, supporting an invariant mixing measure. This observation verifies Lasota’s conjecture
concerning nontrivial ergodic properties of the model.
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1. Introduction

In the literature concerning dynamical systems we can
find many definitions of chaos in various approaches
(Rudnicki, 2004; Devaney, 1987; Bronsztejn et al., 2004).
Our central issue here will be the ergodic theory appro-
ach. Ergodic theory in general has its origin in physical
systems of a large number of particles, where microsco-
pic chaos leads to macroscopic (statistical) regularity. As
the beginning of ergodic theory, the moment when Bolt-
zmann formulated his famous ergodic hypothesis, in 1868
(see, e.g., Nadzieja, 1996; Górnicki, 2001) or in 1871
(Lebowitz and Penrose, 1973), can probably be conside-
red. For more information about the ergodic hypothesis,
consult also the works of Birkhoff and Koopman (1932)
as well as Dorfman (2001).

2. Ergodic theory and chaos: Basic facts

One of the most fundamental notions in ergodic theory
is that of invariant measure (see Lasota and Mackey,
1994; Fomin et al., 1987; Bronsztejn et al., 2004; Rud-
nicki, 2004; Dawidowicz, 2007), which is a consequence
of Liouville’s theorem (see, e.g., Szlenk, 1982; Landau
and Lifszyc, 2007; Arnold, 1989; Nadzieja, 1996; Dorf-

man, 2001). Transformations (or flows) with an invariant
measure display three main levels of irregular behaviour,
i.e., (ranging from the lowest to the highest) ergodicity,
mixing and exactness. Between ergodicity and mixing we
can also distinguish light mixing, mild mixing and weak
mixing (Lasota and Mackey, 1994; Silva, 2010) and, on
the level similar to exactness, the type of K-flows (or K-
property, K-automorphism) (cf. Rudnicki 1985a; 1985b;
2004; Lasota and Mackey,1994). In this article we will
consider only ergodicity and mixing. First we formalize
these notions and show some simple examples of ergodic
and mixing transformations. Then in Section 3. we analy-
ze an infinite dimensional system which additionally has
interesting medical (hematological) interpretations.

By {St}t≥0 we denote a semidynamical system or a
semiflow on the metric space X , i.e.,

(i) S0(x) = x for all x ∈ X ;

(ii) St(St′(x)) = St+t′(x) for all x ∈ X , and t, t′ ∈ R
+;

(iii) S : X × R
+ → X is a continuous function of (t, x).

By a measure on X we mean any probability measure de-
fined on the σ-algebra B(X) of Borel subsets of X . A
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measure μ is called invariant under a semiflow {St}t≥0,
if μ(A) = μ(S−1

t (A)) for each t ≥ 0 and each A ∈ B.

2.1. Ergodicity. A Borel set A is called invariant with
respect to the semiflow {St}t≥0 if S−1

t (A) = A for all
t ≥ 0. We now denote by (S, μ) a semiflow {St}t≥0 with
an invariant measure μ. The semiflow (S, μ) is ergodic
(we say also that the measure is ergodic) if the measure
μ(A) of any invariant set A equals 0 or 1. Let us now
consider two simple examples.

Example 1. Let S : [0, 2π) → [0, 2π) be a transformation
generating rotation through an angle φ on a circle with
unit radius (see Lasota and Mackey, 1994; Bronsztejn et
al., 2004; Devaney, 1987; Dorfman, 2001):

S(x) = x + φ (mod 2π). (1)

If φ/2π is rational, we can find invariant sets which have
measure different from 0 or 1, and thus S is not ergodic.
However, if φ/2π is irrational, then S is ergodic (for a
proof, see the work of Lasota and Mackey (1994, p. 75)
or Devaney (1987, p. 21)). If we take, e.g., φ =

√
2 and

pick an arbitrary point on the circle, we can observe that
successive iterations of this point under the action of S
will densely fill the whole available space (circle) (see Fig.
1). �

Example 2. To understand better the typical features of
ergodic behaviour, let us consider the following transfor-
mation (see Lasota and Mackey, 1994, p. 68):

S(x, y) = (
√

2 + x,
√

3 + y) (mod 1). (2)

This is an extension of the rotational transformation (1)
on the space [0, 1] × [0, 1] → [0, 1] × [0, 1]. In Fig. 2
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Fig. 1. Normalized (to the probability density function) round
histogram (bars inside the circle) showing that a single
point under the action of the ergodic transformation (1)
with φ =

√
2 fills densely the whole circle.

we can observe the result of the action of S on the en-
semble of 103 points distributed randomly in the area
[0, 0.1] × [0, 0.1]. The transformation (2) shifts the initial
area and does not spread the points over the space. When
we measure the Euclidean distance during iterations be-
tween two arbitrarily chosen close points, we notice that
it is constant (Fig. 2(d)). Thus the popular criterion of cha-
os, i.e., sensitivity to initial conditions, is not a property of
ergodic transformations. Their property is the dense tra-
jectory (we formalize this fact in the last paragraph of this
section). �

One of the most important theorems in ergodic the-
ory is the Birkhoff individual ergodic theorem (Birkhoff,
1931a; 1931b; Birkhoff and Koopman, 1932; Lasota and
Mackey, 1994, Fomin et al., 1987; Szlenk 1982; Dawi-
dowicz, 2007; Nadzieja, 1996; Gornicki, 2001; Dorfman,
2001). Here we cite a popular extension of this theorem
(see Lasota and Mackey, 1994, p. 64; Fomin et al., 1987,
p. 46). Recall that by (S, μ) we denote a semiflow {St}t≥0

with an invariant measure μ.

Theorem 1. (Extension of the Birkhoff theorem) Let
(S, μ) be ergodic. Then, for each μ-integrable function
f : X → R, the mean of f along the trajectory of S is
equal almost everywhere to the mean of f over the space
X , that is,

lim
T→∞

1
T

∫ T

0

f(St(x)) dt =
1

μ(X)

∫
X

f(x)μ(dx), (3)

μ-almost everywhere.

If we substitute f = 1A in Eqn. (3) (1A is the cha-
racteristic function of A) (see Lasota and Mackey, 1994;
Rudnicki, 2004; Dawidowicz, 2007), then the left-hand
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Fig. 2. Iterations of the ergodic transformation (2) acting on an
ensemble of 103 points randomly distributed in [0, 0.1]×
[0, 0.1]: 1st iteration (a), 2nd iteration (b), 3rd iteration
(c), Euclidean metric between two arbitrarily chosen clo-
se points from the ensemble (d).



Ergodic theory approach to chaos: Remarks and computational aspects 261

side of (3) is the mean time of visiting the set A and
the right-hand side is μ(A), and this corresponds to er-
godicity in the sense of Boltzmann, which roughly spe-
aking is the mean time that a particle of a physical sys-
tem spends in some region and it is proportional to its
natural probabilistic measure (Dawidowicz, 2007; Dorf-
man, 2001; Nadzieja, 1996; Górnicki, 2001; Birkhoff and
Koopman, 1932; Lebowitz and Penrose, 1973)

We can see that ergodic behaviour in the “pure” form
does not need to be very irregular and unpredictable. In
fact, an invariant and ergodic measure should have so-
me additional properties to be interesting from the po-
int of view of dynamics. Briefly speaking, it should be
nontrivial—for example, we intuitively understand that to
have interesting dynamics the measure should not be con-
centrated on a single point. According to our knowled-
ge, two approaches to this problem appear in the litera-
ture. In the main ideas, both seem to be similar, but in
the literature exist separately. One is the theory of Pro-
di (1960) (and Foias (1973)), which says that stationa-
ry turbulence occurs when the flow admits nontrivial in-
variant ergodic measure. This theory was strongly de-
veloped by Lasota (1979; 1981) (see also Lasota and
Yorke, 1977; Lasota and Myjak, 2002; Lasota and Sza-
rek, 2004) and further by Rudnicki (1985a; 1988; 2009)
(see also Myjak and Rudnicki, 2002) as well as Dawido-
wicz (1992a; 1992b) (see also Dawidowicz et al., 2007).
Another one uses the notion of SRB (Sinai, Ruelle, Bo-
wen) measures (see, e.g., Bronsztejn et al., 2004; Dorf-
man, 2001; Taylor, 2004; Tucker, 1999). Roughly spe-
aking, both the approaches say that to have interesting dy-
namics the support of the measure should be possibly a
large set.

Let us now assume that X is a separable metric spa-
ce and μ is a probability Borel measure on X such that
supp μ = X . We can state that (see Rudnicki, 2004, p.
727, Proposition 1), if a semiflow (S, μ) is ergodic, then
for μ-almost all x the trajectory St(x), t ≥ 0 is dense.

2.2. Mixing. Now we will consider the notion of mi-
xing, which exhibits a higher level of irregular beha-
viour than ergodicity. The literature says that the con-
cept of a mixing system was introduced by J.W. Gibbs
(see, e.g., Dorfman, 2001, p. 18, 65). A semiflow (S, μ)
is mixing (see, e.g., Lasota and Mackey, 1994; Rudnic-
ki, 2004; Bronsztejn et al., 2004) if

lim
t→∞μ(A ∩ S−1

t (B)) = μ(A)μ(B) for all A, B ∈ B.

(4)
This means that the fraction of points which at t = 0 are
in A and for large t are in B is given by the product of
the measures of A and B in X . Mixing systems are also
ergodic.

Example 3. Let us consider the mixing transformation

(see Lasota and Mackey, 1994, p. 57, pp. 65–68)

S(x, y) = (x + y, x + 2y) (mod 1). (5)

This is an example of the Anosov diffeomorphism
(Anosov, 1963) (see also Bronsztejn et al., 2004, p. 903).
In Fig. 3 we can see the first the fifth and the tenth ite-
ration of the mixing tranformation (5) acting on the en-
semble of 103 points distributed randomly in the area
[0, 0.1] × [0, 0.1]. The points are being spread over the
space and afterwards that transformation is literally mi-
xing these points in the whole space. The Euclidean di-
stance between close points first grows quickly and then
fluctuates irregularly (Fig. 3 (d)). The difference between
the ergodic transformation (2) (cf. Fig. 2) is noticeable.
Typical for mixing is the sensitivity to initial conditions
(we will formalize this fact further on). �

We can say more about the chaoticity of mixing sys-
tems. First let us recall the following definition (Auslander
and Yorke, 1980) (see also Rudnicki, 2004).

Definition 1. The flow is chaotic in the sense of Auslander
and Yorke if

(i) there exists a dense trajectory, and

(ii) each trajectory is unstable.

Instability here means that there exists a constant η > 0
such that for each point x ∈ X and for each ε > 0
there exists a point y ∈ B(x, ε) and t > 0 such that
ρ(St(x), St(y)) > η, where ρ is the metric in X and
B(x, r) is the open ball in X with center x and radius
r > 0. Instability can be also described here as the sensiti-
vity to initial conditions, which is a “popular” criterion of
chaos. Now, with the assumption that X is a separable me-
tric space and μ is a probability Borel measure on X such
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Fig. 3. Iterations of the mixing transformation (5) acting on an
ensemble of 103 points randomly distributed in [0, 0.1]×
[0, 0.1]: 1st iteration (a), 5th iteration (b), 10th iteration
(c), Euclidean metric between two arbitrarly chosen clo-
se points from the ensemble (d).
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that supp μ = X , we can state that (see Rudnicki, 2004,
p. 727, Proposition 1), if a semiflow (S, μ) is mixing, then
the semiflow {St}t≥0 is chaotic in the sense of Auslander
and Yorke.

Example 4. Once again let us consider the mixing trans-
formation (5) from Example 3. Let us consider a corre-
lation coefficient in the form (see de Larminat and Tho-
mas, 1983)

γxy(τ) =
cxy(τ)
σxσy

, τ = 0, 1, 2, . . . , (6)

where

cxy(τ) = lim
N→∞

1
N

N∑
i=1

(xi − x0)(yi+τ − y0(τ)), (7)

x0 = lim
N→∞

1
N

N∑
i=1

xi, y0(τ) = lim
N→∞

1
N

N∑
i=1

yi+τ

(8)

and

σx =

√√√√ lim
N→∞

1
N

N∑
i=1

(xi − x0)2, (9)

σy =

√√√√ lim
N→∞

1
N

N∑
i=1

(yi+τ − y0(τ))2. (10)

Once again the tranformation (5) is acting on the en-
semble of points (this time 104 for higher accuracy). After
a few iterations it reaches the statistical equilibrium on
the ensemble and with further iterations it is “mixing” the
ensemble in the space. We take a sequence xi of the euc-
lidean norms for the ensemble in the equilibrium, so we
have a sequence of 104 values. yi+τ for τ = 0 is the same
as xi and for τ = 1, 2, . . . it forms a sequence for further
iterations. So using the formula (6) we obtain a correla-
tion function where for τ = 0 we have correlation xi with
xi (Fig. 4(c)) and for τ = 1, 2, . . . we have correlation
between xi and yi+τ which is moving away in time. The
result is visible in Fig. 4(a).

We can see that the correlation function (6) for the
ensemble decreases to a value near 0 very quickly (alre-
ady in the 2nd iteration). When we draw the spread of the
ensembles on the space for τ > 0, e.g., τ = 5, we can
see that points are correlated neither linearly nor in any
other way (Fig. 4(d)). Since the mixing transformation is
also ergodic, we can change averages over the ensemble
to averages along a single trajectory. So instead of calcu-
lating a correlation function for the whole ensembles, we
can calculate it for a single trajectory and its time shifts.
The result is presented in Fig. 4(b); we can see that the
correlation functions in both cases (ensemble and single
trajectory) are almost the same. Such a rapid decrease in
correlation is typical for mixing systems (see Bronsztejn
et al., 2004; Rudnicki, 2004; 1988). �
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Fig. 4. Rapid decrease in the correlation for the mixing transfor-
mation (5) for an ensemble of 104 points (a), correlation
for a single trajectory and its time shift (b), spread of po-
ints of the ensemble for τ = 0, i.e., correlation of the
“initial” ensemble with itself (c), spread of points of the
ensemble for τ = 5 (d).

3. Infinite dimensional case
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Fig. 5. Two trajectories of Eqn. (11) for constant initial func-
tions different by 0.0001 of the absolute value of the di-
stance between the values N(t) (a), distance in the su-
premum norm (b), distance in the L1 norm (c).

Let us now consider the delay blood cell production
model formulated by Lasota (1977):
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dN(t)
dt

= −σ ·N(t)+(ρ ·N(t−h))s ·e−γ·N(t−h). (11)

Biological interpretations of this equation have their ori-
gin in the famous research of Ważewska-Czyżewska and
Lasota (1976) into mathematical modelling of the dyna-
mics of erythropoiesis, which is a process of red blood
cells (erythrocytes) formation in the bone marrow. For
further insight into this research, consult the works of
Ważewska-Czyżewska (1983) and Lasota et al. (1981).
N(t) ∈ R is a global number of erythrocytes in blo-
od circulation, σ denotes the destruction rate of cells, ρ
is oxygen demand, γ is the coefficient describing system
excitation and h is the delay time representing the time of
maturation of erythrocytes.

The contribution of parameter s to a biomedical
interpretation can be found in the work of Mitkowski
(2011). According to the authors’ knowledge, the bio-
medical meaning of this parameter has not been expla-
ined in the literature yet. The production function of blo-
od cells in Eqn. (11) (which can be interpreted as a fe-
edback) has the form of the so-called unimodal function.
Briefly speaking, it is a function with one smooth maxi-
mum. Because of such a form of the feedback, Eqn. (11)
may display very complicated dynamics including cha-
os (see Ważewska-Czyżewska, 1983; Mackey, 2007; Liz
and Rost, 2009; Mitkowski, 2011). Biological delay mo-
dels with unimodal nonlinearities were considered also by
Mackey and Glass (1977) as well as Gurney et al. (1980),
who described experimental data of Nicholson (1954).
However, the nonlinearity in Eqn. (11) is more “flexible”
and gives stronger possibilities for applications (for a de-
tailed discussion of this problem, see Mitkowski (2011).

3.1. Conjecture of Lasota. Lasota (1977, p. 248) for-
mulated a conjecture concerning ergodic properties of
Eqn. (11), i.e., let Ch be the space of continuous func-
tions v : [−h, 0] → R with the supremum norm topology.
For some positive values of parameters ρ, h, s and σ, the-
re exists a continuous measure on Ch which is ergodic
and invariant with respect to Eqn. (11). By a continuous
measure we understand here a measure which vanishes at
points (see Lasota, 1977; Lasota and Yorke, 1977) and in
this sense the measure is nontrivial. Thus, according to
our previous discussion, the conjecture concerns the cha-
otic behaviour of Eqn. (11). It might be very difficult to
solve this problem using only mathematical tools. In ge-
neral, according to the authors’ knowledge, there are very
few results where chaos for delay differential equations
was proved using only mathematical tools. One of such
results was given by Walther (1981). Our aim is to investi-
gate Eqn. (11) numerically in order to check if it exhibits
nontrivial ergodic properties.

There is also an interesting historical context of La-
sota’s hypothesis. Ulam (1960, p. 74) (see also Myjak,
2008) posed the problem of the existence of nontrivial in-
variant measures for transformations of the unit interval
into itself defined by a sufficiently “simple” function (e.g.,
a piecewise linear function or a polynomial) whose graph
does not cross the line y = x with a slope in an abso-
lute value less than 1. Later Lasota and Yorke (1973) so-
lved the problem. The conjecture of Lasota for Eqn. (11)
looks like a generalization of Ulam’s conjecture to first
order differential delay equations. This association comes
up during numerical investigations of Lasota’s delay equ-
ation, where we search for a proper “shape” of unimodal
feedback to find nontrivial ergodic properties (see Fig. 7).

3.2. Calculations. Numerical investigations show that
Eqn. (11) exhibits nontrivial ergodic properties for ρ ∈
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Fig. 6. Rapid decrease in the correlation for Eqn. (11) for an
ensemble of 104 trajectories (a), correlation for a single
trajectory and its time shift (b), spread of points of the
ensemble for τ = 0, i.e., correlation of the “initial” en-
semble with itself (c), spread of points of the ensemble
for τ = 50 (d).
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Fig. 7. Range of parameters (shaded area) which generate the
nontrivial ergodic behaviour of the right-hand side of
(11) (a), unimodal feedback function in reference to the
linear destruction rate of the red blood cells (b). In both
the cases the lower bound corresponds to ρ = 0.46 and
the upper to ρ = 0.52.
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[0.46, 0.52], σ = 0.8, s = 8, γ = 1 and a delay of
h > 9. In Fig. 7(a), we can see the range of the right-hand
side F (N) of (11), with the line F (N) = N . The lower
bound of the shaded area corresponds to ρ = 0.46 and
the upper bound to ρ = 0.52. In Fig. 7(b) there is the sa-
me range of parameters but presented in the form of the
unimodal feedback function in reference to the linear de-
struction rate of red blood cells. Ergodic properties sustain
for large values of h (like h = 50); however, the more h
increases, the more trajectory is attracted to 0 and ergodic
properties decay.

We will show now some numerical experiments in-
dicating ergodic properties of Eqn. (11). We choose ρ =
0.46, σ = 0.8, s = 8, γ = 1, i.e., the lower bounds
from Fig. 7(a) and (b). Equation (11) is solved using the
MATLAB solver de23 (see Shampine et al., 2002).

Many important aspects concerning numerical inve-
stigations of probabilistic properties of delay differential
equations were presented by Taylor (2004). Useful direc-
tions for computational analysis of ergodic properties we-
re presented by Lasota and Mackey (1994), Kudrewicz
(1991; 1993, 2007) as well as Ott (1993).

It is obvious that numerically we cannot show ergo-
dic properties on the whole infinite dimensional space. We
want to show that on some subspaces, Eqn. (11) has a
smooth invariant density, which for a large ensemble (see
Fig. 9) of trajectories is equal to the average along all sin-
gle trajectories. That would indicate that the system exhi-
bits basic ergodic properties. After that, using correlation
techniques and examining the unstability of trajectories,
we want to investigate mixing properties. As the state of
Eqn. (11) we will consider a function of an interval of
length h (delay) (see Fig. 8(a)). We will analyze its beha-
viour in subspaces of an infinite dimensional space of its
values. A graphical example of such a subspace is presen-
ted in Fig. 8 (b). It is a six-dimensional space construc-
ted by taking six arbitrary points of the functional state
of Eqn. (11). Another solution is to equip the space Ch

with a proper norm; however, in this article apart, from
one exception (see Fig. 5), we shall not consider this ca-
se. Results of computational analysis of Eqn. (11) in such
spaces can be found in the work of Mitkowski (2011).

3.3. Ergodicity of the flow. Consider Fig. 9, showing
a bunch of trajectories of Eqn. (11). First they evolve quite
regularly but after some time the flow becomes very irre-
gular, we could even say turbulent. Additionally, trajecto-
ries are bounded. Let us take two arbitrary subspaces form
the infinite dimensional space we have introduced previo-
usly, e.g., the most natural space of values N(t) ∈ R and
the space N(t)×N(t− h) (which is often used for delay
differential equations). In Fig. 10 we can observe chosen
moments of evolution of 104 constant initial functions of
Eqn. (11) distributed exponentially on some interval. Fi-
gure 10 (a),(c),(e),(g) shows the evolution on the space

of N(t) ∈ R and Fig. 10(b), (d), (f), (h) on the space
N(t)× N(t− h). After some time the normalized (to the
probability density) histograms (counting the number of
points of the ensemble in the subintervals of the space)
tend to invariant histograms, i.e., some time after simu-
lations they almost do not change their shape. This may
indicate that we have reached some invariant density.

In order to check if this density tends to be smooth,
we could calculate a significantly larger ensemble of tra-
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presentation in the six-dimensional space N(t)×N(t−
h/2)×N(t−h)×N(t−h/5)×N(t−2h/5)×N(t−
9h/10) (b).
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jectories, but then numerical calculations take a lot of time
and become useless. However, we can examine if the flow
exhibits the ergodic property, i.e., if histograms for single
trajectories are similar to that of the ensemble. If that were
true we could construct a histogram for a very long single
trajectory and that would reflect also the average over the
ensemble (see Theorem 1). Indeed, numerical simulations
indicate that Eqn. (11) exhibits this typical property of er-
godic flows; in Figs. 11(a), (b), we have more accurate hi-
stograms for single trajectories. We can see that the higher
the accuracy the smoother the histograms. Each trajectory
is also irregular (see Figs. 11(c), (d)), which is in accor-
dance with the theory discussed in previous sections. The
behaviour of the ensemble on the space N(t) × N(t− h)
(see Figs. 10(b), (d), (f), (h)) as well as that of the single
trajectory on this space (see Figs. 11(b),(d)) may suggest
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Fig. 10. Evolution of the initial exponential distribution of 104

initial constant functions on [−h, 0] in the space of
N(t) at time t = 0 (a), time t = 15 (c), time t = 150
(e), time t = 1000 and in the space N(t) × N(t − h)
(g), time t = 0 (b), time t = 15 (d), time t = 150 (f),
time t = 1000 (h).

that there exists an attractor, which has a significant “vo-
lume”, supporting the invariant ergodic measure.

3.4. Mixing properties of the flow. The flow genera-
ted by Eqn. (11) exhibits also properties typical for mixing
systems. Numerical simulations indicate that each trajec-
tory is unstable. In Fig. 5(a) we can see that the absolute
value of the distance between the values N(t) of two tra-
jectories starting from very close initial functions is fluctu-
ating irregularly. We have marked before that we will not
consider any specific norm in the space, but here we will
make an exception, because the unstability for Eqn. (11) is
much better visible when we equip the space with the su-
premum or L1 norm (see Fig. 5(b),(c)). Additionally, the
correlation for the ensemble and for the single trajectory
and its time shifts decreases rapidly (see Fig. 6), which
is characteristic for mixing systems (see Section 2.2). The
lack of correlation suggests that the attractor does not have
a simple structure. It may also indicate that each trajecto-
ry is turbulent in the sense of Bass (Bass, 1974; Rudnicki,
2004; 1988). Computational results concerning the pro-
blem of turbulence for Eqn. (11) can be found in the work
of Mitkowski (2011).

4. Concluding remarks

We have presented numerical computations suggesting
that the delay differential equation (11) posseses an at-
tractor of a nonsimple structure, supporting an invariant
mixing measure. This verifies the conjecture of Lasota
which, using the language of ergodic theory, poses the
problem of the chaotic behaviour of Eqn. (11).

More computational analysis concerning ergodic
properties of Eqn. (11) as well as new contributions to its
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Fig. 11. Average along a single trajectory in the space of N(t)
(a), in the space N(t) × N(t − h) (b). Time evolution
of a single trajectory (c), the projection onto the space
N(t) × N(t − h) (d).
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biological meaning can be found in the work of Mitkowski
(2011).
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