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The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval time-
varying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which
is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov

functional.
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1. Introduction

Lyapunov quadratic functionals are used to test the sta-
bility of systems, in computation of critical delay values
for time delay systems, in computation of exponential es-
timates for solutions of time delay systems, in calculation
of robustness bounds for uncertain time delay systems, in
calculation of a quadratic performance index for the pro-
cess of parametric optimization for time delay systems.
We construct Lyapunov functionals for a system with a
time delay with a given time derivative.

For the first time such a Lyapunov functional was
introduced by Repin (1965) for the case of linear sys-
tems with one retarded-type delay. The author also de-
livered the procedure for determination of coefficients of
the functional. Duda (1986) used the Lyapunov func-
tional proposed by Repin for calculation of the value of a
quadratic performance index in the process of parametric
optimization for systems with a time delay, and extended
the results to the case of a neutral type time delay system
(Duda, 1988). He also presented a method of determin-
ing the Lyapunov functional for a linear dynamic system
with two lumped retarded type time delays in the general
case with non-commensurate delays and demonstrated a
special case with commensurate delays in which the Lya-
punov functional can be determined by solving a set of or-
dinary differential equations (Duda, 2010a), and showed a
method of determining of the Lyapunov functional for lin-
ear dynamic system with two delays, both of retarded and
neutral types (Duda, 2010b).

Infante and Castelan (1978) based the construc-

tion of the Lyapunov functional on solution of a matrix
differential-difference equation on a finite time interval.
This solution satisfies symmetry and boundary conditions.
Kharitonov and Zhabko (2003) extended the results of In-
fante and Castelan (1978) and proposed a procedure of
construction of quadratic functionals for linear retarded
type delay systems which could be used for robust stabil-
ity analysis of time delay systems. This functional was
expressed by means of a Lyapunov matrix, which de-
pended on the fundamental matrix of a time delay system.
Kharitonov (2005) extended some basic results obtained
for the case of retarded type time delay systems to the case
of neutral type time delay systems, and to neutral type
time delay systems with a discrete and distributed delay
(Kharitonov, 2008). Kharitonov and Hinrichsen (2004)
used the Lyapunov matrix to derive exponential estimates
for solutions of exponentially stable time delay systems.
Kharitonov and Plischke (2006) formulated necessary and
sufficient conditions for the existence and uniqueness of
the delay Lyapunov matrix for the case of a retarded sys-
tem with one delay.

A numerical scheme for construction of Lyapunov
functionals was proposed by Gu (1997). This method
starts with discretisation of the Lyapunov functional. The
scheme is based on Linear Matrix Inequality (LMI) tech-
niques. Fridman (2001) introduced Lyapunov—Krasovskii
functionals for stability of linear retarded and neutral type
systems with discrete and distributed delays, which were
based on an equivalent descriptor form of the original sys-
tem and obtained delay-dependent and delay-independent
conditions in terms of LMIs. Ivanescu et al. (2003) pro-
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ceeded with delay-depended stability analysis for linear
neutral systems, constructed the Lyapunov functional and
derived sufficient delay-dependent conditions in terms of
linear matrix inequalities.

Han (2004a) obtained a delay-dependent stability cri-
terion for neutral systems with a time-varying discrete de-
lay. This criterion was expressed in the form of an LMI
and was obtained using the Lyapunov direct method. Han
(2004b) investigated robust stability of uncertain neutral
systems with discrete and distributed delays, which was
based on descriptor model transformation and the decom-
position technique, and formulated stability criteria in the
form of LMIs. Han (2005a) considered the stability for
linear neutral systems with norm-bounded uncertainties
in all system matrices and derived a new delay-dependent
stability criterion. Neither model transformation, nor the
bounding technique for cross terms is involved in deriva-
tion of the stability criterion. Han (2005b) developed the
discretized Lyapunov functional approach to investigation
of the stability of linear neutral systems with mixed neu-
tral and discrete delays. Stability criteria, which are appli-
cable to linear neutral systems with both small and non-
small discrete delays, are formulated in the form of LMIs.

Han (2009a) studied the problem of stability of linear
time delay systems, both retarded and neutral types, using
the discrete delay IN-decomposition approach to derive
some more general new discrete delay dependent stability
criteria. Han (2009b) employed the delay-decomposition
approach to derive some improved stability criteria for lin-
ear neutral systems and to deduce some sufficient condi-
tions for the existence of the Lyapunov functional for a
system with k-non-commensurate neutral time delays of a
delayed state feedback controller, which ensure asymp-
totic stability and a prescribed H; performance level
of the corresponding closed-loop system. Gu and Liu
(2009) investigated the stability of coupled differential-
functional equations using the discretized Lyapunov func-
tional method and set forth the stability condition in the
form of LMISs, suitable for numerical computation.

This paper presents a method of determining the Lya-
punov functional for a linear time-invariant system with
an interval time-varying delay. The functional is con-
structed for a system with a time-varying delay with a
given time derivative which is calculated on the system
trajectory. We assume that a time derivative of the Lya-
punov functional is a quadratic form. This assumption
enables calculation of the value of the integral quadratic
performance index of parametric optimization of a system
with a time delay. The presented method gives analytical
formulas for the coefficients of the Lyapunov functional.
The novelty of the result lies in the extension of the Repin
method to the system with an interval time-varying delay.
To the best of the author’s knowledge, such extension has
not been reported in the literature. An example illustrating
that method is also presented.

2. Problem formulation

Let us consider a linear system with a time-varying delay,
whose dynamics are described with the equation

dacrigf) = Ax(t) + By (—7(t)),
z(to) = zo € R”, v

Tty = Qe W1,2([_7,_7 O)aRn)v

where we have A, B € R™"; x(t) € R™;, x; €
WLE2([=r,0),R™), 24(0) = z(t+60); t > to; 0 € [-1,0);
7(t) is a time-varying delay satisfying the condition 0 <
7(t) < r;dr(t)/dt # 1;t > tog, where r is a positive
constant. W12([—r,0),IR™) is the space of all absolutely
continuous functions [—r,0) — R™ with derivatives in
L?([—r,0),R™), the space of Lebesgue square integrable
functions on the interval [—r, 0) with values in R™.

The state of the system () is the vector

S(t) = { z(t) ] for t > t. )

Tt
The state space is defined by the formula

X =R" x WH([-r,0),R"). 3)

We define a Lyapunov functional, positive definite
and differentiable, whose derivative computed on the tra-
jectory of the system (I) is negative definite,

V(z(t), xt,t)
= 27 (t)a(t)z(2)
0
/ T ()3 (0 + 7(t)) 2:(0) dO
)

_|_

~

—7(

+ zl (0)6(0 + 7(t),0 +7(t))

\o
\o

T(t

—7(t)
x4 (o)

Q.

odo, “)

fort > to, where a« € C! ([to, 00), R™*™) | «(t) is posi-
tive definite, 3 € C1([0, 7(¢)], R"*"), § € C1(Q,R"*"),
Q={(0,0): 0€[0,7(t)], c€[0,0]}; 0 <7(t) <.
C'! is the space of continuously differentiable functions.

The Lyapunov functional for a time-delay system
with interval time-varying delay defined by @) is more
general than the ones found in the existing literature. To
the best of the author’s knowledge, such a functional has
not been reported in the literature yet.
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3. Determination of the coefficients
of the Lyapunov functional

We compute the derivative of the functional (@) on the tra-
jectory of the system (I)),

dV (x(t), x¢,t)

+5(0,0 +7(1)) (dgit) - 1) ] 24(0)do

+

ol ds (6 + r(t t
/x?(G)[ (+T(d)t,0'—|-7'())
—7(t) 0

96 (0+7(t),0 +71(t))
- Bl

06 (0+7(t), 0+ T(t))] 2¢(0) dod 0

oo
()

for ¢t > ty, where
a € C" ([to, 00), R™*™) ;

g e ([0,7(t),R™™), §eCHQR™M),
Q={(0,0): 0 €0,7(1)], o €[6,0]},
0<7(t) <.

We identify the coefficients of the Lyapunov func-
tional (4) assuming that the derivative (3) satisfies the re-
lationship

AV (x(t), x4, t)

" = —2T(t)Wx(t)

fort > ty, (6)

where W € R"*"™ is a positive definite matrix.
When the relationship (@) holds and we know the

Lyapunov functional, we can easily determine the value
of the square performance index since

J= /xT(t)Wx(t)dt =V (20, ®,t0). (7
to

From Eqns. (3) and (@) we obtain the set of equations

da(t)

ATa(t) + a(t)A + &

+0(r() =-W, (¥)

BT (a(t) + o™ (t)) + 87(0) (dT(t) — 1> =0, (9

dt
ATB(O+7(t)) + w
_ W +6T (0 +7(t),7(1)) =0, (10)
BTB(0+7(t))
+8(0,0+7(2)) (dgff) - 1> =0 db

ds(@+7(t),c +7(t) 00(0+7(t),o0+7(t))

dt 00
20 (0+7(t),0 +7(t)
- py. =0, (12)

fort > tg, 0 € [—7(¢),0], 0 € [0,0], where 0 < 7(¢) < r.

We introduce new variables,

E=0+1(t), (13)
n=o+7(t), (14)

and calculate the derivatives,

do (0 +7(t),0 +7(t))  ddé(€,n)

dt dt
_ 98(& ) d7(t) n 94(&,m) dr(2)

1013 dt on At ’ (15)

(0 +7(t),0c+7(t) 09d(§m) 95 n) (16)
00 7 T

900+ 7(t),0 +7(t)) _ 9(&n) _ 9&m) 44
oo oo on

ds(6 +7(t) _ dB) 06 _ B drt) ¢

dt ode ot de dt
g (0 +7(t)) _ dp(8) 9¢ _ dp() (19)

de d¢e 00 de

aamcs
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The formula (I2) takes the form

a0(&,m) . d0(&,m)
23 on

[970]75 € [OvT(t)]7 ne

=0 (20)
fort > tg, 6 € [-7(t),0], 0 €
[€,7(t)], where 0 < 7(t) < r.
The solution of Eqn. (I2) is given by
§(047(t),0+7(t) =0(5m)
=f&=m=f(0-0) QI

fort > tg,0 € [—7(¢),0],0 € [0,0],0 < 7(t) < r, where
f eCt ([—7", r]’Ran).

Taking (2I)) into account, from Eqn. (TI) we get the

relationship
6(0,0+7(t) = f (=7(t) = 0)
-1
- (1 - d;i’”) BTB(0+7(1)).

(22)
Hence

1= (1— djff))‘ BTA(-¢) (23

for € € [0, 7(¢t)], where 0 < 7(t) <.
From (21)) we obtain

o7 (0 +7(t), 7(1)) = fT(6)

1
_ <1 - d;i“) 47 (—) B.
(24)

We substitute the term (24) into (I0) and obtain

dg (0 + (1))
dt

dr (t)\ B
+(1_ at ) 5T(_9)B_(205')

AT3 (64 7(t)) +

_ 480 +7()
g

Taking (13), (I8) and (19) into account from Eqn.
(23) we get the relationship

A& _ <d7_(t)
dt

— _ - T
= 1) A5

-2
+(dgff)—1) 8T (~¢+7 (1) B (26)

for € € [0, 7(¢t)], where 0 < 7(t) <.
We calculate the derivative of the term 3(—¢§ + 7(¢))

with respect to £ using the relationship (26). We get
a8 (—& +7(1)

d¢
—2
- (dg—i’f) - 1) B7()B
+ (dzlf) _ 1)_ ATR(—¢+7(t)  @7)

for & € [0,7(t)], where 0 < 7(t) <.

In such a way, we get the set of differential equations,

g (€) dr(t)
== (2 -1) amsee

—2

H(T2-1) o om

BEEr) __ (30
aé at

- 1>_26T(€)B

-1
1) ATB -+ ()

(28)
for each fixed t > to, £ € [0,7(t)], where 0 < 7(t) < r.
with the initial conditions 5 (0)and 3 (7 (¢)).

There is a relationship between 5(£) and G(—¢ +
7(t)) such that

BO)| 0 =B(-+7®)] (29)

==

=5

We calculate the derivative of Eqn. (@) with respect
tot,

o (4200 oty L AT (401 )

dt dt dt dt
d2r(t
+67(0) dz(g):o (30)
From Eqn. 26) it follows that
dgro) _ dr) (dr@®) .\
dt — dt dt 1) 804

dt

—2
T (E2 1) B,

€2

From Eqn. (8) we obtain

da(t)
dt

= —ATa(t) — a(t)A = B(r(t)) = W.  (32)

We substitute the terms (3I) and (32) into Eqn. (30,
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and, after calculations, we get

BT[AT (a(t) +a” (t)) + (a(t) + o™ (1)) 4]

+ B7(0) (dr(t)A_ dQT(t)I)

dt dt? (33)
(U2 -1) BT + BT )
=-BT(W+wT").

The matrix «(t) and the initial conditions of the sys-
tem (28)) are obtained by solving Eqns. (33), @) and 29):

BT [AT (a(t) +aT(#) + (at) + " (1)) A}

+AT(0) (dT(t)A B d27(t) I)
-1
(2 -1) BT + 57 )

=-BT(W+WwT"),

(34)

dr(t)
dt

BT (a(t) +a™(t)) + 87(0) ( - 1) =0, (35

BO| oy =BE+T®)] ., 6O

_r(®
§&=—5

Having the solution of the set of differential equa-

tions (28) and taking (13D, 2I) and (23) into account, we
obtain the matrices

BO+7(t) =8| 37

e=0+7(t)’

60 +7(t),0 +7(t))

_ <1 _ dgf))l BTB(c—6) (38)

fort > tg, 0 € [—7(t),0], o € [0,0] where 0 < 7(¢t) < r.

In this way, we have obtained all the parameters of
the Lyapunov functional ().

4. Example

Let us consider the system described by

dz (t)
dt

=ax (t) + bxy (—7 (1)),

x (to) =129 € R, (39)

Z‘to = (I),

t > to; 2, ® € WH2([-r,0),R); 2 (t) € R; a, b € R;
7(t) is a time-varying delay satisfying the condition 0 <
T(t) < r; dr(t)/dt # 1; t > to, where r is positive
constant.

The Lyapunov functional is given by

Vi (t), 2, t)
0
= a(t)z? (t) + / BO+ 7))z (t)x: (0)do

—7(t)
0

0
+ /0/5(9+T(t),a+r(t))xt(0)xt(U)dode.

—7(t)
(40)

‘We obtain the coefficients of the functional as below.

Equation (28)) takes the form
ds(¢)

dé

B(=E+7(1))

fort > to, & € [0,7(¢)], where 0 < 7(¢t) < r.

xl B&) 1 )

The fundamental matrix of the differential equation
(@) is given by

Q
chA¢ +

(42)

aamcs
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where 0s
2 : ot
\/a2 (1 ] dm)) e !
dt
\ — _ 43) 0.4
dr(t) 0.35
1- dt 03
Hence 0%
0.2
B(€) ] { B(0) ] 015
= 44
{ sl—g+70) | “9O sy | @
0.05
fort > to, £ € [0,7(t)], where 0 < 7(¢t) <r. .
We need the initial conditions of the set of differential ° 2 Yime nseo. ’ 0
equations (1) to obtain Fig. 1. Parameter «(t).
0+ 7(t) = ‘ : 45
po+r)=p©|_, . 9 1 s

50 +7(t), 0+ 7(t) = (1 _ dT(t))_ b3 (o — 0).

dt
(46)
for
t> tO;

0 € [-7(t),0], o€]b,0],

where

0<7(t) <.

The initial conditions of the differential equation (4]
and the coefficient a(t) are obtained by solving the set of
equations (34)—@38), which take the following form:

T 27—
daba(t) + (add—f) _d dtgt)) 3(0)

+ <1 - ﬁ) bA(7(t) = —2bw,  (47)

dt

2ba(t) + (d:isf) - 1) 5(0) = 0, (48)
p16(0) + p2B(7(t)) =0, (49)
where
AT (t) a
p1 =ch +
! 2 ()\ (1 _ dzit)
bd i )sh )\TQ(t) 7 (50)
A(1-45)
A
p2 = —ch 7'2(75)
n a . b <h )\T(t).

(-5) (o)
(51)

Figures 1 and 2 show graphs of the functions «(t)

0.8
0.6
0.4

0.2

)

-04 ——
0 0.1 0.2 0.3 0.4 0.5
0<E<t(t)

Fig. 2. Parameter 3(¢).

and (3(£), obtained with a Matlab code, for the given val-
ues of parameters of the system (39).

a=-1, b=—0.5,

) =r (1 exp (-%))  r=05,

The parameter «.(t) is positive for r < 1.25, so we
have obtained a region of stability for the system (39).

w=1,

T=1.

Let us consider the system described by equation
ain a2 z1(t)
a1 az x2(t)

b1 bi2 xy, (—7(1))
ba1  ba2 2, (—7(t)) |’

d!El (t)
dt
dafg (t

~—

(52)
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The Lyapunov functional is defined by
V(J?(t), Lt, t)
t
= [ ri(t)  x2(t) ]{ ann(f) oz

az1(t) o

~
~— —
[I—
—
8 8
N =
—~
~
~— —
[I—

0

+ / [ or(t) aa(t) ]
—7(t)

[ Bi1(0+7(t) P20+ 7(1)) 1 [ 1, (6) 1
X de

Bo1(0 +7(t)) Po2(0+7(1)) x4, (0)
0 0
+4)6/[xt1<0> 21,(0) ]

[ 0110+ 7(t),0 + (1))
X
(521(9 + T(t), o+ T(t))

012(0 + 7(t), 0 + (1))
d22(0 + 7(t), 0 + (1))

Tty (U)
X [ 20, (0) } dodb (53)
for
t>to, 0€[-7(t),0], oel0,0],
where
0<7(t) <.

The set of equations (28) becomes

d col B(€) }
d¢ | col B(—=€ +7(1))

_ col B(€)
=Q [ colp(—+7(1)) | ©Y
for
£elo,7(t)],
where
0<7(t) <r,
Q=[-Q1 Q2], (55)

and @1 and @), are given by (56) and (57), respectively,
while

col B(€) col 5(0
col B(—=€& + 7(t) ] { col B(r ] (58)

for& € [0,7(¢)], where 0 < 7(t) <

We introduce

@amcs

P11 P12 P13 P14 P15 P16 P17 P18
P21 P22 P23 P24 P25 P26 P27 P28
P31 P32 P33 P34 P35 P36 P37 P38
eQT(t)/Q _ | P41 P42 P43 P44 P45 P46 Pa7 P48
P51 P52 P53 P54 P55 P56 P57 P58
P61 P62 P63 Pe4 P65 P66 P67 P68
P71 Pr2 P73 Pr4 P15 Pre Prr P8

P81 P82 P83 P-4 P85 P86 P87 P88 |
(59)

Now we give the formulas for determination of the
set of the initial conditions of the equation (34) and the

matrix a:

col a(t)
Z col 5(0)
col B(7(t))

—2b11w11 — barwiz — ba1wo

—b11wig — br1war — 2ba1waa

= | —2bipwi1 — baowiz — baowos

—b1o2wig — biawar — 2ba2waa
Ogs,1)

where
D Zis Zi3

Z=| Zor Zz2 Ouu |,
O,y Zs2  Zss

di1 di2 diz dig
da1 dap daz doy
d31 d31 d3z dag |’
da1 dap  dsz day

di1 = 4a11b11 + 2a12b21,

d12 = d13 = 2a21b11 + azeba1 + a11ba,
dis = 2a1ba1,

d21 = 2a12b11,

doo = do3 = a11b11 + agebi1 + 2a12ba1,
d2g = 2a21b11 + 4agabay,

d31 = 4a11bia + 2a12b92,

d32 = d33 = 2a21b12 + azebaz + a11b22,
d3s = 2a21b22,

da1 = 2a12b12,

da2 = d43 = a11b12 + az2b12 + 2a12b22,
daqa = 2a21b12 + 4az2bao,

Z12 = [Z112 Z122] )

(60)

(61)

(62)

(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
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ail a1
IO O 0 0
dzm d€122
IO O 0 0
dt dt
ail az1
0 0 T, &0,
dlzlu dta22
0 0 0 GO
) b dt dt
11 21
= 0 0 (56)
< ar) V(@ Y
dt dt
0 0 b1 _ ba1 _
dr(t) 1 dr(t) !
dt dt
b b
12 ] 22 ] 0 0
dr(t) 1 dr(t) B
dt dt
0 b12 b2
2 2
dr(t) 1 dr(t)
dt dt
b1 _ ba1 _ 0 0
dr(t) 1 dr(t) 1
dt dt
0 0 b1 _ bay _
dr®) dr®)
dt dt
b12 _ b2 _ 0 0
dr(t) 1 dr(t) 1
dt dt
0 0 b12 _ bao _
dr(t) 1 dr(t)
dt dt
ail a1
L= T : &) 0 0 7
dt dt
ai2 a22
(D) 0 0 0
dt dt
ail az1
0 0 T, &0,
dt dt
0 0 ai2 a22
dr(t) 1 dr(t) 1
dt dt
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dr(t) S d27(t) dr(t) "
a M ae dt 212
dr(t dr(t d=r(t
lez— di)am di)am— dtg) >
0 0
0 0
(76)
0 0
0 0
2 dr(t d2r(¢ dr(t
Z dsf s - dtg ) di i ’
dr(t) " dr(t) o d27(t)
a2 at P e o
Ziy = 213 23] (78)
1 ba1
bu - R
-1 -1
dt dt
0 b11
23%3 - ’
1 b2
b | 1= T
dt dt
i 0 b1z _
(79)
_ oy 0 i
b11 1
RGO a0 .
dt dt
2123 = b22 0 ’
b1s 1
G SEGE 1
L det det _(80)
2by1 bar by O
0 b1t b 2bo
Zo = 2b12 b2z b2 O ’ 1)
0 bz bz 2b2

Z22

Z32

P11 — Ps1
P21 — Pe1
P31 — P71
Pa1 — Pps1

P15 — P55
P25 — Pes
P35 — P75
P45-P85

P12 — P52
P22 — P62
P32 — P72
Pa2 — Ps2

P16 — P56
P26 — P66
P36 — P76
P46-Ps86

P13 — P53
P23 — P63
P33 — P73
P43 — P83

P17 — P57
P27 — Pe7
P37 — P77
Pa7 — P87

(82)

P14 — P54
P24 — Pe4
P34 — P74
Pasa — Psa
(83)

P18 — P58
P28 — P68
P3s — P78
P48 — P88
(84)

Now we obtain the matrix §(0 + 7(¢), o + 7(t)),

0110+ 7(t),0 + (1))

bll

b

= wﬁn(@ —o)+ 1 (2117—(t B21(6 — o),
T T
(85)
0120+ 7(t),0 + (1))
b11 b21
= 1T(t)512(9 —o)+ 1T(t)ﬂ22(9 —0),
At T
(86)
d21(0 + 7(t), 0 + 7(¢))
b12 b22
wﬁll(e —o)+ 1T(tﬂ21(9 —0),
At T
(87)
d22(0 + 7(t), 0 + (1))
b12 b22
= wﬁlzw —o0)+ wﬁzz(e —0)
At Cdt
(88)

fort > tg, 0 € [—7(t),0], 0 € [0,0], where 0 < 7(¢t) < r.

Figures 3—7 show graphs of the functions a(t), 5(¢),
obtained with a Matlab code, for the following matrices
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A, B, W of the system (32): o
9 T T T T
— a21(t
A -1 0.3 B_ -1 04
105 =2 | 101 -1 |
11
W = { 0 1 ] , (89)
and a time delay given by the function
t
7(t) =7 (1—exp 7))
where r = 0.5, T'= 1.
05 atli(t)
Fig. 5. Parameter 21 (¢).
0.3
— a22(t)
0.28
0.26
0.1 0.24
0 2 4 6 8 10
t 0.22
Fig. 3. Parameter 11 (t). 02
0.18
0.16
0.14
_3“0‘5 0.12
a12(t)
0.1 .
0 2 4 6 8 10
t
Fig. 6. Parameter a2 (t).
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B11E)
. ][ 210
p12)
05 - - B2y
o ==-. -
~05 ST i‘/’: z==
1 =T -
-15 }
-2
" . . . . 25
0 2 4 6 8 10
t -3
0 0.1 0.2 0.3 0.4 0.5

Fig. 4. Parameter a1z (t).

The matrix «(t) is positive definite for < 0.86, so
we have obtained a stability region for the system (32)).

o<e<1()

Fig. 7. Elements of the matrix 3(§).
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5. Conclusions

The paper presented the procedure of determining the co-
efficients of the Lyapunov functional given by the formula
(@ for a linear system with an interval time-varying delay,
described by Eqn. (I). This article extends the method
presented by Repin to the system with an interval time-
varying delay. The presented method allows achieving an-
alytical formulas on the coefficients of the Lyapunov func-
tional which can be used to examine the stability of time
delay systems with an interval time-varying delay and in
the process of parametric optimization for calculation of
the square performance index given by the formula (7).
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