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In this paper, a sequential quadratic programming method combined with a trust region globalization strategy is analyzed
and studied for solving a certain nonlinear constrained optimization problem with matrix variables. The optimization
problem is derived from the infinite-horizon linear quadratic control problem for discrete-time systems when a complete
set of state variables is not available. Moreover, a parametrization approach is introduced that does not require starting a
feasible solution to initiate the proposed SQP trust region method. To demonstrate the effectiveness of the method, some
numerical results are presented in detail.
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1. Introduction

The design problem of an optimal output feedback con-
troller for linear (continuous or discrete-time) control sys-
tems has been attracting much attention during the last
four decades. The interest in this type of problems is
motivated by numerous applications found in the system
and control literature that are solved through this formula-
tion; see, for instance, the benchmark collection outlined
by Leibfritz (2004).

The determination procedure of the output feedback
matrix that asymptotically stabilizes linear control sys-
tems is actually an open problem. Several methods have
been proposed in the literature based on Lyapunov and
Riccati equations, linear matrix inequalities, or eigen-
structure assignment; see, e.g., the surveys of Mäkilä and
Toivonen (1987) and Syrmos et al. (1997) as well as later
ones, e.g., those by Varga and Pieters (1998), Garcia et al.
(2001), Sulikowski et al. (2004), Zhai et al. (2005), Lee
and Khargonekar (2007), Mostafa (2008), and the refer-
ences therein.

Various gradient-based methods have been consid-
ered for solving the discrete-time LQR problem, among
them the descent Anderson-Moore method (Mäkilä and
Toivonen, 1987). This method solves the LQR prob-
lem by successfully minimizing a particular quadratic ap-
proximation of the objective function combined with the
step-size rule. Mäkilä and Toivonen (1987) solve the

discrete-time LQR problem with Newton’s method with
line search globalization. Mostafa (2008) introduces an
unconstrained trust region method for solving the discrete-
time LQR problem. A nonlinear conjugate gradient has
recently been proposed by Mostafa (2012) which belongs
to low storage methods for solving this problem. All these
methods are based on formulating the LQR problem as an
unconstrained matrix optimization one.

On the other hand, the LQR problem for continuous-
time control systems has been stated in different con-
strained optimization forms and solved by various con-
strained optimization techniques. Leibfritz and Mostafa
(2002) formulate the LQR problem as a nonlinear semi-
definite programming one and suggest as a solution an
interior-point trust region method. Moreover, Leibfritz
and Mostafa (2003) introduced unconstrained and con-
strained trust region approaches for solving two formu-
lations of the LQR problem. Kočvara et al. (2005) in-
troduce an augmented Lagrangian semi-definite program-
ming method for solving this problem. Mostafa (2005a;
2005b) suggests a trust region method for solving the de-
centralized LQR problem and an augmented Lagrangian
SQP method for solving a special class of nonlinear semi-
definite programming problems related to the LQR prob-
lem, respectively.

To the best of the author’s knowledge, the LQR
problem for discrete-time systems has not been solved
yet with any higher-order constrained optimization tech-
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niques. This represents the motivation of this paper.
Consider a discrete-time linear time-invariant system

described by the following discrete state space equation:

xk+1 = Axk +Buk, yk = Cxk, k ≥ 0, (1)

where xk ∈ R
n is the state vector, uk ∈ R

p is the con-
trol input vector and yk ∈ R

r is the measured output
vector. Moreover, A ∈ R

n×n, B ∈ R
n×p, C ∈ R

r×n,
(r ≤ n) are given constant matrices. Models of this form
usually appear in the discretization of linear continuous-
time models of system and optimal control applications;
see, e.g., the benchmark collection (Leibfritz, 2004).

We shall consider the following well-known cost
function to be minimized:

J = E

[ ∞∑
k=0

〈xk, Qxk〉+ 〈uk, Ruk〉
]
, (2)

where E[·] is the expected value, 〈·, ·〉 is the inner prod-
uct operator, Q ∈ R

n×n and R ∈ R
p×p are given sym-

metric positive semi-definite and positive definite matri-
ces, respectively. The objective function consists of two
parts; the first one 〈xk, Qxk〉 concerns minimization over
the state variable while 〈uk, Ruk〉 regards minimization
over the control input variable.

The following control law is often used to close the
above linear control system:

uk = Fyk, (3)

where F ∈ R
p×r is the output feedback gain matrix. The

main objective is to calculate an optimal F that minimizes
the cost function (2) and at the same time stabilizes the
control system (1).

In the full state feedback problem, all components
of the state vector xk can be observed or measured. In
such a case C = In and yk = xk. Observe that in the
discrete-time LQR problem considered we assume that a
complete set of state variables is not available, which is
a more general setting than in the case of the full state
problem.

The derivation of the optimization problem from the
corresponding optimal control one is included for com-
pleteness. From (1) and (3) we have uk = F yk = FCxk .
Hence, the control system (1) is rewritten as

xk = (A+BFC)xk−1 = A(F )xk−1 = A(F )kx0, (4)

whereA(F ) = (A+BFC). In order to stabilize the con-
trol system, the matrix variable F is restricted to lie within
the following set of stabilizing output feedback gains:

Ds =
{
F ∈ R

p×r : ρ (A(F )) < 1
}
, (5)

where ρ (·) is the spectral radius. By choosing F ∈ Ds

the state variables vector xk decays to the zero state as
k →∞.

From (4) in (2) we obtain

J(F ) = E

[
xT

0

∞∑
k=0

[
(A(F )k)TQ(F )A(F )k

]
x0

]

= E
[
xT

0 K(F )x0

]

= Tr (K(F )V ), (6)

where Q(F ) = Q+ CTFTRFC, Tr(·) is the trace oper-
ator, V = E [x0x

T
0 ] is the covariance matrix, and

K(F ) =
∞∑

k=0

(A(F )k)TQ(F )A(F )k (7)

solves the discrete Lyapunov equation

K(F ) = A(F )TK(F )A(F ) +Q(F ). (8)

The objective function depends on x0 ∈ R
n. To re-

move this dependence it is often assumed that x0 is a ran-
dom variable uniformly distributed over a unit sphere with
E[x0] = 0, see, e.g., (Mäkilä and Toivonen, 1987). Equa-
tions (6)–(8) yield the unconstrained minimization prob-
lem:

min
F∈Ds

J̃(F ) = 〈K(F ), V 〉, (9)

where K(F ) solves (8).
Note that an optimal F ∈ Ds that solves this opti-

mization problem equivalently solves the linear quadratic
control one (1)–(2). We consider both variables F and K
to be independent and avoid the above dependency of K
on F . This leads to the following constrained and matrix
optimization problem:

min
(K,F )∈Rn×n×Ds

J(K) = 〈K,V 〉, (10)

subject to
H̃(K,F ) = K−A(F )TKA(F )−Q(F ) = 0. (11)

A dual form to this problem is the following con-
strained optimization problem:

min
(L,F )∈Rn×n×Ds

J(L,F ) = 〈L,Q(F )〉, (12)

subject to
H(L,F ) = L−A(F )LA(F )T − V = 0. (13)

One can show the relationship between both problems eas-
ily as follows: Let F ∈ Ds, and rewrite (11) and (13) as

Q(F ) = K −A(F )TKA(F ), (14)

V = L−A(F )LA(F )T , (15)

where K and L solutions of the discrete Lyapunov equa-
tions (11) and (13) are symmetric. Pre-multiplying the
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first equation by L and the second one by K and then ap-
plying the trace operator gives

Tr (LQ(F )) = Tr (LK)− Tr (LA(F )KA(F )T )

= Tr (KV ). (16)

Hence, the objective functions of the two problems are
equal.

A classical approach developed in the past for solv-
ing the discrete-time LQR problem solves the uncon-
strained problem (9) combined with (8) or the follow-
ing unconstrained minimization problem (see Mäkilä and
Toivonen, 1987):

min
F∈Ds

Ĵ(F ) = J(L(F ), F ) = 〈L(F ), Q(F )〉, (17)

where Q(F ) is defined as above and L(F ) solves the dis-
crete Lyapunov equation

L(F ) = A(F )L(F )A(F )T + V. (18)

Note that the problem (17)–(18) is an unconstrained
version of the constrained problem (12)–(13). In the re-
mainder of the paper we consider the constrained prob-
lem (12)–(13). The following are important issues which
should be taken into consideration when solving any of
the two problems:

• The equality constraint is not treated as a Lyapunov
equation and therefore it is nonlinear.

• The variable L in (12)–(13) (or K in (10)–(11)) is
larger in size than the variable F .

• Both problems are nonlinear and nonconvex. The
nonconvexity is simply due to the eigenvalue con-
straint F ∈ Ds. Moreover, we have matrix variables
and therefore directional derivatives are used.

SQP methods have been shown to be among the most
effective techniques for solving nonlinear constrained op-
timization problems. These methods generate steps by
solving a sequence of quadratic programming problems.
Moreover, SQP methods like Newton’s one for uncon-
strained optimization are locally convergent and must be
combined with a globalization strategy such as line search
or the trust region. In this paper we study the numerical
solution of the optimization problem (12)–(13) with an
SQP method combined with a trust region globalization
strategy. The interested reader is referred, for instance, to
the books by Conn et al. (2000) as well as Nocedal and
Wright (1999) for surveys on this topic.

Moreover, the existence of a feasible point F0 ∈ Ds

is necessary to start the sequence of iterations to any of the
methods that seek an optimal or an suboptimal solution
of the above minimization problems. A parametrization

approach is applied to the optimization problem (12)–(13)
which does not require the existence of F0 ∈ Ds to start
the proposed method.

This paper is organized as follows. In the next sec-
tion an outline of the SQP method and the corresponding
QP subproblem is given. In Section 3 an SQP trust re-
gion algorithm (denoted by DISTR) is presented for solv-
ing the minimization problem (12)–(13). In Section 4 the
trust region method is applied to a parameterized formula-
tion of the problem (12)–(13) that does not require initial
stabilizing F0 ∈ Ds. In Section 5 the performance of the
DISTR method is tested numerically through several test
problems from the literature. Finally, we end by a conclu-
sion.

Notation. Throughout the paper, ‖ · ‖ denotes the Frobe-
nius norm and In denotes the identity matrix of order n.
The symbol 〈·, ·〉 is the inner product of two matrices de-
fined by 〈M1,M2〉 = Tr (MT

1 M2) for M1,M2 ∈ R
n×n.

We omit the argument when it is known from the context,
e.g., we use Jk to denote J(Lk, Fk).

2. Outline and the QP subproblem

The Lagrangian function associated with the prob-
lem (12)–(13) is defined as

�(L,F,K) = J(L,F ) + 〈K,H(L,F )〉, (19)

where K ∈ R
n×n is the Lagrange multiplier. First

and second-order directional derivatives of the Lagrangian
function as well as first-order directional derivatives of the
equality constraint (13) are obtained from the following
lemma.

Lemma 1. Let F ∈ Ds and L,K ∈ R
n×n be given.

Then, the function J and the constraint function H are
twice continuously differentiable on their domains. Fur-
thermore, the first and second order directional deriva-
tives of the Lagrangian function and first-order deriva-
tives of the constraint function are given by

〈∇L�,ΔL〉 = 〈A(F )TKA(F ) +Q(F )
−K,ΔL〉, (20)

〈∇F �,ΔF 〉 = 〈2N(F,K)LCT ,ΔF 〉, (21)

〈ΔL,∇2
LF �ΔF 〉 = 〈ΔF , 2N(F,K)ΔLCT 〉, (22)

〈ΔL,∇2
LL�ΔL〉 = 0, (23)

〈ΔF ,∇2
FF �ΔF 〉

= 〈ΔF , 2N(F,K)ΔFCLCT 〉, (24)

∇LHΔL = ΔL−A(F )ΔLA(F )T , (25)

∇FHΔF = BΔFCLA(F )T

+A(F )LCT ΔFTBT , (26)
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where

N(F,K) = (BTKA(F ) +RFC).

Proof. The Lagrangian function is twice continuously
differentiable in its domain. First and second-order di-
rectional derivatives of � with respect to L and F yield
the above equations (see, e.g, the work of Leibfritz and
Mostafa (2003) for a similar result but for the continuous-
time case). �

By using the result of Lemma 1, the optimality con-
ditions of (12)–(13) imply the following Karush–Kuhn–
Tucker necessary optimality conditions:

−K +A(F )TKA(F ) +Q(F ) = 0, (27)

2(BTKA(F ) + RFC)LCT = 0, (28)

−L+A(F )LA(F )T + V = 0. (29)

The system (27)–(29) is nonlinear. Equations (27) and
(29) can be regarded as discrete Lyapunov equations.
However, it is not practical to consider both of them as
Lyapunov equations in a numerical algorithm. This is
due to the fact that one loses the nonlinearity of these
equations. However, Levine–Athans based methods (see
Mäkilä and Toivonen, 1987), consider one of the two
equations as a Lyapunov equation and use (28) to elim-
inate F from the second Lyapunov equation. This yields
a nonlinear matrix equation that must be solved at each it-
eration during the solution of the system (27)–(29). Such
an approach lacks a fast local rate of convergence and it
does not take into consideration the stability constraint.

SQP methods are based on successfully minimizing
a quadratic programming problem of the form

min
(ΔL,ΔF )

q(ΔL,ΔF )

subject to
h(ΔL,ΔF ) = 0, (30)

where

q(ΔL,ΔF )
= 〈∇L�,ΔL〉+ 〈∇F �,ΔF 〉

+
1
2
(〈ΔL,∇2

LL�ΔL〉+ 2〈ΔL,∇2
LF �ΔF 〉

+ 〈ΔF ,∇2
FF �ΔF 〉),

(31)

h(ΔL,ΔF )
= ∇LH(·)ΔL+∇FH(·)ΔF +H(·). (32)

Note that all derivatives in this QP are given in Lemma 1.
A typical SQP method generates a sequence of iter-

ates of the form

(Lk+1, Fk+1,Kk+1)
= (Lk + ΔL,Fk + ΔF ,Kk + ΔK), (33)

where (ΔL,ΔF ,ΔK) is obtained as a solution to the
augmented linear system:
⎡
⎣
∇2

LL�k ∇2
LF �k ∇LH

∗
k

∇2
FL�k ∇2

FF �k ∇FH
∗
k

∇LHk ∇FHk 0

⎤
⎦
⎡
⎣

ΔL
ΔF
ΔK

⎤
⎦=−

⎡
⎣
∇L�k
∇F �k
Hk

⎤
⎦ .

(34)
The SQP method combined with the trust region con-
straint for solving (12)–(13) is the topic of the next
section. Moreover, the following three assumptions are
made.

Assumption 1. The set Ds is assumed to be non-empty.

Assumption 2. The Jacobian∇HT is surjective.

Assumption 3. The Hessian matrix of the Lagrangian
function � is positive definite on the null space of ∇HT ,
i.e., there exists a constant κ > 0 such that

〈ΔL,∇2
LL�ΔL〉+ 2〈ΔL,∇2

LF �ΔF 〉
+〈ΔF ,∇2

FF �ΔF 〉 ≥ κ
[ ‖ΔL‖2 + ‖ΔF‖2] (35)

for all (ΔL,ΔF ) in the null space of∇HT .

3. Trust-region method

The trust-region problem combines the QP subproblem
(30) with the trust-region constraint

‖(ΔL,ΔF )‖ ≤ δk, (36)

where δk > 0 is the trust-region radius. The trust-region
radius is updated depending on how the predicted decrease
in the merit function compares to the actual decrease. If
there is compatibility between their values, then the trust-
region radius is unaltered or increased, otherwise the ra-
dius is decreased. The inclusion of the trust-region con-
straint makes the trust region problem ((30) and (36))
considerably more difficult to solve. Moreover, the new
model may not always have a solution because the lin-
earized equality constraint and the trust-region constraint
can be inconsistent, (see, e.g., Conn et al., 2000).

3.1. Reduced Hessian with step decomposition. The
difficulty of the inconsistent constraint has been overcome
in the literature via different approaches, among them the
reduced Hessian with the step decomposition approach.
In such an approach the step is calculated in two levels. In
the first level, one tries to satisfy the linearized constraint
while staying well inside the trust region. More precisely,
one solves the following vertical subproblem:

(TR1) min
‖ΔLv‖≤τδk

‖HL(F,L)ΔLv +H(F,L)‖, (37)



An SQP trust region method for solving the discrete-time linear quadratic problem 357

where τ ∈ (0, 1) is a parameter. The solution ΔLv of this
subproblem is called the vertical step.

The second step component is called the tangential
step. This step component lies in the null space of the Ja-
cobian of the equality constraint and obviously requires
evaluating that operator (see, e.g., Conn et al., 2000). Be-
cause of using directional derivatives, the Jacobian matrix
is not given explicitly. However, the following lemma pro-
vides this null space operator implicitly.

Lemma 2. Let (L,F,K) ∈ R
n×n × Ds × R

n×n and
(ΔL,ΔF ) ∈ R

n×n×R
p×r be given. The range space of

the operator Z(L,F ) defined by

Z(L,F ) = (−∇LH
−1(L,F )∇FH(L,F ), I) (38)

coincides with the null space of the Jacobian of the equal-
ity constraint, where I is the identity operator.

Proof. The operator ∇LH(L,F ) is linear as well as
bijective. Then it is invertible and consequently the lin-
earized equality constraint in (30) implies

ΔL = −∇LH
−1(L,F )∇FH(L,F )ΔF

−∇LH
−1(L,F )H(L,F ). (39)

This leads to the following decomposition of the step:

(ΔL,ΔF ) = Z(L,F )ΔF + (−∇LH
−1(L,F )H,O),

(40)
where O is the zero operator. The null space of the Jaco-
bian∇HT is given by
{
(ΔL,ΔF ) ∈ R

n×n+p×r : ∇LHΔL+∇FHΔF = 0
}

+
{
Z(L,F )ΔF , ΔF ∈ R

p×r
}

= R(Z(L,F )), (41)

whereR(Z) is the range space of Z . �
The decomposition of the step using the null spaceZ

can be expressed as

(ΔL,ΔF ) =Z(L,F )ΔF + (−∇LH
−1(L,F )H, 0)

= (ΔLt(ΔF ),ΔF ) + (ΔLv, 0).
(42)

According to this step decomposition the linearized equal-
ity constraint in Problem (30) is decomposed into two dis-
crete Lyapunov equations.

Lemma 3. Let (L,F,K) ∈ R
n×n×Ds×R

n×n be given
and let (ΔL,ΔF ) ∈ R

n×n+p×r be the solution of (30).
The linearized equality constraint of the problem (30) is
decomposed into the following discrete Lyapunov equa-
tions:

ΔLv =A(F )ΔLv(AF )T +H(L,F ), (43)

ΔLt =A(F )ΔLtA(F )T +BΔFCLA(F )T

+A(F )LCT ΔFTBT . (44)

Proof. (See also the work of Leibfritz and Mostafa (2002,
Lemma 2.2) for a similar result but for the continuous-
time case.) From the step decomposition the linearized
equality constraint of (30) can be rewritten as

∇LHΔLt +∇FHΔF +∇LHΔLv +H = 0. (45)

Since (ΔLt(ΔF ),ΔF ) = Z(L,F )ΔF lies in the null
space of the Jacobian∇HT (L,F ), we get

∇LH(L,F )ΔLt +∇FH(L,F )ΔF = 0, (46)

which implies (44). Hence, the linearized equality con-
straint reduces to

∇LH(L,F )ΔLv +H(L,F ) = 0, (47)

which gives (43). �
Now, regarding the solution of the problem TR1, a

straightforward approach is to calculate ΔLv by solving
the discrete Lyapunov equation (43) and then scale that
solution by τ so that it satisfies the trust region constraint
‖ΔLv‖ ≤ τδ.

Having evaluated ΔLv, one solves the following
trust region subproblem over a smaller trust-region radius
to yield the tangential step ZΔF = (ΔLt(ΔF ),ΔF ):

(TR2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ΔF

q(ΔF ) = 〈ΔLt(ΔF ),∇L�〉
+〈ΔF ,∇F �〉+ 〈ΔLv,∇2

LF �ΔF 〉
+〈ΔLt(ΔF ),∇2

LL�ΔL
v〉

+ 1
2 〈ΔF ,ZT∇2�ZΔF 〉

subject to
‖ZΔF‖ ≤√

δ2 − ‖ΔLv‖2,
F + ΔF ∈ Ds,

where

〈ΔF ,ZT∇2�ZΔF 〉
= 〈ΔLt(ΔF ),∇2

LL�ΔLt(ΔF )〉
+ 2∇2

LF �ZΔF + 〈ΔF ,∇2
FF �ΔF 〉, (48)

and ΔLt(ΔF ) solves the discrete Lyapunov equation
(44).

The optimality conditions applied to Problem TR2
yield a linear matrix equation in the unknown ΔF com-
bined with three discrete Lyapunov equations. This can
be seen in the following lemma.

Lemma 4. Let (L,F,K) ∈ R
n×n×Ds×R

n×n be given.
The step ΔF ∈ R

p×r in the solution of Problem TR2 sat-
isfies the following linear matrix equation:

(BTKB +R)ΔFCLCT +N(K,F )ΔLt(ΔF )CT

+BT ΔK(ΔF )A(F )LCT

= −BTSA(F )LCT −N(K,F )(L+ ΔLv)CT ,

(49)
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where ΔLt(ΔF ), ΔK(ΔF ) and S solve the following
discrete Lyapunov equations:

ΔLt(ΔF )

= A(F )ΔLt(ΔF )A(F )T +
(
BΔFCLA(F )T

+A(F )LCT ΔF TBT
)
, (50)

ΔK(ΔF )

= A(F )T ΔK(ΔF )A(F ) +N(K,F )T ΔFC

+ CT ΔFTN(K,F ), (51)

S = A(F )TSA(F ) + (M +MT ), (52)

where M = A(F )TKA(F ) + Q(F ) −K and N(K,F )
is as defined above.

Proof. By forming the Lagrangian function associated
with Problem TR2, differentiating with respect to ΔF
and then applying the optimality conditions, we get (49),
where ΔLt(ΔF ), ΔK(ΔF ) and S solve the discrete Lya-
punov equations (50), (51) and (52), respectively. From
Lyapunov theory, the exact solution of the discrete Lya-
punov equation (50) can be expressed as the infinite sum:

ΔLt(ΔF ) =
∞∑

k=0

A(F )k
[
BΔFCLA(F )T

+(BΔFCLA(F )T )T
]
(A(F )T )

k
.(53)

As an example of evaluating this derivative, the second
and third terms on the left-hand side of (49) are obtained
as follows:

∂

∂ΔF
〈ΔF ,N(K,F )ΔLt(ΔF )CT 〉

= N(K,F )ΔLt(ΔF )CT

+BT ΔK(ΔF )A(F )LCT , (54)

where

ΔK =
∞∑
k

(A(F )T )
k
[(BTKA(F ) +RFC)T ΔFC

+CT ΔFT (BTKA(F ) +RFC)]A(F )k (55)

solves the discrete Lyapunov equation (51).
Note that, when evaluating the derivative of the term

ΔLt(ΔF ), we use the exact form (53) and the following
properties of the inner product operator:

∂

∂X
〈MT

1 , XM2〉 = MT
1 M

T
2 , (56)

∂

∂X
〈MT

1 , X
TM2〉 = M2M1, (57)

where M1 and M2 are given constant matrices of appro-
priate dimensions. �

It is important to emphasize that the solution of
the subproblem TR2 cannot be calculated by the dog-
leg method unless one assures that the reduced Hessian
ZT∇2�Z is positive definite (see Conn et al., 2000).
However, Leibfritz and Mostafa (2003) apply a conjugate
gradient trust-region method to solve a similar subprob-
lem in the continuous-time case, where the idea of neg-
ative curvature is utilized. The same approach is consid-
ered in the DISTR method to calculate the tangential step
ZΔF such that F + ΔF ∈ Ds.

Having calculated ΔLv and ZΔF , the obtained trail
step is (ΔL,ΔF ) = (ΔLv, 0)+ZΔF and the new iterate
is

(Lk+1, Fk+1) = (Lk, Fk) + (ΔL,ΔF ), (58)

where k is the iteration counter.

3.2. Merit function/penalty parameter update. A
merit function that measures the progress made by the cal-
culated step towards optimality and feasibility and also
fits well with this approach is Fletcher’s augmented La-
grangian function:

ψμ(L,F,K) = �(L,F,K) +
μ

2
‖H(L,F )‖2. (59)

According to the trust region strategy, the two quantities
ared and pred of the actual and predicted decreases in
the merit function are applied to measure such progress at
each iteration (see, e.g., Conn et al., 2000):

aredk = ψμk(Lk, Fk,Kk)

− ψμk(Lk + ΔL,Fk + ΔF ,Kk+1), (60)

and

predk = qk(0)− qk(ΔF )

+ μk

[ ‖Hk‖2 − ‖DHk‖2
]
, (61)

where

DH = ∇LH(L,F )ΔL
+∇FH(L,F )ΔF +H(L,F ) (62)

and qk(ΔF ) is as defined in Problem TR2. The ratio of
the actual to the predicted decrease rd

k = aredk/predk

is used to measure the progress towards optimality and
feasibility. According to the value of this ratio, the calcu-
lated step is accepted or rejected and, consequently, δk is
increased or decreased.

The update rule of the penalty parameter is as follows
(see, e.g., Conn et al., 2000): If

predk ≥ μk−1

2
[‖Hk‖2 − ‖DHk‖2

]
, (63)

then set μk = μk−1. Otherwise, set

μk =
2(qk(ΔF k)− qk(0)) + 〈ΔKk, DHk〉

‖Hk‖2 − ‖DHk‖2 + μ̄, (64)

where μ̄ > 0 is a given constant.
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Stopping test. The DISTR method terminates if an iter-
ate (Lk, Fk,Kk) satisfies the condition

‖∇F �(Lk, Fk,Kk)‖ + ‖Hk‖ < ε, (65)

where ε ∈ (0, 1) is a tolerance. Observe here that
∇L�(L,F,K) = 0 yields the discrete Lyapunov equa-
tion (27), which is solved every iteration in the algorithm
to update the multiplier Kk. Therefore, it is unnecessary
to include the term ‖∇L�(Lk, Fk,Kk)‖ in the stopping
criterion (65). Hence, the method DISTR terminates af-
ter achieving a stationary point that satisfies the first-order
optimality conditions.

Algorithm 1 DISTR (trust region method)
Initialization: Let ε ∈ (0, 1) be the tolerance, 0 < c1 <
c2 < 1 and μ̄ > 0, μ0 ≥ 1 be given. Choose F0 ∈ Ds and
let L0 and K0 be solutions of (29) and (27), respectively.
Set k := 0.
While the stopping test (65) is not satisfied, do

1. Compute ΔLv
k as solution to TR1.

2. Compute ΔF as a solution to TR2 such that Fk +
ΔF ∈ Ds. Given ΔF , solve (44) for ΔLt(ΔF ) and
then set ΔLk = ΔLv

k + ΔLt(ΔF ).

3. Compute a new multiplier Kk+1 := K(Fk + ΔF )
according to (27).

4. Update the penalty parameter according to (63) and
(64).

5. Trust region radius and step update: Compute the ra-
tio rd

k .

If rd
k < c1,

set δk+1 := δk/2 and reject the
step;

Otherwise, if c1 ≤ rd
k < c2,

set δk+1 := δk, Fk+1 := Fk +
ΔF and Lk+1 = L(Fk+1) solu-
tion of (29);

Otherwise, if rd
k ≥ c2,

set δk+1 := 2 δk, Fk+1 := Fk +
ΔF and Lk+1 = L(Fk+1) as a
solution to (29).

End (If)

6. Set k ← k + 1 and go to 1.

End(do)

4. Initial feasible solution

An important issue when solving any of the above-
mentioned minimization problems is the requirement of
an initial feasible point F0 ∈ Ds to start the iteration se-
quence. A parametrization approach that allows starting
the trust region method with F0 = 0 is as follows. One
replaces the system matrix A by At = (1 − t)A, where
0 ≤ t < 1 is a parameter. Then, instead of solving (12)–
(13), we solve the following parameterized problem:

min
(L,F )∈Rn×n×Dt

s

J(L,F ) = 〈L,Q(F )〉, (66)

subject to
Ht(L,F ) = L−At(F )LAt(F )T − V = 0, (67)

where At(F ) = At + BFC, and Q(F ) and V are as
defined above. The matrix variable F must lie in the pa-
rameterized set of stabilizing output feedback gains:

Dt
s = {F ∈ R

p×r : ρ(At(F )) < 1}. (68)

Obviously,Dt
s approachesDs as t→ 0.

The parameter t is updated in the trust region main
loop in a decreasing sequence {tk}k≥0 of the form

tk+1 = cktk, (69)

where 0 < c < 1 is a constant. This sequence or other
sequences for updating tk must be decreased at least at
a super-linear rate so that the fast local rate of the trust
region method is not disrupted. If A is Schur stable, i.e.,
ρ(A) < 1, then we take F = 0 and skip parameterizing
the system matrix A.

The initialization of the parameterized trust region
method is as follows. We choose t0 ∈ [0, 1) such that
ρ(At0) < 1 and set F0 = 0. Initial L0 and K0 can be
obtained by solving the discrete Lyapunov equations:

L = At0(F0)LAt0(F0)T + V, (70)

K = At0(F0)TKAt0(F0) +Q(F0). (71)

Then Algorithm 1 can be applied directly to solve the pa-
rameterized problem (66)–(67) but withA(F ) replaced by
At(F ).

Note that one can look at the trust region method with
the parametrization approach as a two-phase method. In
the first phase, where t is not too small, the goal is to
have a stabilizing F ∈ Dt

s, while in the second phase
the goal is to achieve a stationary point (F,L,K) ∈
Dt

s × R
n×n × R

n×n with t very small (by very small we
mean t < 10−16). Obviously, as t → 0, both At and Dt

s

coincide with A and Ds, respectively.

5. Numerical results

In this section an implementation for the DISTR method
is described. This method is compared numerically with
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Newton’s method combined with the Armijo line search
globalization rule applied to the corresponding uncon-
strained problem (17)–(18) and is denoted by disArmijo
(see Mäkilä and Toivonen, 1987).

Whenever the uncontrolled system matrixA is Schur
stable, one can start with F0 = 0; otherwise initial F0 ∈
Ds must be given or the parametrization approach of Sec-
tion 4 is applied. In order to compare both methods under
the same circumstances, the parametrization approach is
also considered for the unconstrained problem (17)–(18)
so that the disArmijo method can start with F0 = 0.

An initial t0 ∈ [0, 1) is chosen as the first candidate
that makes ρ(At0) < 1. Choosing other t ∈ [t0, 1) to
start the sequence (69) influences the performance of both
methods with respect to the number of iterations and/or
the local rate of convergence. Clearly, t0 adds the weight
(1 − t0) to the system matrix At and, as tk tends to 0, we
have that Atk

approaches A.
Several discrete Lyapunov equations have to be

solved every iteration. The MATLAB dlyap(·, ·) function
is used for computing these solutions.

For test purposes, several discrete-time test problems
are generated from the COMPlib (2004) benchmark col-
lection of continuous-time models. For all test problems
the sample time for converting the control system is 0.1 s.
In each example we are given the constant data matri-
ces A, B and C of the control system (1). For all test
problems the constant weight matrices Q and R as well
as the covariance matrix V are equal to the identity, i.e.,
Q = V = In and R = Ip. These six given constant ma-
trices arise in the objective function and the equality con-
straint of the corresponding optimization problem (12)–
(13) and have to be given in advance to execute the DISTR
method.

The following values have been assigned to the pa-
rameters of Algorithm 1 during the implementation: c1 =
0.1, c2 = 0.7, μ̄ = 1.0, δ0 = ‖∇F �(L0, F0,K0)‖ and
μ0 = 1.0. The tolerance is chosen as ε = 1× 10−7.

Example 1. This test problem represents a transport
aircraft model (Leibfritz, 2004, AC15). The constant data
matrices of the discrete-time model are the following:

A =

⎡
⎢⎢⎣

0.9901 0.0012 0.0000 −0.0994
−0.0315 1.0000 0.0989 0.0014
−0.6269 −0.0004 0.9773 0.0376

0.1237 0.0001 0.0016 0.9892

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0.0005 0.0004
0.0004 0.0040
0.0078 0.0794
−0.0086 −0.0066

⎤
⎥⎥⎦ ,

CT =

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ .

The uncontrolled system is discrete-time Schur stable,
where ρ(A) = 0.999 < 1. By the uncontrolled sys-
tem we mean the plant without feedback. Hence, it is
possible to start the DISTR method with F0 = 0, and
L0 is the corresponding solution of the discrete Lya-
punov equation (29). The goal is to calculate a stationary
point (L,F ) ∈ R

n×n × Ds of the optimization problem
(12)–(13), which equivalently solves the discrete-time
LQR problem considered.

Table 1. Performance of the DISTR method in Example 1.

k Jk ‖∇F �k‖ + ‖Hk‖ δk ρ(A(Fk))

0 2.101e+5 1.889e+07 8.49e+07 9.98e-1
1 1.426e+5 8.393e+06 1.69e+08 9.98e-1
2 9.757e+4 3.730e+06 3.40e+08 9.96e-1
3 6.759e+4 1.657e+06 6.80e+08 9.95e-1
4 4.763e+4 7.358e+05 1.36e+09 9.95e-1
...

...
...

...
...

19 1.612e+3 1.258e−02 1.00e+10 9.65e-1
20 1.612e+3 8.858e−06 1.00e+10 9.65e-1
21 1.612e+3 2.399e−12 1.00e+10 9.65e-1

The DISTR method, as we have seen, is iterative. Ta-
ble 1 shows the convergence behavior of this method until
a stationary point is reached. The first to the fifth columns
in this table are the iteration counter k, the objective func-
tion Jk, the convergence criterion ‖∇F �k‖ + ‖Hk‖, the
trust region radius δk, and the spectral radius of the closed-
loop system matrixA(Fk), respectively. From the last col-
umn one sees that the method is feasible with respect to
the stability constraint throughout iterations. Moreover,
starting from a remote point, the method converges to a
stationary point in 21 iterations with a fast local rate of
convergence. The achieved discrete-time feedback gain is

F∗ =
[

0.3489 1.3969 7.4745
−1.1617 −3.3304 −4.6462

]
. (72)

On the other hand, the disArmijo method could not
reach the prescribed accuracy and the convergence crite-
rion stacks at 1.7717×10−6, where Newton’s direction is
becoming non-descent. �

Example 2. The second test problem describes a decen-
tralized interconnected system, cf. Leibfritz (2004, DIS1).
By applying the MATLAB, function c2d the data matri-
ces A, B and C of the discrete-time linear control system
are obtained, which are not listed because of their high
dimensions.

The uncontrolled system is discrete-time Schur sta-
ble, where ρ(A) = 0.9912 < 1. Hence, it is possible to
start with F0 = 0. The two methods successfully converge
to the same solution. The DISTR and disArmijo methods
achieve the prescribed accuracy in 10 and 12 iterations,
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Table 2. Performance of the DISTR method in Example 2.

k Jk ‖∇F Jk‖ + ‖Hk‖ δk ρ(A(Fk))

0 3.831e+2 5.137e+2 2.07e+3 9.87e-1
1 2.775e+2 2.388e+2 4.15e+3 9.84e-1
2 2.111e+2 9.972e+1 8.29e+3 9.78e-1
3 1.785e+2 3.909e+1 1.66e+4 9.69e-1
...

...
...

...
...

8 1.589e+2 1.190e−2 5.31e+5 9.51e-1
9 1.589e+2 6.318e−5 1.06e+6 9.51e-1

10 1.589e+2 1.528e−9 2.12e+6 9.51e-1

respectively, and the corresponding feedback gain is

F∗ =

⎡
⎢⎢⎣

0.5496 −0.7421 0.0752 0.0921
−0.2487 −0.0111 −0.4751 −0.8625
−0.7048 −0.2793 −0.1213 −0.1438
−0.0475 0.0034 −0.0946 −0.0334

⎤
⎥⎥⎦ .

(73)
Table 2 shows the convergence behavior of the DISTR
method in this example. �

Example 3. This test problem represents a wind energy
conversion system (cf. Leibfritz, 2004, WEC2). The dy-
namical system has the dimensions n = 10, p = 3, and
r = 4. The data matrices A, B and C are not listed be-
cause of their dimensions.

Table 3. Performance of the DISTR method in Example 3.

k Jk ‖∇F �k‖ + ‖Hk‖ δk ρ(A(Fk))

0 2.406e+4 2.308e+5 1.03e+06 9.91e-1
1 1.364e+4 1.011e+5 2.06e+06 9.87e-1
2 7.111e+3 3.811e+4 4.12e+06 9.82e-1
3 4.932e+3 8.645e+3 8.24e+06 9.77e-1
...

...
...

...
...

14 3.669e+3 3.925e−3 1.00e+10 8.24e-1
15 3.669e+3 2.370e−5 1.00e+10 8.24e-1
16 3.669e+3 8.805e−7 1.00e+10 8.24e-1
17 3.669e+3 5.327e−7 1.00e+10 8.24e-1
18 3.669e+3 7.106e−8 1.00e+10 8.24e-1

The uncontrolled system is discrete-time Schur sta-
ble, because ρ(A) = 0.9943 < 1. The DISTR method
converges to a stationary point in 18 iterations, while the
disArmijo method could not achieve the same point. The
convergence criterion ‖∇J(Fk)‖ stacks at the value of
2.108 × 10−2. Table 3 shows the convergence behavior
of the method DISTR in this test problem. Although the
DISTR method achieved the prescribed accuracy, the fast
local rate is lost.

The achieved stationary point is (L∗, F∗), where

F∗ =

⎡
⎣
−0.0013 −0.0048 1.9943 −0.0935

0.0691 0.1490 1.1688 −0.0953
−0.0520 0.0449 −0.6569 −0.0505

⎤
⎦ ,

(74)
and L∗ is the corresponding solution of the discrete Lya-
punov equation (13). �

Example 4. This example is a discrete version of a cou-
pled spring experiment (cf. Leibfritz, 2004, CSE1). Us-
ing the function c2d, we have obtained the discrete-time
model, which has dimensions n = 20, p = 2, r = 10. Be-
cause of the problem dimensionality, we skip listing the
data matrices A,B and C.

Table 4. Convergence behavior of the disArmijo and DISTR
methods in Example 4.

k Jk ‖∇J(Fk)‖ tk
0 1.0755e+004 5.5801e+005 1.00e-004
1 1.7742e+004 1.6063e+006 9.00e-006
2 1.3338e+004 8.7950e+005 2.43e-007
3 9.1749e+003 3.9244e+005 1.97e-009
...

...
...

...
17 7.7718e+002 3.5526e-002 1.29e-093
18 7.7718e+002 2.9302e-004 1.50e-103
19 7.7718e+002 6.0517e-008 5.23e-114

k Jk ‖∇F �k‖ + ‖Hk‖ tk
0 7.4289e+003 2.480e+005 1.0e-004
1 6.4958e+003 1.824e+005 4.6e-005
2 5.2405e+003 1.104e+005 9.7e-006
3 3.8639e+003 5.241e+004 9.5e-007
...

...
...

...
15 7.7718e+002 1.861e-002 3.4e-045
16 7.7718e+002 2.963e-004 1.4e-050
17 7.7718e+002 1.403e-008 2.5e-056

The uncontrolled system is not discrete-time Schur
stable, where ρ(A) = 1. In order to start with F0 = 0,
we use the parametrization approach and choose c = 0.3
of the decreasing rate in (69) and t0 = 1 × 10−4. Both
methods converge to the same local minimizer, where the
method DISTR achieves the prescribed accuracy in 17 it-
erations and the method disArmijo requires 19 iterations.
The final output feedback gain is as follows (entries are
rounded to two digits after the decimal point):

F∗ =
[ −0.72 −0.44 −0.32 −0.23 −0.17

0.02 0.04 0.06 0.09 0.13

−0.13 −0.09 −0.06 −0.04 −0.02
0.17 0.23 0.32 0.44 0.72

]
. (75)

Table 4 shows the performance of the two meth-
ods in this example. The objective function, the con-
vergence criterion and the stabilizing parameter tk are
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listed column-wise. The initial value of the stabilizing
parameter is t0 = 1.0 × 10−4, which puts the weight
(1 − t0) = 0.9999 on the system matrix At. This weight
approaches 1 as tk tends to zero. Observe also that other
values of t0 ∈ [1.0× 10−4, 1) are allowed. �
Example 5. This example is a discrete version of a binary
distillation tower with pressure variation (cf. Leibfritz,
2004, BDT1). Using the function c2ds we have obtained
the discrete-time model, which has dimensions n = 11,
p = 3, r = 3. Because of the system dimensionality, we
skip listing the data matrices A,B, and C.

Table 5. Convergence behavior of the disArmijo and DISTR
methods in Example 5.

k Jk ‖∇J(Fk)‖ tk
0 9.2009e+003 7.9073e+003 1.00e-004
1 1.4151e+004 1.9047e+004 9.00e-006
2 1.2631e+004 9.7797e+003 2.43e-007
3 1.1235e+004 3.9708e+003 1.97e-009
...

...
...

...
10 8.8409e+003 2.8054e-003 1.03e-038
11 8.8409e+003 3.4165e-007 5.47e-045
12 8.8409e+003 4.4884e-009 8.73e-052

k Jk ‖∇F �k‖ + ‖Hk‖ tk
0 7.6093e+003 2.789e+003 1.0e-004
1 1.1005e+004 5.043e+003 3.0e-005
2 1.0065e+004 2.647e+003 2.7e-006
3 9.3600e+003 1.003e+003 7.3e-008
...

...
...

...
7 8.8409e+003 2.854e-002 2.3e-019
8 8.8409e+003 3.792e-004 1.5e-023
9 8.8409e+003 1.731e-008 3.0e-028

The uncontrolled system is not discrete-time Schur
stable. Therefore, we have to apply the parametriza-
tion approach to start the methods, where F0 = 0 and
t0 = 1.0 × 10−4 imply that ρ(At0) = 0.9999 < 1. The
decreasing rate c of (69) is chosen as c = 0.3. The meth-
ods DISTR and disArmijo converge to the same stationary
point in 9 and 12 iterations, respectively. The final output
feedback gain is

F∗ =

⎡
⎣

0.0005 −0.0135 −0.0129
−0.0155 −0.0034 −0.0123
−1.5675 −0.3966 −0.0822

⎤
⎦ . (76)

Table 5 shows the performance of the two methods
in this example.

Tables 6 and 7 show the effect of the initial t0 and the
constant c on the two methods with respect to the number
of iterations. The results show that the method DISTR
is more flexible to the perturbation occurring in the given
system matrix At. In all cases the method DISTR con-
verges to the same local minimizer, while disArmijo ei-
ther fails to reach the prescribed accuracy or requires more

iterations to converge to the same local minimizer. Such
bad behavior of disArmijo occurred quite often in various
unstable systems. The asterisks in Table 7 mean that the
method fails to achieve the prescribed accuracy and stacks
at the shown attached value.

Table 6. Effect of the changes in c and t0 on the number of iter-
ations of disArmijo and DISTR for the CSE1 test prob-
lem from the COMPlib benchmark.

t0 = 1.0 × 10−4

c 0.15 0.30 0.45 0.75 0.95
disArmijo 21 20 20 22 27

DISTR 17 17 17 17 27

t0 = 1.0 × 10−2

c 0.15 0.30 0.45 0.75 0.95
disArmijo 12 11 13 13 30

DISTR 10 9 10 13 13

Table 7. Effect of the changes in c and t0 on the number of it-
erations of disArmijo and DISTR for the BDT1 test
problem from the COMPlib benchmark.

t0 = 1.0 × 10−4

c 0.15 0.30 0.45 0.75 0.95
disArmijo * 10−5 13 * 10−4 * 10−6 33

DISTR 9 9 10 14 31

t0 = 1.0 × 10−2

c 0.15 0.30 0.45 0.75 0.95
disArmijo 12 * 10−5 12 17 34

DISTR 12 12 12 15 34

The main conclusion that one can draw from the
above results is that the DISTR method outperforms the
disArmijo method on the analyzed set of test problems
with respect to the number of iterations. There are several
test problems as well, where both methods exhibit similar
convergence behavior, which are not included.

The optimal choice for the starting t0 ∈ [0, 1) of the
stabilizing parameter as well as the decreasing rate of the
sequence {tk} are not yet determined and need further in-
vestigation. In particular, the choice of t0 affects the con-
vergence behavior of the method and its robustness.

6. Conclusion

In this paper, an SQP trust region method is analyzed and
studied for solving the discrete-time linear quadratic con-
trol problem when a complete set of state variables is not
available. The trust region method uses the reduced Hes-
sian approach with step decomposition to handle the well-
known difficulty of possible inconsistent constraints.

The trust region method requires an initial feasible
point that satisfies an eigenvalue constraint. The method
is parameterized so that a feasible starting point is not re-
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quired. The proposed method performed quite well nu-
merically on different test problems of engineering appli-
cations.

References
Conn, A.R., Gould, N.I.M. and Toint, Ph.L. (2000). Trust-

Region Methods, SIAM, Philadelphia, PA.

Garcia, G., Pradin, B. and Zeng, F. (2001). Stabilization of
discrete-time linear systems by static output feedback, IEEE
Transactions on Automatic Control 46(12): 1954–1958.
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