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This paper proposes a new approach to designing a relatively simple algorithmic fault detection system that is potentially
applicable in embedded diagnostic structures. The method blends the LQ control principle with checking and evaluating
unavoidable degradation in the sequence of discrete-time LQ control performance index values due to faults in actuators,
sensors or system dynamics. Design conditions are derived, and direct computational forms of the algorithms are given.
A simulation example subject to different types of failures is used to illustrate the design process and to demonstrate the
effectiveness of the method.
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1. Introduction

Automated diagnosis has been one of the more fruitful
applications in sophisticated control systems, with
potential significance for domains in which systems
diagnosis must proceed while the system is operative
and testing opportunities are limited by operational
considerations. A real problem is usually to fix the system
with faults so that it can continue its mission for some
time with some limitations in functionality. Consequently,
diagnosis is a part of a larger problem known as Fault
Detection, Identification and Reconfiguration (FDIR)
(Khelassi et al., 2011). The practical benefits of an
integrated approach to FDIR seem to be considerable,
especially when knowledge of available fault isolations
and system reconfigurations is used to reduce the cost and
increase the reliability and utility of control and diagnosis.
Classical principles include observer-based methods,
parity space methods and parameter identification based
methods, which have been thoroughly studied (see, e.g.,
the works of Blanke et al. (2003), Chen and Patton
(1999), Korbicz et al. (2004), Simani et al. (2003), and
the references therein).

In the last years many significant results have spurred
interest in passivity theory, which has been widely used in
stability analysis and control of nonlinear systems (e.g.,
Brogliato et al., 2007; Chen et al., 2011). The physical
meaning of the passivity is that the energy stored in

the passive systems cannot be greater than the energy
supplied by the environment outside. This energy relation
can be expressed by an inequality with dependence on
the system state, input and output, and by checking
this inequality, when it fails, faults in the system are
detected. The passivity based fault detection method was
extended to the energy based framework (Chen et al.,
2010), where, besides the stored and supplied energy, the
dissipated energy is modeled for the dissipative systems,
and an optimal fault detection system based on the energy
balance was suggested.

The problem of controlling a system in such a way as
to optimize a performance index that represents the actual
operating system performance has been the area of study
for several decades (Kirk, 1970; Bryson and Ho, 1975;
Anderson and Moore, 1989; Lewis and Syrmos, 1995).
In particular, if attention is restricted to Linear Quadratic
(LQ) control, several works following this approach over
the years have been reported in the literature, with some
recent ones (e.g., Dorf and Bishop, 2011; Hendricks
et al., 2008) for continuous and discrete-time systems.
Specifically, this approach has been often assumed in
diverse practical problems for a finite-time interval with
time-varying feedback gains and full state measurable
variables, to bring dynamical systems to desired final
states, with special interest in aircraft, spacecraft, robot
control and diagnosis (Henry, 2010; Zolghadri, 2000;
Zolghadri et al., 2006).
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Following the given ideas in LQ control performance
(Krokavec, 2002), a fault detection scheme based on LQ
control properties for a full state measurable case and an
infinite time horizon is suggested in the paper. If the
LQ control problem is solvable, then a degradation in the
sequence of instantaneous values of the LQ performance
index is evaluated. A direct form of the algorithms is
proposed with the goal to verify, by LQ control, optimized
closed-loop parameter relations. Based on discrete-time
system state control, as well as on the nominal LQ
performance index, generalized fault residual functions
are proposed, associated with the standard form of the
discrete LQ control criterium. Note that the aim is not
to design an LQ control law, but to exploit LQ control
characteristics in fault detection if LQ control is given.

The rest of the paper is organized as follows.
Starting with system basic preliminaries concerning
system models and the LQ control task in Section 2, in
Section 3 the basic concept and overall structures, focused
on the dissipative property, the forced mode and fault
residual functions, are presented. Section 4 shows an
example to illustrate fault detection characteristics, and
Section 5 is devoted to a brief overview of the properties
of the proposed method.

2. Basic preliminaries

2.1. System models. Consider a discrete-time linear
deterministic dynamic system under normal operating
conditions described by the set of equations

q(i + 1) = Fq(i) + Gu(i), (1)

y(i) = Cq(i), (2)

where q(i) ∈ R
n represents the system state, u(i) ∈ R

r

denotes the control input, y(i) ∈ R
m is the reference

output, matrices F ∈ R
n×n, G ∈ R

n×r, C ∈ R
m×n

are finite valued, and i ∈ Z+.
When a fault occurs, the faulty system is given by

qf (i + 1) = F fqf (i) + Guf (i), (3)

yf (i) = Cqf (i), (4)

where by a system fault the system properties were
changed, described now by the matrix F f ∈ R

n×n. A
single sensor fault, as well as a single actuator fault, is
represented by the relations

qf (i) = (Im − Ifs)q(i), (5)

uf (i) = (Ir − Ifa)u(i), (6)

where In ∈ R
n×n, Ir ∈ R

r×r are the identity matrices,
and Ifs ∈ R

n×n, Ifa ∈ R
r×r generally take the structure

Ifs, Ifa =̃ diag
[

0 · · · 0 1 0 · · · 0
]

. (7)

A single parameter fault of the system matrix is
represented as

F f = F − fT
fkΔFkhffh, (8)

where ΔFkh is an unacceptable change in the system
matrix element Fkh due to the system parameter fault, and
ffk, ffh ∈ R

n takes the structure

ffk, ffa =̃
[

0 · · · 0 1 0 · · · 0
]

. (9)

It is assumed throughout the paper that all state
variables are measurable and, to consider the infinite-time
control horizon, the couple (F , G) is controllable.

2.2. LQ control task. In order to build up the
background of the proposed method, some basics on the
discrete-time LQ control are recalled. Since the control
design is now posed as an optimal problem with some
combined quadratic performance on q(i) and u(i), the
task is formulated as follows: Find a nonzero control u(i)
defined on 〈0, N−1〉 such that the state q(i) is driven to
the state coordinate origin at i = N , and the following
performance index is minimized:

JN = qT (N)Q•q(N) +
N−1
∑

i=0

r
(

q(i), u(i)
)

, (10)

where

r
(

q(i), u(i)
)

= uT(i)Ru(i) + qT(i)Qq(i) + qT(i)Su(i)

+ uT(i)ST q(i)

=
[

qT (i) uT (i)
]

JJ

[

q(i)
u(i)

]

,

(11)

JJ ∈ R
(n+r)×(n+r) takes the form

JJ =
[

Q S

ST R

]

> 0⇔ Q− SR−1ST > 0, (12)

N is finite, Q ≥ 0, Q ∈ R
n×n, R > 0, R ∈ R

m×m,
S ∈ R

n×r, and Q• ≥ 0, Q• ∈ R
n×n.

Proposition 1. (Equivalent performance index) If the sys-
tem (1), (2) is controllable, then the LQ control design task
is optimized with respect to the equivalent quadratic cost
function (performance index)

JN = qT(0)P (0)q(0)+
N−1
∑

i=0

p
(

q(i), u(i)
)

, (13)

where

p
(

q(i), u(i)
)

=
[

qT (i) uT (i)
]

J(i)
[

q(i)
u(i)

]

,

(14)

J(i)=
[

F TP (i)F−P (i−1)+Q F TP (i)G+S

(F TP (i)G+S)T GTP (i)G+R

]

,

(15)
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P (i) > 0, P (i) ∈ R
n×n, and J(i) ≥ 0, J(i) ∈

R
(n+r)×(n+r).

Proof. (See, e.g., Krokavec, 2002) Since the system (1),
(2) is linear in q(i), the quadratic Lyapunov function can
be chosen as

v(q(i)) = qT (i)P (i−1)q(i), (16)

where P (−1) = P (0). Thus, the increment in the
Lyapunov function takes form

Δv(q(i), u(i))
= v(q(i+1))− v(q(i)),

=
[

qT (i) uT (i)
]

JV (i)
[

q(i)
u(i)

]

, (17)

where

JV (i)=
[

F TP (i)F−P (i−1) F TP (i)G
(F TP (i)G)T GTP (i)G

]

. (18)

Defining, at the time instant N , the cumulative function
VN as

VN =
N−1
∑

i=0

Δv(q(i), u(i)), (19)

which, in turn, is equivalent to

VN =qT(N)P (N−1)q(N)−qT(0)P (0)q(0), (20)

then adding (19) to (10), subtracting (20) from (10), and
setting P (N−1)=Q•, the performance index is brought
to the form (13), where

p
(

q(i), u(i)
)

= r
(

q(i), u(i)
)

+ Δv
(

q(i), u(i)
)

. (21)

It is evident that with J(i) = JJ + JV (i), (12) and (18)
imply (15). �

Proposition 2. (Infinite horizon LQ control) The LQ con-
trol law for which the gain has a constant value is given
by

u(i) = −Kq(i), (22)

K = (GTPG+R)−1(F TPG+S)T , (23)

where P > 0 is a solution of the Discrete Algebraic Ric-
cati Equation (DARE)

P = F TPF +Q− (F TPG+S)(GTP G+R)−1

× (F TPG+S)T .

(24)

Proof. (Krokavec, 2002) Considering P (i) = P , J(i) =
J , (14) and (15) imply

∂p(q(i), u(i))
∂uT (i)

=
[

0 I
]

J

[

q(i)
u(i)

]

=
[

(F T P G + S)T GT P G + R
]

[

q(i)
u(i)

]

= 0,

(25)

∂p(q(i), u(i))
∂qT (i)

=
[

I 0
]

J

[

q(i)
u(i)

]

= (F T PF − P + Q)q(i) + (F T PG + S)u(i) = 0,

(26)

respectively, where I ∈ R
n×n is the identity matrix. It

is obvious that (25) implies (23), and by substituting (22)
and (23) into (26), Eqn. (24) is obtained.

Moreover, the existence of (24) is conditioned by the
inequality

GTP G+R > 0, (27)

and the steady-state solution of (15) is

J =
[

F TPF−P +Q F TP G+S

GTPF +ST GTP G+R

]

> 0. (28)

�
Note that it makes no practical sense to have a

terminal cost term with the terminal time being infinite.
It should be mentioned that in the sequel only the infinite
horizon LQ control of the discrete-time system (1), (2) is
considered.

2.3. Tuning of the performance index matrices. Few
approaches have been suggested for the selection of the
performance index matrices Q, R and S. In general, the
matrix Q determines the relative importance of the state
variables, R represents the expenditure of control signal
energy to be restricted, and S characterizes the dissipation
of the closed-loop system. Since different values of
these matrices will eventually end up with a different
system response, LQ control design is often combined
with closed-loop pole assignment in a prescribed disc
(Furuta and Kim, 1987; Krokavec and Filasová, 2008).
Especially the weighting matrices can be set naturally as
Q = CTC, R = BTB, respectively.

In the book devoted to this case, Bryson (1999)
suggested to choose diagonal weighting matrices Q and
R with diagonal elements equal to the inverses of the
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desired maximum squared values of variables of q(t)
and u(t), respectively, and tuning these iteratively. On
the other hand, Anderson and Moore (1989) proposed
to search for appropriate Q and R depending on the
required bandwidth. Another technique was proposed by
Muhafzan (2010).

Completing (11) to the square gives

r
(

q(i), u(i)
)

= (uT(i) + R−1ST q(i))T R(uT(i)

+ R−1ST q(i)) + qT(i)(Q− ST R−1S)q(i),
(29)

i.e., for nonzero S the state vector weight of the equivalent
system is given by the Schur complement of (12).

3. Basic concept and overall structures

3.1. Dissipative property. In dynamical system
diagnosis it may be useful to develop state-space or
input-output models so that they reflect the dissipativity of
the system, and to show how these results can be exploited
in fault diagnosis design. The approach used in the paper
is based on the next dissipative system properties.

Definition 1. (Brogliato et al., 2007) The discrete time
system (1), (2) is said to be dissipative with respect to
the supply rate s(y(h), u(h)) if there exists a so-called
storage function v(q(i)) > 0 such that

v(q(i)) ≤ v(q(0)) +
i

∑

h=0

s(y(h), u(h)), (30)

along all possible trajectories of the system starting at
q(0), for all q(0), i ≥ 0.

Note that storage functions are often used as
Lyapunov functions for studying the stability of an
equilibrium of the system with zero input u(i) (unforced
regime), and for linear systems dissipativeness is usually
considered for quadratic supply rates s(q(h), u(h)).
Moreover, one of the key properties of a dissipative
dynamical system is that the total energy stored in the
system decreases with time.

Theorem 1. The system (1), (2) under the LQ control
(22) with K satisfying (23), (24) is dissipative in a steady-
state with respect to the supply rate s

(

q(i), u(i)
)

and the
storage function v

(

q(i)
)

, where

s
(

q(i), u(i)
)

= qT(i)Su(i), (31)

v
(

q(i)
)

=
1
2
qT(i)P q(i). (32)

Proof. Based on the steady-state value of (14) and (28),
we get

p(q(i), u(i)) = qT(i)
[

I −KT
]

J

[

I
−K

]

q(i), (33)

and with some straightforward calculations over (33) it
can be shown that

p(q(i), u(i))

= qT (i)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Q + F TPF−P−
−(S + F TPG)K−
−KT(S + F TPG)T +
+KT (R + GTPG)K

⎫

⎪

⎪

⎬

⎪

⎪

⎭

q(i).
(34)

Since (26) implies that the sum of the first two rows
of (34) is equal to zero, by selection of K as in (23) it is
easy to see that

p(q(i), u(i))

= qT (i)KT

{ −(S + F T PG)T +
+(R + GT PG)K

}

q(i)

= qT (i)KT

{−(S + F T PG)T +
+(S + F T P G)T

}

Kq(i)=0.

(35)

Now, according to (21) and with (35), at a steady
state this gives

Δv
(

q(i), u(i)
)

+ r
(

q(i), u(i)
)

= 0. (36)

To obtain an expression for the dissipative property, the
summation of (36) from 0 to k−1 can be carried out, and
with respect to the Lyapunov stability condition this yields

v
(

q(i)
)− v

(

q(0)
)

+
k−1
∑

i=0

qT(i)Su(i)

+
1
2

k−1
∑

i=0

(

qT(i)Qq(i)+uT(i)Ru(i)
) ≤ 0. (37)

Thus

v
(

q(i)
)− v

(

q(0)
) ≤ −

k−1
∑

i=0

qT(i)Su(i), (38)

and, consequently,

1
2

k−1
∑

i=0

(

qT(i)Qq(i)+uT(i)Ru(i)
) ≥ 0. (39)

Note that the quadratic supply rates s(q(h), u(h)) used
slightly differ from s(y(h), u(h)), usually considered
in nonlinear dissipative systems analysis (Haddad and
Chellaboina, 2003; Khalil, 2002). �

3.2. Forced regime. In practice, the case with r =
= m (square plants) is often encountered, where with each
output signal a reference signal, is generally associated
which is expected to influence this output as desired. Such
a regime, reflecting nonzero set working points, is called
the forced regime.
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Definition 2. The forced regime for (1), (2) is given by
the control policy

u(i) = −Kq(i) + Ww(i), (40)

where r = m, w(i) ∈ R
m is the desired output signal

vector, and W ∈ R
m×m is the signal gain matrix.

Lemma 1. If the system (1), (2) is stabilizable and

rank
[

F G
C 0

]

= n + m, (41)

then the matrix W in (41), designed by using the static
decoupling principle, takes the form

W =
(

C
(

In − (F−GK)
)−1

G
)−1

. (42)

Proof. In a steady state, which corresponds to q(i + 1) =
= q(i) = q◦, the equality y◦ = w◦ must hold, where
q◦ ∈ R

n, y◦, w◦ ∈ R
m are vectors of steady state values

of q(i), y(i), w(i), respectively. In this case, (1), (2), (40)
can be written as

0 = −(In − (F −GK))q◦ + GWw◦, (43)

y◦ = Cq◦

= C (In−(F−GK))−1
GWw◦ = Imw◦, (44)

respectively. Thus, (44) implies (42). �

Remark 1. The W matrix is nothing else than the inverse
of the closed-loop static gain matrix. This gain matrix can
be obtained by setting z = 1 in the state-space expression
of the transfer function matrix of the closed-loop system.
Note that the static gain realized by the W matrix is ideal
in control only if the plant parameters, on which the value
of W depends, are perfectly known and do not vary with
time.

Remark 2. The forced regime is basically designed for
constant references and is very closely related to the shift
of origin. If the command value w(i) is changed “slowly
enough,” the above scheme can do a reasonable job of
tracking, i.e., making y(i) follow w(i) (Kailath, 1980).

Lemma 2. Considering a steady-state solution P of (24)
and the system (1), (2) in the forced regime with the con-
trol policy (22), (23), the performance index density (14)
is

pw(w(i)) = wT(i)W T (GTP G + R)W w(i). (45)

Proof. Inserting (40) into the steady-state value of (14)
yields

p(q(i), w(i))

=
{

wT(i)
[

0 W T
]

+ qT(i)
[

I −KT
]}

× J

{[

I
−K

]

q(i)+
[

0
W

]

w(i)
}

.

(46)

Thus, writing the block partition structure of (28) as

J

=
[

F TP F−P +Q F TPG+S

GTP F +ST GTPG+R

]

=
[

J11 J12

JT
12 J22

]

(47)

and taking into account that at a steady state the condition
(36) implies p(q(i), u(i)) = 0, we have

p(q(i), w(i))− p(q(i), u(i))
= pw(q(i), w(i))

=
[

q(i)
Ww(i)

]T[ 0 J12−KTJ22

JT
12−J22K J22

][

q(i)
Ww(i)

]

.

(48)

Since (23) gives

K = (GTPG+R)−1(F TPG+S)T = J−1
22 JT

12 (49)

and, subsequently,

JT
12−J22K = JT

12−J22J
−1
22 JT

12 = 0, (50)

(48) implies

pw(q(i), w(i)) = pw(w(i))

= wT(i)W T J22Ww(i). (51)

Now, using the notation (47), (51) implies (45). �
The value of Lemma 2 lies in the fact that in the

forced regime the elements of the performance index
sequence satisfy the basic zero condition (36) neither at
time-varying states, nor at a steady state. On the other
hand, (51) is independent of the state-feedback, and it can
be considered a floating additive offset.

3.3. Fault residual function.

Definition 3. A quadratic function h
(

q(i), u(i)
)

is said
to be a fault residual function if h

(

q(i), u(i)
)

= 0 for
a linear deterministic discrete-time system without faults,
and h

(

q(i), u(i)
) �= 0 in a fault regime of the system.

Corollary 1.
(i) For a steady-state solution P of (24) and the fault-
free system (1), (2) in the unforced regime with the control
policy (22), (23), the fault residual function h

(

q(i), u(i)
)

is
h
(

q(i), u(i)
)

= p
(

q(i), u(i)
)

(52)

since (35) implies p(q(i), u(i)) = 0, and it represents the
case when there is no fault in the system. That is why
p(q(i), u(i)) can be used as the fault residual function.

(ii) For a steady-state solution P of (24) and the fault-free
system (1), (2) in the forced regime with the control policy
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(22), (23), (40), the fault residual function h
(

q(i), u(i)
)

is

hw(q(i), u(i)) = p(q(i), u(i))− pw(w(i)) (53)

since the state-input relations given by (35), (51) al-
lows defining (53). Thus, the steady-state value of
hw(q(i), u(i)) will be equal to zero if the deterministic
closed-loop system is fault-free.

(iii) For a steady-state solution P of (24) denoting by
qf (t) the faulty system state vector, in the forced regime
the control policy is

uf (i) = −Kqf (i) + Ww(i), (54)

where K and W are given as in (23) and (42), respec-
tively. With respect to (53), this yields now

hw(qf (i), uf (i))

=
∥

∥qf (i), uf (i)
∥

∥

2

J − ‖w(i)‖2W ◦ , (55)

where
W ◦ = W TJ22W . (56)

Taking into account that hw(q(i), u(i)) = 0 for the fault-
free system, the fault residual function for the system in a
fault regime takes the value

hw(qf (i), uf (i))

= hw(qf (i), uf (i))− hw(q(i), u(i))

=
∥

∥qf (i), uf (i)
∥

∥

2

J − ‖q(i), u(i)‖2J �= 0.

(57)

where ‖·‖X denotes the Mahalanobis norm of a vec-
tor with the positive definite weighting matrix X , J ∈
R

(n+r)×(n+r, J = JT > 0 is given in (28).

(iv) For a steady-state solution P of (24) and the faulty
system state vector qf (t), in the unforced regime (54)
gives

uf (i) = −Kqf (i) (58)

and, consequently, (52) and (57) imply

hw(qf (i), uf (i)) =
∥

∥qf (i), uf (i)
∥

∥

2

J > 0. (59)

Lemma 3. If the residual function takes the form (53),
then an abrupt change in its response to a single sensor
fault in the system is strengthened by w(i).

Proof. Considering a single sensor fault and neglecting
sensor dynamics, the control feedback signal can be
written as (Krokavec and Filasová, 2009)

uf (i) = −Kqf (i) + Ww(i)

= −K(I−Ifs)q(i) + Ww(i)
= u(i) + us(i),

(60)

where
us(i) = KIfsq(i), (61)

u(i) being defined as in (45), and Ifs ∈ R
n×n generally

takes the form

Ifs = diag
[

0 · · · 0 1 0 · · · 0
]

. (62)

Since (53) can be expressed as

hw(q(i), u(i))

= qT(i)J11q(i) + uT(i)J22u(i)

+ 2qT(i)J12u(i)−wT(i)W TJ22Ww(i),

(63)

substituting u(i) ← uf (i) and q(i) ← qf (i) in (63)
results in

hw(qf (i), uf (i))

= qT
f(i)J11qf (i) + 2qT

f(i)J12u(i)

+ uT(i)J22u(i)−wT(i)W TJ22Ww(i)

+ 2(qT
f(i)J12+uT(i)J22)us(i)+uT

s(i)J22us(i),
(64)

hw(qf (i), uf (i))

= hw(qf (i), u(i))

+ 2(qT
f(i)J12 + uT(i)J22)us(i)

+ uT
s(i)J22us(i)−wT(i)W TJ22Ww(i),

(65)

respectively, where

hw(qf (i), u(i))

= 2qT
f(i)J12u(i)

+ qT
f(i)J11qf (i) + uT(i)J22u(i).

(66)

Now, using (60), i.e., u(i) = −us(i) −Kqf (i) +
Ww(i), we get

hw(qf (i), us(i))

= 2(qT
f(i)J12 + uT(i)J22)us(i)

+ uT
s(i)J22us(i)−wT(i)W TJ22Ww(i)

= 2wT(i)W TJ22us(i)

+ 2uT
s(i)(J

T
12 − J22K)qf (i)

− uT
s(i)J22us(i)−wT(i)W TJ22Ww(i),

(67)

and it is clear that, with respect to (50), hw(qf (i), us(i))
takes the form

hw(qf (i), us(i)) = hw(us(i))

= 2wT(i)W TJ22us(i)− uT
s(i)J22us(i)

−wT(i)W TJ22Ww(i).
(68)
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Fig. 1. Responses of the fault residual function (53): the second sensor fault (a), the third sensor fault (b).

Further, respecting the structure of (17), hw(us(i)) can be
expressed in a concise form,

hw(us(i)) =
[

wT(i) uT
s(i)

]

W s

[

w(i)
us(i)

]

, (69)

where

Ws =
[ −W TJ22W W TJ22

J22W −J22

]

. (70)

Since J22 is positive definite, applying Schur’s
complement property to (70) will yield

−W TJ22W + W TJ22W = 0⇔Ws ≥ 0, (71)

which implies that hw(us(i)) is positive semi-definite.
�

3.4. Responses of residual functions. Principally,
using LQ control, there may exist some faults which do
not cause instability of the closed-loop system, but their
permanent occurrence is technically unacceptable. The
above introduced fault residual function (53) represents
a constructive procedure for detecting faults that cause
system instability, as well as for detecting single sensor
faults against which the control system is robust, i.e.,
the responses of the fault residual function (53) are
unbounded in the presence of faults which give rise to
closed-loop system instability, nonzero but bounded in
the presence of single sensor faults against which the
control system is robust, and are approximately zero in
the presence of other faults against which the controlled
system is robust.

To detect faults against which the control system is
robust, with the exception of sensor faults of this kind,
another form of the modified fault residual function is

proposed,

hw(q(i+1), q(i), u(i))

= qT (i + 1)Y q(i + 1)− qT (i)Y q(i)

+ qT (i)Qq(i) + 2qT (i)Su(i) + uT (i)Rq(i)

−wT(i)W T(GTP G + R)Ww(i),

(72)

changing the dynamics of the fault residual function,
where Y ∈ R

n×n is an arbitrary real symmetric positive
definite matrix. It is obvious that in a steady-state, where
q(i+1) = q(i), the modified hw(q(i+1), q(i), u(i)) is
equal to hw(q(i), u(i)).

Note that this modification does not significantly
change the evaluation procedure with respect to faults in
the controlled system. It is evident that for a stochastic
noisy system a threshold setting is necessary.

4. Illustrative examples

Illustrations of the proposed scheme and the effectiveness
of the algorithm are presented using the model suitable for
fault tolerant control system verification (Krokavec and
Filasová, 2009). The matrix parameters of the system are

F =

⎡

⎣

0.9993 0.0987 0.0042
−0.0212 0.9612 0.0775
−0.3875 −0.7187 0.5737

⎤

⎦ ,

G =

⎡

⎣

0.1101 0.3056
0.2008 0.1176
−0.0213 0.2853

⎤

⎦ , C =
[

1 2 −2
1 −1 0

]

for the sampling period Δt = 0.1 s. The system is
in closed loop under the state feedback (40) where the
control law gain matrix

K =
[

0.4160 1.0763 −0.0248
0.8798 0.3686 0.0971

]
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Fig. 2. Responses of the fault residual function (72): the first actuator fault (a), the second actuator fault (b).

was directly synthesized using the standard Matlab
function dare(F,G,Q,R,S,E).

Note that dare solves a more general task
and computes a unique stabilizing solution P of the
discrete-time algebraic Riccati equation of the form

EPE

= F TPF + Q(F TPG + S)(GTPG + R)−1

× (F TPG + S)T

Compared with (24), it is clear that the parameter
matrix E has to be equal to the identity matrix In. For
more details, see, e.g., the work of Lancaster and Rodman
(1995).

It is possible to verify that the first sensor fault, as
well as the change in the system matrix parameter F22 to
1.3457 gives rise to closed-loop system instability, while
LQ control is robust with respect to single actuator faults,
to faults of the second and the third sensor, as well as
to a change in the system matrix parameter F22 from
[0.9612, 1.1534].

To adjust the lower-bound of supply rate, as well as
(reflecting Bryson’s rule) to set an identical constraint on
the system state and output variables, the performance
index matrices were determined using the SeDuMi
package for Matlab, as a solution of the linear matrix
inequality (12), i.e.,

Q = 0.71 I3, R = 0.71 I2,

ST = 10−7

[

0.0006 −0.0000 0.1603
0.1727 0.0000 −0.0007

]

.

In this sense, the cross coupling weight S can be
interpreted as a matrix concerning the lower bound of the
supply rate in LQ control.

Thus, the following matrices were produced directly:

P =

⎡

⎣

4.6184 0.7659 −0.6462
0.7659 5.2336 −0.3005
−0.6462 −0.3005 1.1445

⎤

⎦ ,

W =
[

0.3889 −0.1393
−0.0175 0.6124

]

, Y = 20 Q,

the system initial state vector was q(0) = 0, and the
desired input signal vector w(i) was adjusted so that

wT (i) =
[

1 −0.5
]

.

In simulations there we considered faults which did
not cause closed-loop system instability, modeled by step
functions starting at any time instant in a system steady
state. Thus, Fig. 1 represents fault residual function
responses, as the output of (53) reflecting a single fault
of the second and the third sensor, respectively, starting at
the time instant t = 4.5 s. Figure 2 presents the responses
of the fault residual function (72) in analogous situations
concerning the single actuator faults, and Fig. 3 illustrates
the response of the same residual function with respect to
the step change in the nominal parameter F22 up to a value
of 1.1534, all starting at the time instant t = 4.5 s.

5. Concluding remarks

The fault detection scheme described in the paper is
based on evaluating LQ control performance index
parameters, where the faults influences are analyzed with
respect to the fault residual functions hw(q(i), u(i)) and
hw(q(i+1), q(i), u(i)) under the assumption of full state
feedback control. In addition, analyzing effects associated
with the faults, the fault residual function responses
allow separating a class of single sensor faults and a
class of other faults, whose occurrence does not cause
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Fig. 3. Response of the residual function (72): the robust system
parameter F22 fault.

instability of the closed-loop system. Since the fault
detection scheme extracts fault distribution information
from controller input and output sequences only and does
not exploit the system dynamics and structure in any
way (e.g., by means of a system model), it evidently
does not allow a complete fault isolation. On the other
hand, the proposed recursive algorithms are parameterized
only by the controller design parameters Q, R, S, and
can be potentially extended to be implementable, e.g., in
simple embedded diagnostic structures for SISO systems,
or combined with other principles which allow fault
isolation.

The proposed method presents some new design
features and generalizations, and it is emphasized that
the advantage offered by such an approach is a simple
recursive algorithm that does not need extra dynamics.
Since the application is conditioned by an LQ control
realization, from the point of view of investigating a
fault detection system design, it can constitute a first
step in developing a practical method based on LQ
control performance index evaluation. The next step
in the development of the proposed scheme is first the
extension to full state unmeasurable linear systems and
linear-parameter varying systems.
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Krokavec, D. and Filasová, A. (2008). Discrete-Time Systems,
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