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This paper deals with the problem of designing Nash equilibrium points in noncooperative games in which agents anticipate
values of Lagrange multipliers coordinating their payoff functions. The addressed model of agents’ interactions, referred
to as the price-anticipation game, is studied within the framework of coordination and mechanism design theory for hi-
erarchical systems. Sufficient conditions are formulated for Nash implementation of a regular and isolated solution to a
coordination problem. An equilibrium design procedure is proposed and applied as an analytic tool in a study of mechanism
design games. In the setting considered the well-known fact is demonstrated that gains from reaching a desired solution
to a coordination problem in a Nash equilibrium point need not balance the overall costs of its implementation. However,
it is also demonstrated how these costs can be distributed among the agents and related to the particular organization of
interactions in the system. Finally, application of the developed framework in the field of Internet traffic engineering is
presented.
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1. Introduction

A game is formally defined as a mathematical model of
interaction (competition or cooperation) of active agents
(autonomous, intelligent and rational in a specified sense)
making interrelated choices under imperfect information.
The solution concept of a game is any prediction of
decisions that may be taken by the agents. The
fundamental one is given by the Nash equilibrium
(Nash, 1950; 1951). Suppose that there are n agents
minimizing payoff (or cost) functions Ji, i = 1, . . . , n,
where each Ji depends on the individual decision xi ∈
Xi of agent i and decisions of the others x−i =
(x1, . . . , xi−1, xi+1, . . . , xn) ∈ X1 × · · · × Xi−1 ×
Xi+1 × · · · × Xn. The Nash equilibrium is a point x∗ =
(x∗

1, . . . , x
∗
n) at which the following system of inequalities

is satisfied:

Ji(x∗
i ,x

∗
−i) ≤ Ji(si,x∗

−i), si ∈ Xi, i = 1, . . . , n.

According to the above definition there is no
profitable deviation from x∗

i , i = 1, . . . , n, individually
available for any agent in a Nash equilibrium point x∗.

For an extensive discussion of the main concepts and
applications of game theory, see the works of Myerson
(1991), Fudenberg and Tirole (1991), Basar and Olsder
(1999), as well as Mas-Colell et al. (1995). This paper
deals with the problem of designing Nash equilibrium
points in games that may arise in hierarchical systems in
which coordination mechanisms are applied that exploit
dual variables, referred to as prices, as coordination
signals.

Consider a decentralized system, sketched in Fig. 1,
of n interacting plants controlled by n active agents.
The system is managed by the coordinator, also referred
to as the mechanism designer or the system regulator,
capable of defining the rules of plants’ interactions.
The coordinator is faced with the problem of designing
a mechanism m that leads the interacting plants,
controlled by the agents, to a solution of a coordination
problem, call it (P). The agents are competing with each
other to reach their private goals related to optimization of
functions f0i, i = 1, . . . , n.

The coordination problem, usually a multiobjective
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one, represents the coordinator’s preferences defined with
respect to performance of the system. The performance
index is assumed to be given by a scalarizing function
f0 aggregating individual preferences f0i, i = 1, . . . , n,
of the agents. As far as the engineering practice is
considered, there are two performance measures that are
usually applied, namely, expressing the egalitarian or
utilitarian fairness concept (see the works of Wierzbicki
et al. (2001), Pióro and Medhi (2004), Ogryczak et
al. (2005; 2008) for networking and decision support
applications, and those of Sen (1969; 1970; 1977) for
general characterization of the fairness concept). In
this paper, we limit our discussion to the coordination
goal defined by the utilitarian aggregation (with equal
weights), f0 =

∑n
i=1 f0i. Furthermore, due to a local

scope of our analysis, we do not infer Pareto-optimality
of the studied solutions.

The agents interacting in the system are assumed
to be active, which means that they are capable of
making autonomous decisions (however, subject to the
constraints defined by mechanism m). As a consequence,
it is necessary to make some, rather strong, assumptions
regarding their decision making processes. Our focus is,
therefore, limited to the environments in which the agents
try to reach a Nash equilibrium point.

The central assumption in our investigations,
naturally satisfied in many real-life systems, is that the
agents’ preferences, f0i, i = 1, . . . , n, are not commonly
known (see Rotschild and Stiglitz, 1976; Grossman and
Stiglitz, 1980; Stiglitz, 2000). Precisely, the preference
indicator f0i is required to be privately known only to the
i-th agent. Let us briefly point out implications that this
assumption may have for coordinability of the system, i.e.,
reachability of the coordination goal.

As can be noticed, in the addressed asymmet-
ric information environment the coordinator must rest
his/her decisions on information that the agents decide
to reveal. However, the agents may find it profitable
to take advantage of the monopoly they have on the
knowledge regarding their individual preferences. In
order to accomplish this goal, the agents, referring to the
idea underlying the preference revelation principle (Green
and Laffont, 1979; Myerson, 1981; Mas-Colell et al.,
1995), may dishonestly communicate to the coordinator
a suitably modified profile of preferences f̃0i �= f0i, i =
1, . . . , n. Equivalently, they may try to apply the controls
x̃i, i = 1, . . . , n, that optimize f̃0i instead of f0i. Suppose
that there exists an equilibrium point that is reachable
under such control strategies. Clearly, its efficiency will
then be determined by the aggregation of the fictitious
preferences, f0 =

∑n
i=1 f̃0i, observed by the coordinator.

In other words, the actual performance of the system,
described by f0 =

∑n
i=1 f0i, will not be optimized.

At the same time, though, as illustrated later in the
paper, in the equilibrium some of the agents may improve

Fig. 1. Structure of a decentralized coordination system.

their payoffs above those attainable if true preferences
were revealed. Consequently, in order to reach the
coordination goal, mechanism m, defining the rules of
the agents’ interactions, should create sufficient incentives
for the agents to apply the controls that indeed optimize
f0i, i = 1, . . . , n. For a classic discussion of the theory of
incentives, see the works of Arrow and Hurwicz (1977),
Green and Laffont (1979), Mas-Colell et al. (1995), as
well as Laffont and Martimort (2002).

The mechanisms under our consideration exploit
the Lagrange multipliers, associated with the interaction
balancing constraints in the system, as a feedback to the
agents. Namely, we study the properties of mechanisms
specifying the coordination procedures, also referred
to as auctions, in which in the course of an iterative
process the coordination signals, interpreted as prices,
lead the interacting agents to outcomes optimizing their
preferences. In this paper, however, it is not the dynamics
of the process that are under our investigation but the static
properties of its equilibrium points.

More formally, we search for the sufficient
conditions that must be satisfied by a local solution to the
coordination problem:

(P)

{
minimize f0(x,y) over (x,y) ∈ R

n × R
m,

subject to fj(x,y) = 0, j = 1, . . . , m,

to be reachable in a pure-strategy Nash equilibrium
point of the noncooperative game in which active agents
anticipate values of the Lagrange multipliers associated
with the constraints fj, j = 1, . . . , m, at the solution. We
refer to this model of interaction as the price-anticipation
game.

A motivation for our studies comes from the
following observation. Suppose that (x̄, ȳ) ∈ R

n ×R
m is

a solution to (P) and in a neighborhood Bε(x̄)×Bε(ȳ) of
(x̄, ȳ), with Bε(x̄) = {x : ‖x̄−x‖ ≤ ε, ε > 0}, functions
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fj : R
n × R

m → R, j = 0, . . . , m, are continuously
differentiable with respect to all arguments. Let us also
assume that

det
∂FT

∂y
(x̄, ȳ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂f1(x̄, ȳ)
∂y1

. . .
∂fm(x̄, ȳ)

∂y1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
∂f1(x̄, ȳ)

∂ym
. . .

∂fm(x̄, ȳ)
∂ym

∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0,

where F = (f1, . . . , fm)T . It follows from the
implicit function theorem that for every x ∈ Bε(x̄)
we have y = Y(x), where Y : Bε(x̄) → Bε(ȳ) is
continuously differentiable and uniquely defined by the
equation F(x,y) = 0. Furthermore, ȳ = Y(x̄) and
F(x̄,Y(x̄)) ≡ 0. As a consequence, the problem (P)
of constrained optimization over (x,y) can be locally
replaced by that of unconstrained optimization over x. On
the other hand, since the regularity condition is satisfied
at (x̄, ȳ), the necessary optimality conditions imply the
existence of Lagrange multipliers μ̄ = (μ̄1, . . . , μ̄m) ∈
R

m such that

∂f0

∂y
(x̄, ȳ) +

∂FT

∂y
(x̄, ȳ)μ̄ = 0.

Solution of this equation combined with the local
relation y = Y(x) yields

μ = −
(

∂FT

∂y
(x,Y(x))

)−1
∂f0

∂y
(x,Y(x)). (1)

In other words, in a neighborhood of (x̄, ȳ) multipliers
μ̄j , j = 1, . . . , m, can be defined by x̄ only. This fact is
at the center of the discussion presented below. It serves as
a springboard to a game-theoretic study of outcomes that
are reachable when (i) decomposition principle is applied
to solve (P) in the decentralized environment described by
Fig. 1, and (ii) emerging local plant control subproblems
are defined and solved by the agents capable of taking the
relation (1) into account.

Finally, we consider systems in which the
coordination process can be decentralized and, hence, no
central coordination unit is required. As an illustrative
example of a mechanism under investigation, consider
the TCP protocol commonly used in communication
networks (see, e.g., Stallings, 1998). The protocol
controls the rate at which a network node sends packets
based on locally observed congestion signals. These
signals provide feedback information about the utilization
of the links in the network and can be interpreted as
link capacity prices. It should be noted here that the
rate at which a TCP node can send data is determined
by a congestion control algorithm specified by the
implementation of the TCP protocol (e.g., fast, reno,
hstcp, stcp) deployed in the network nodes. However,
what implementation is indeed deployed depends on the

network users, autonomously managing their network
nodes. In other words, there exists an information
asymmetry between the network manager (coordinator)
and the network users. Recent results in the field of
game-theoretic modeling of preferences in hierarchical
systems can be found in the work of Kołodziej and Xhafa
(2011).

Outline of results. In the following sections we show
how to design payoffs Ji(xi,x−i), i = 1, . . . , n, of the
price-anticipation game, defined by the condition (1), in
order to reach a solution to the coordination problem (P) at
a Nash equilibrium point. The condition (1) is assumed to
be discovered and exploited by n active agents optimizing
their private preference indicators f0i(xi), i = 1, . . . , n,
subject to the imposed rules of interaction.

We begin, in Section 2, by discussing an example
of the price-anticipation game induced in the network
environment by the rules of a resource allocation
mechanism coordinating decisions of active agents by
means of dual variables (prices) associated with the
resource utilization constraints. It is assumed that the
rules of resource allocation and the coordination goal
are commonly known. On the other hand, preferences
of the agents are assumed to be known only to the
agents themselves. In such a setting the agents may
share the belief concerning equilibrium conditions that
the coordinator tries to reach and, thus, anticipate the
influence of their decisions on the coordination signals.

The main result of the paper is Theorem 1
given in Section 3. It specifies sufficient conditions
for implementation of a regular local solution to (P)
at a Nash equilibrium point of the (noncooperative)
price-anticipation game with payoffs parameterized by the
price-based coordination instruments (price-based penalty
functions or transfer rules). Theorem 1 describes a design
procedure that exploits local properties of the feasible
solutions to F(x,Y(x)) ≡ 0 in order to define a col-
lection of mechanisms that locally coordinate interactions
of the agents. Each mechanism in the collection is
defined by the interaction balancing rule, Y(x), and
the coordination instruments, ηi(x), i = 1, . . . , n.
By construction these instruments remain invariant with
respect to the first-order variations of prices, which
preserves compatibility of the coordination goal with
the private goals of the interacting price-anticipating
agents. In this respect Theorem 1 provides an insight
into the relationship between the properties of Lagrange
multipliers, the Nash equilibrium of the price-anticipation
game and the incentive compatibility (or coordinability)
condition.

In Section 4 we demonstrate application of
Theorem 1 in a study of the equilibrium design problem
defined for a class of quadratic preference indicators.
First, we consider a mechanism design game in which
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an agent decides whether to apply the price-anticipating
or the price-taking strategy, whereas the coordinator
decides whether or not to counterspeculate. This
analysis indicates that it may be more desirable for
the coordinator to reach a suboptimal solution with the
price-anticipating agent than the optimal one imposing
additional coordination costs. Second, we show how
the costs of counterspeculation can be controlled, at
least to some extent, by a proper design of coordination
instruments and, in particular, by a choice of the
interaction variables in the system. Indeed, by Theorem 1
interactions of the control variables, Y(x), specify local
properties of the equilibrium point.

Finally, in Section 5 we discuss the problem of
congestion control in the Internet to illustrate how
the presented results refer to potential performance of
mechanisms applied in practice. We discuss the design
and the properties of the TCP traffic rate control algorithm
commonly used in communication networks.

The aim of this paper is to enrich the field of
mechanism design theory by an analytic tool supporting
the study of price-anticipation games. We also hope
that the tools developed in this paper can be of some
use in supporting the coordination (mechanism design)
decisions. Application fields for which the findings
of this paper seem to be useful include distributed
hierarchical systems with active agents, especially such
as interconnected telecommunication networks and smart
power grids. For detailed game-theoretic study of
mechanism design problems, see the works of Arrow
and Hurwicz (1977), Groves et al. (1987), Green and
Laffont (1979), Myerson (1991), Mas-Colell et al. (1995),
Krishna (2002), or Milgrom (2004). Other recent
results concerning efficiency of the Nash equilibrium in
games with price-anticipating agents can be found in the
works of Johari and Tsitsiklis (2009), Alpcan and Pavel
(2009), Alpcan et al. (2010), Yang and Hajek (2007),
or Karpowicz (2010). Finally, the theory of hierarchical
systems is presented by Findeisen et al. (1980).

2. Motivation: Network utility optimization

Let us describe a price-anticipation game that can be
induced in the network environment by the rules of
resource allocation mechanisms.

Consider the problem of designing a resource
allocation procedure that finds a solution to

(S)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize f0(x,y) =
m∑

j=1

Cj(yj) −
n∑

i=1

Ui(xi)

subject to fj(x,y) =
∑

i∈S(j)

xi − yj = 0,

over (x,y) ∈ R
n × R

m, j = 1, . . . , m,

in a network of interacting agents. A popular

interpretation of this problem relates to congestion-control
in communication networks (Kelly, 1997). There are
m links in a network shared by n users. Each user
i = 1, . . . , n is associated with a connection that can
be realized between the selected source–destination pair
of network nodes. The connection is established by
a collection of paths consisting of network links. User
i receives utility Ui(xi) from the transmission rate xi ≥
0, if each link j = 1, . . . , m on the connection path
allocates to the connection a share of its capacity yj ≥
0. Function f0 gives a value of cost that can be
attached to allocation (x,y). It aggregates allocation costs
Cj(yj), j = 1, . . . , m, and utilities Ui(xi), i = 1, . . . , n,
into a value underlying judgement about the system
performance. The constraints fj , j = 1, . . . , m, state
that supply yj must satisfy demand

∑
i∈S(j) xi revealed

by a subset S(j) ⊆ {1, . . . , n} of consumers. We will
refer to this interpretation in the following paragraphs.
For convenience, in this section let us also assume strict
convexity of the objective in (S).

Suppose that to solve the above problem the
coordinator applies a mechanism known as the
uniform-price (or Walrasian) auction. As usually,
the mechanism is defined by the resource allocation
rule and the payment rule. The allocation rule assigns
to each network user resources that are available on
each link forming the user’s connection. The payment
rule assigns to each user the cost of the established
transmission rate, realized over a subset of network
links. These costs are determined by the resource
utilization prices that are calculated by the coordinator
based on the observed demand for the transmission rate.
More formally, the mechanism can be derived from the
following decomposition of the Lagrange function:

H(w,q) =
m∑

j=1

[
Cj(yj) − μjyj − νjyj

]

−
n∑

i=1

[
Ui(xi) − xi

∑

j∈D(i)

μj + λixi

]

= HC(y, μ, ν) −
n∑

i=1

Hi(xi, μ, λi),

where w = (x,y) and q = (μ, ν, λ).
Suppose now that functions Cj , j = 1, . . . , m, are

commonly known, although the function Ui is known
only to the i-th network user. It can be easily argued
that the choice of prices, made by the coordinator, is
naturally related to optimization of function HC . Indeed,
since the agents know what are the true costs of resource
allocation, the coordinator would find it difficult to
justify any other choice of prices. At the same time,
from the viewpoint of the i-th network user, the choice
of the way in which demand xi is calculated is not
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straightforward, i.e., it does not need to be related to
optimization of Hi. In the asymmetric information setting
considered user i may take advantage of the monopoly on
information regarding function Ui, which is required by
the coordinator to optimize H . For example, in response
to the observed prices, communicated by the coordinator,
the user may apply a suitably modified function Ũi �= Ui

in order to calculate a profitably reduced level of demand.
Since demand reduction may lead to lower prices in the
equilibrium, some users may improve their payoffs by
applying the above price-anticipating strategy.

In the following paragraphs we will briefly discuss
two possible control strategies that can be applied by the
users: price-taking and price-anticipating.

Price-taking strategy. A straightforward approach to
calculate xi is to optimize Hi in response to the vector
of fixed prices μ, reflecting the observed state of the
network. In such a case user i, acting as the price-taker,
solves locally the subproblem

(Si(μ))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maximize Ui(xi) − η̄i(μ, xi)
over xi ∈ Xi ⊂ R+,

where η̄i(μ, xi)
�= xi

∑

j∈D(i)

μj ,

coordinated by the values of Lagrange multipliers
(prices of network links). If applicability conditions
of the price-based coordination are satisfied, then a
neighborhood of a solution to (S) may be reached in the
course of the following iterative process. Given a vector
of fixed prices μ(k) observed in the network in iteration
k, each user i solves (Si(μ(k))). Solution xi(k) is then
applied in the network that, in response, adjusts prices.
For a general study of price-adjustment procedures under
price-taking assumption, see, e.g., the works of Negishi
(1960), Uzawa (1960), Arrow and Hurwicz (1977), and
Findeisen et al. (1980).

Price-anticipating strategy. Although the above price-
taking approach has many advantages, for both the
coordinator and the network users, in some cases it may be
reasonable for the users to calculate demand in a different
way. This can be motivated by the following observation.
By assumption, it is commonly known that the network’s
goal is to reach the steady-state in which prices satisfy the
condition (1), i.e., μj = C′

j(yj) = pj(x), j = 1, . . . , m.
A network user occupying more and more of a resource
in the network may, therefore, eventually observe his/her
nonnegligible impact on the resource price, defined by
the above condition. As a consequence, the user may
find it reasonable to actively apply the following price-

anticipating strategy:

(Ai)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maximize Ui(xi) − η̄i(p(x), xi)
over xi ∈ Xi ⊂ R+,

where η̄i(p(x), xi)
�= xi

∑

j∈D(i)

pj(
∑

k∈S(j)

xk).

Notice that the first-order optimality conditions for (Ai)
are now incompatible with the first-order conditions for
(S). This brings us to the conclusion that the incen-
tive compatibility (or coordinability) constraint is violated
by the rules of the mechanism considered: individual
goals of the agents are no longer harmonized with
the goal of the coordinator (invisible hand of selfish
competition no longer promotes the system efficiency).
The desired solution to (S) becomes unreachable in the
setting considered.

Let us briefly refer to the question of incentives
that a network user may have to anticipate prices and
to become involved in the price-anticipation game with
other users and the coordinator. Provided that there
exists a solution to the game, it may seem that such
a strategy could improve individual payoffs or allocations
in comparison to those attainable in a solution to (S).
Indeed, for the family of strictly convex problems, it
was demonstrated by Karpowicz (2010) that there exists
a subset of agents that gain by anticipating prices under
the rules of the Walrasian market-clearing process. This
result is also illustrated in Section 4, in which we
show that if the price-anticipating strategy is applied
by an agent, then his/her individual payoff may be
improved in comparison with the payoff reachable under
the price-taking strategy. Other examples and real-life
observations of price-anticipating behavior can be found,
e.g., in the works of Karpowicz (2011) and Lubacz et al.
(2011). See also the contribution by Johari (2004) for a
detailed analysis of efficiency loss in market mechanism
for resource allocation.

To close this section, let us show that solution to
(S) can be reached with price-anticipating users as well.
Consider the following modification of (Ai):

(Ai
∗)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maximize Ui(xi) − η̄i(p(x), xi)
over xi ∈ Xi ⊂ R+,

where η̄i(p(x), xi)
�=

∑

j∈D(i)

∫ xi

0

pj(s,x−i) ds.

If the payment rule of the resource allocation mechanism
is defined as above, then the first-order optimality
conditions for (Ai∗) give rise to outcomes that establish
a solution to (S), as desired, even though the
price-anticipating strategy is applied by each agent.
In other words, the incentive compatibility condition
is satisfied under the above rules of price-based
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coordination. This is precisely the observation that
motivates our research. In the following section we show
how to design price-based coordination instruments that
are characterized by the observed property.

3. Nash equilibrium design

In this section conditions are given under which a regular
solution z̄ = (x̄, ȳ) to

(P)

⎧
⎪⎨

⎪⎩

minimize f0(x,y) over (x,y) ∈ R
n × R

m

subject to fj(x,y) = 0, j = 1, . . . , m,

n, m > 0, fj ∈ C 2, j = 0, . . . , m,

can be reached at a Nash equilibrium point of the game
defined locally by the system

⎧
⎪⎨

⎪⎩

∂f0

∂y
(x̄, ȳ) +

∂FT

∂y
(x̄, ȳ)μ̄ = 0,

F(x̄, ȳ) = 0,

(2)

determining the Lagrange multipliers associated with the
constraints fj , j = 1, . . . , m.

The environment of our interest, in which Problem
(P) is to be solved, is characterized by the following
properties. First, the system coordinator can decompose
problem (P) with respect to control (independent)
variables xi, i = 1, . . . , n, and interaction (dependent)
variables yj , j = 1, . . . , m. Second, the problem of
calculating xi is delegated to a designated agent i =
1, . . . , n, whereas the interaction variables yj, j =
1, . . . , m, remain managed by the system coordinator. In
other words, we consider environments in which control
variables can be calculated independently by the agents
actively interacting with each other in order to determine
the values of interaction variables, establishing solution
to F(x,y) = 0, where y = Y(x). Finally, the agents
actively exploit the first-order optimality conditions (2) to
calculate their controls xi, i = 1, . . . , n.

The following theorem gives conditions that
guarantee attainability of z̄ = (x̄, ȳ) in the environment
considered.

Theorem 1. (Nash implementation conditions) Sup-
pose that fj(x,y) =

∑n
i=1 fji(xi) + gj(y) for j =

0, . . . , m. Let z̄ = (x̄, ȳ) be a point for which the
second-order necessary optimality conditions for (P) hold
with det∇yF(x̄, ȳ) �= 0. If, for x ∈ Bε(x̄), functions
ηi, i = 1, . . . , n, are defined by the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ηi

∂xi
(x) =

m∑

j=1

pj(x)
∂fji

∂xi
(xi), i = 1, . . . , n,

p(x) ≡ −
(

∂FT

∂y
(x,Y(x))

)−1
∂f0

∂y
(x,Y(x)),

F(x,Y(x)) ≡ 0,

(3)

and for any v ∈ R
n \ {0} the following condition holds:

vT ∂YT

∂x
(x̄)

∂2H

∂y2
(x̄,p(x̄))

∂Y
∂xT

(x̄)v > 0, (4)

where H(z, μ) = f0(z) + μT F(z), then z̄ is an isolated
solution to (P) and also a unique solution to the system

(PAYOFFi, i = 1, . . . , n)
{

minimize Ji(xi,x−i) = f0i(xi) + ηi(x)
over xi ∈ Bε(x̄i).

Proof. From the regularity assumption it follows that the
set V (z̄) of feasible variations is given by

V (z̄) = {d(v) = (v,∇xY(x̄)v)T |v ∈ R
n \ {0}}.

Indeed, for d(v) ∈ V (z̄) we get
(

∂F
∂xT

(z̄) +
∂F
∂yT

(z̄)
∂Y
∂xT

(x̄)
)

v = 0.

Since, by definition of p(x), there holds

∂pT

∂x
(x̄)

∂F
∂xT

(x̄,Y(x̄))

=
∂YT

∂x
(x̄)

∂2H

∂y2
(x̄,p(x̄))

∂Y
∂xT

(x̄),

from (4) it follows that for d(ei) ∈ V (z̄)

∂pT

∂xi
(x̄)

∂F
∂xi

(x̄,Y(x̄)) > 0, i = 1, . . . , n.

As a result, by (3) and the assumption that the
second-order necessary conditions hold, x̄i, i = 1, . . . , n,
satisfies the second-order sufficiency conditions for an
isolated optimum of Ji:

∂Ji

∂xi
(x̄i, x̄−i) =

∂f0i

∂xi
(x̄i) +

m∑

j=1

pj(x̄)
∂fji

∂xi
(x̄i) = 0,

∂2Ji

∂(xi)2
(x̄i, x̄−i) =

∂2f0i

∂(xi)2
(x̄i) +

m∑

j=1

pj(x̄)
∂2fji

∂(xi)2
(x̄i)

+
m∑

j=1

∂pj

∂xi
(x̄)

∂fji

∂xi
(x̄i) > 0.

Furthermore, for every i = 1, . . . , n, the function Ji is
locally strictly convex in xi for every x−i, where x ∈
Bε(x̄).

Consider now the mapping

Tz �= {x ∈ Bε(x̄)|
n∑

i=1

Ji(xi, z−i)

= min
s∈Bε(x̄)

n∑

i=1

Ji(si, z−i)} ⊆ Bε(x̄),
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where Bε(x̄) = Bε(x̄1) × .. × Bε(x̄n). By the
strict convexity of Ji, i = 1, . . . , n, T is an upper
semicontinuous mapping of a closed, bounded and convex
set Bε(x̄) into itself. Thus, by the Kakutani theorem
(Kakutani, 1941), there exists x∗ ∈ Tx∗, a solution to
(PAYOFFi, i = 1, . . . , n) establishing a Nash equilibrium
point (Rosen, 1965; Basar and Olsder, 1999). It can also
be seen that x̄ ∈ Tx̄. Indeed, we have

min
s∈Bε(x̄)

n∑

i=1

Ji(si, x̄−i) =
n∑

i=1

min
si∈Bε(x̄i)

Ji(si, x̄−i),

and for every i = 1, . . . , n,

Ji(x̄i, x̄−i) < Ji(si, x̄−i), si ∈ Bε(x̄i).

Finally, from (4) we have

∂g0

∂y
(ȳ) +

m∑

j=1

μ̄j
∂gj

∂y
(ȳ) = 0,

∂2g0

∂y2
(ȳ) +

m∑

j=1

μ̄j
∂2gj

∂y2
(ȳ) > 0,

which shows that the second-order sufficient optimality
conditions hold for ȳ = Y(x̄). We therefore conclude
that z̄ = (x̄,Y(x̄)) is an isolated solution to (P) defined
by a unique solution to (PAYOFFi, i = 1, . . . , n). �

By Theorem 1, if Problem (P) has the required
separable structure and there exists a regular point
z̄ satisfying the second-order necessary optimality
conditions, then z̄ is locally reachable as a solution to
the system (PAYOFFi, i = 1, . . . , n). This solution
is also a Nash equilibrium in the noncooperative
price-anticipation game with payoffs Ji, i = 1, . . . , n,
parameterized by the price-based coordination
instruments ηi, i = 1, . . . , n. (It should be noticed
that only a partial derivative of ηi is defined.) By
construction these instruments remain invariant with
respect to the first-order variations of dual variables
(prices) in the equilibrium. This property maintains
compatibility of the first-order optimality conditions
for (P) with the first-order optimality conditions for
(PAYOFFi, i = 1, . . . , n). In other words, in the
equilibrium the incentive compatibility constraint is
satisfied.

The proof of Theorem 1 is based on the
elimination technique (modeling the reasoning of
the price-anticipating agents), according to which the
constrained problem is reduced to an unconstrained
one with m dependent (interaction or basic) variables
expressed in terms of n independent (control) variables.
As a consequence, the assumption of regularity,
det∇yF(x̄, ȳ) �= 0, seems to be indispensable in
the setting considered. It allows the construction of

Fig. 2. Implementation scheme of the coordination mechanism.

dual and interaction variables as functions of controls,
and thus gives rise to the definition of the analyzed
game form. The same can be said about the local strict
convexity of the Lagrange function (with respect to
the interaction variables). Under the assumption that
the first-order optimality conditions hold, the condition
(4) implies existence and uniqueness of a solution to
(PAYOFFi, i = 1, . . . , n). (Nonetheless, it should also be
noticed that, if (4) holds with equality, the strict convexity
of f0i, i = 1, . . . , n, may be sufficient for the existence of
a solution to (PAYOFFi, i = 1, . . . , n) as well. This case
is illustrated in Section 4 in Example (E3), in which the
condition (4) is violated for y = (z1, z4).)

We leave it an open question whether it is possible to
relax the above conditions. For example, since ηi(x̄) =
η̄i(μ, x̄i), it may be interesting to investigate the relation
between problem PAYOFFi, generalized conjugacy and
augmented Lagrangians. Inspirations for further research
can be found in the works of Bertsekas and Ozdaglar
(2002), Rockafellar and Wets (2004), as well as Jofré et al.
(2007).

Mechanism design procedure. Suppose that the
coordinator’s goal is to optimize the commonly
known (utilitarian) system performance indicator,
f0 =

∑n
i=1 f0i + g0, aggregating private preference

indicators f0i, i = 1, . . . , n, of the agents, subject to the
constraints fj, j = 1, . . . , m. To reach this goal, the
coordinator must design and introduce into the system
a mechanism, m(P), that properly controls interactions
of the agents. The following procedure can be applied by
the coordinator:

1. Decomposition: Define control variables x and
interaction variables y for which det∇yF(x,y) �= 0
and F(x,y) = 0.

Since there may exist many feasible decomposition
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profiles (x,y), it follows that several mechanisms
can be defined in a neighborhood of F(x,y) = 0.

2. Design: For every feasible decomposition (x,y)
determine the rules of interactions of the control
variables, Y(x), such that F(x,Y(x)) ≡ 0.
Construct functions ηi(x), i = 1, . . . , n, taking the
form of p(x) into account.

3. Implementation: Introduce into the system the rules
of interaction, Y(x), and assign to each agent i =
1, . . . , n the payment rule ηi(x) coordinating payoff
Ji(x).

Following the constructed rules of coordination, the
interaction variables yj , j = 1, . . . , m, are to be
managed by the system coordinator. At the same
time, the problem of setting the value of control
variable xi is delegated to a designated agent i =
1, . . . , n.

Under the assumptions of Theorem 1, in a
neighborhood of a solution to F(x,y) = 0 it is
possible to design a mechanism m(P) defined by the
interaction balancing rule, Y(x), and the coordination
instrument (price-based penalty function or payment
rule), η(x). A particular choice of interactions (dependent
or basic variables) specifies the coordination structure
of the system and, consequently, local properties and
the architecture of the equilibrium in a neighborhood of
a fixed solution to F(x,Y(x)) ≡ 0. The aim of the design
procedure is, therefore, to select the rules of interaction
that lead the actively competing agents to the desired
equilibrium in the most suitable way.

It should be emphasized that m(P) can be defined
only locally for x ∈ Bε(x̄), i.e., in a neighborhood of
a point that meets the first-order optimality conditions for
(P). Unfortunately, without the additional assumptions on
problem convexity, when local information is not global
information, this can be viewed as a natural limitation
of the design procedure. Since x̄ is unknown a priori,
the coordinator must be able to guess the location of
the desired solution, Bε(x̄), and impose bounds on local
control variations in advance.

In the case of economic systems, such as auctions,
this amounts to imposing additional regulations, for
example, taking the form of bidding activity rules
(Cramton, 1997; Milgrom, 2004). In the case
of automated systems, such as computer networks,
application of dedicated protocols and resource allocation
rules is required. We can refer to these limitations as
equilibrium implementation costs. Clearly, these costs
may be substantial and, therefore, may determine the
mechanism design decisions. Other related costs are
discussed in Section 4. Indeed, it should be pointed out

that

ηi(x̄) =
m∑

j=1

μ̄jfji(x̄i)

−
m∑

j=1

∫ x̄i

0

fji(s) dpj(s, x̄−i) + bi(x̄−i)

�=
m∑

j=1

μ̄jfji(x̄i), i = 1, . . . , n.

Therefore, without any additional assumptions on ηi

and bi, the penalties arising in the equilibrium at the level
of local control are not equal to those optimizing locally
the Lagrange function H(z̄, μ̄), i.e., the penalties given
by

∑m
j=1 μ̄jfji(x̄i), i = 1, . . . , n. This brings us to the

following, somewhat expected conclusion. Even though
it is possible to design z̄ as an equilibrium point in the
price-anticipation game, one should await that this would
entail additional costs of coordination. This problem is
further discussed in Section 4.

Geometric interpretation of the mechanism rules is
illustrated in Fig. 3, in which the following problem is
considered:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize f0(z) = z2
1 + 2z2

2 + 3z2
3 + z2

4

subject to f1(z) = 1 − z1 − z2 + z3 = 0,

f2(z) = 2 − z1 + z2 − z3 + z4 = 0,

over z ∈ R
4.

It can be verified that the following decomposition
satisfies the assumptions of Theorem 1: y = (z1, z2)
and x = (z3, z4). In the figure the levels of
H(y,p(x)) are shown on the left over the feasible region
in (Y1(x), Y2(x)) space. On the right, the levels of
J1(x1, x

∗
2) + J2(x2, x

∗
1) are shown together with the best

response curves in (x1, x2) space. As the control variables
approach optimal solution at x∗ = Tx∗ = (z̄3, z̄4),
the interaction variables approach optimal solution at
(Y1(x∗), Y2(x∗)) = (z̄1, z̄2) in the region of feasible
interactions. Figure 3 illustrates a sequence of mutual best
responses (tâtonnement process) that converges to z̄.

Incentive compatibility. The outcome of the design
procedure discussed above can be described as an incen-
tive compatible mechanism defining the price-anticipation
game with a Nash equilibrium point establishing the
coordinator’s local goal. Within the addressed setting
the incentive compatibility constraint is expressed (in
the language of the price-anticipation game) by the
condition (3). This important relation describes the
family of rules ηi, i = 1, . . . , n, motivating the
agents to coordinate their individual and privately known
goals on the commonly known goal of the coordinator,
expressed by the steady-state condition (1). The
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Fig. 3. Geometric interpretation of mechanism rules.

function ηi, by its construction, can be interpreted as
a Vickrey–Clarke–Groves transfer (see Mas-Colell et al.,
1995, Chapter 23) applied in the studied setting of
the price-anticipation game. However, in contrast to
standard forms of these transfers, functions ηi are entirely
defined by (2), rather than by the agent’s preference
indicators. This implies that the agents are not required
to reveal to the mechanism the forms of their preference
indicators f0i, i = 1, . . . , n,. For the class of mechanisms
considered only local characterization of preferences is
required, which goes along with the following postulate
formulated by Vickrey (1961):

What the (. . . ) agency needs (. . . ) is
an unbiased report of the marginal-cost
(competitive supply) curves (. . . ) and of the
marginal-value (competitive demand) curves
(. . . ), or at least of the portions of these curves
covering a range of prices that will be sure to
contain the equilibrium price.

Let us point out two important consequences of the
incentive compatible implementation of the coordination
goal. First, if all the agents apply the price-anticipating
strategy to calculate the controls optimizing payoffs
Ji, i = 1, . . . , n, then they realize the goal of coordination
(in terms of the first-order optimality conditions) by
selfishly acting autonomously in their own best interest.
Second, in the Nash equilibrium of the game induced
by the rules of m(P), dual variables are assigned values
μ̄ = p(x̄), equal to those that would be obtained under
complete information, i.e., if the coordinator had enough
information to perform centralized optimization of (P).
This, however, implies that controls optimizing payoffs
could be iteratively calculated ignoring the explicit form
of p(x). Namely, since no profitable manipulations of
p(x) (distortions of μ = p(x)) are possible under the

rules of coordination applied, it is optimal for the agents
to calculate the best responses to the observed values of
dual variables μ = p(x).

The above conclusions may be useful for the design
of iterative procedures that could lead the agents to an
equilibrium point under incomplete information. In order
to illustrate the general concept, let us again consider
the problem (S) discussed in Section 2. As we have
argued above, in the equilibrium the price-taking control
is equivalent to the optimal price-anticipating one. Thus,
given a vector of prices μ(k) observed in iteration k,
each (actively price-anticipating) agent i should solve the
problem

(Ai
∗(μ(k)))

{
maximize Ui(xi) − η̄i(μ(k), xi)
over xi ∈ Bε(x̄i),

where dη̄i(μ(k), xi)/dxi =
∑

j∈D(i) μj(k), by (3).
Solutions xi(k), i = 1, . . . , n, could be then applied
to adjust the prices according to the rule μ(k +
1) = p(x(k)). Obviously, individual allocation costs
η̄i(p(x(k)), xi(k)) should be adjusted accordingly as
well. In Section 5 we illustrate a potential practical
application of the above design. A discussion of iterative
price-based coordination algorithms for price-anticipating
agents can be found in the works of Karpowicz (2010) and
Lubacz et al. (2011).

4. Mechanism design games

In this section we demonstrate how Theorem 1 can be
applied to design and analyze mechanisms that coordinate
decisions of price-anticipating agents. Let us emphasize
that only for this analytical purpose it is assumed that
functions f0i, i = 1, . . . , n, and fj = 1, . . . , m
belong to a predefined class known to the mechanism
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designer. Under this assumption, the mechanism design
procedure can be used to identify the potential costs of
counterspeculation and their determinants.

First, the construction of coordination instruments
is discussed and the role played by the conditions (3)
and (4) is illustrated. In particular, we show that if the
condition (4) is not satisfied, then the Lagrange multipliers
may be independent of the control variables. In the
price-anticipating environment considered this may be
viewed as a potentially desirable property of coordination
signals. Next, we turn to the question concerning the
costs of introducing the counterspeculative incentives into
the system. We illustrate the following phenomenon
discovered by Hurwicz (1977):

One is faced with the dilemma of
accepting mechanisms that are either not
Pareto-satisfactory (with no-trade option) or
not privacy-respecting. If one does not wish
to sacrifice Pareto-satisfactoriness, one is
forced into making concessions on the side
of informational decentralization, specifically
with regard to privacy. These concessions
will involve the diversion of some resources
from substantive uses to the operation of the
mechanism—to obtaining more information
concerning the characteristics of the various
individuals, and perhaps, to induce behavior
prescribed by the mechanism.

Mechanism design theory shows that for a wide class
of problems it is impossible to avoid the costs of
Nash equilibrium design (for an overview, see Green
and Laffont, 1979; Hurwicz and Walker, 1990; Hurwicz
et al., 1995; Mas-Colell et al., 1995; Krishna, 2002).
In the general case, gains from reaching a desired
solution to the coordination problem need not balance the
losses corresponding to the introduction of incentives that
make this solution attainable in a noncooperative game.
These costs must be incurred by the coordinator through
violation of the budget-balancing condition, or the agents
through violation of the rational participation constraint.
We present how Theorem 1 can be applied to identify and
control these costs, at least to some extent, and how the
efficiency of design depends on the choice of interaction
variables in the system.

The following notation is used below. By R(E)
we denote an optimal solution to problem (E), Dkl(E)
denotes a solution to the price-anticipation game designed
for Problem (E) with the interaction variables y =
(zk, zl), Db

kl(E) denotes a solution to the same game with
balanced payoffs, Gkl(E) denotes a solution to (E) with
price-anticipating agents and interaction variables y =
(zk, zl). Finally, for x = (x1, x2) = (zk, zl), we denote
Jk = J1(x), Jl = J2(x), for y = (y1, y2) = (zk, zl)
we write Hk = H1(zk, μ), Hl = H2(zl, μ), and Q =

∑
i Ji +

∑
j Hj . Finally, ΔH = |Q − H | denotes the

implementation cost.

Design of coordination instruments. Consider the
following problem due to Fiacco and McCormick (1990):

(E1)

⎧
⎪⎨

⎪⎩

minimize f0(z1, z2) = (z1 − 1)2 + z2
2

subject to f1(z1, z2) = 2γ z1 − z2
2 ≤ 0,

γ > 0.

There are three solutions of (E1) located on the boundary
of feasible set, namely,

R(E1) =
{

z̄1 = (0, 0), μ̄1 = 1/γ, γ ≥ 1,

z̄2,3 = (1 − γ,±
√

2γ(1 − γ)), μ̄2,3 = 1, γ ∈ (0, 1).

Let us investigate their implementability by following the
prescription of Theorem 1.

Decomposition of (E1) with respect to zi, i = 1, 2,
yields the payoffs

H1(z1, μ) = (z1 − 1)2 + 2γ z1μ,

H2(z2, μ) = z2
2(1 − μ),

which can be assigned to the agents interacting in the
coordinated system. Regularity conditions are satisfied for
every z̄i, i = 1, 2, 3. However, the Hessian matrix

∂2H

∂z2
(z, μ) =

(
2 0
0 2(1 − μ)

)

of the Lagrange function H(z, μ) = (z1 − 1)2 + z2
2 +

μ(2γ z1 − z2
2) = H1(z1, μ) + H2(z2, μ) is not positive

definite at (z̄1, μ̄1), as required.
There are two cases of interaction variables to be

analyzed, y
�= z1 and y

�= z2. For each case we get the
following outcomes:

y
�= z1, x

�= z2 : y(x) = x2/2γ, p(x) = 1/γ − x2/2γ2,

y
�= z2, x

�= z1 : y(x) = ±
√

2γ x, p(x) = 1.

Verify that for y
�= z1 the assumptions of Theorem 1

hold for every z̄i, i = 1, 2, 3. This implies that every
solution to (E1) can be obtained in the decentralized
system in which there is an active agent calculating
controls z2 (determining the value of interaction variable
z1), anticipating the values of the Lagrange multiplier μ.
By Theorem 1, the agent must be assigned the payoff

J2(z2) = z2
2 −

∫ z2

0

2(1/γ − s2/2γ2)s ds,
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Table 1. Implementation outcomes for Problem (E2).

Q J3 H1 H2 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 2.550 -0.120 -2.250 -0.180 0.900 2.100 0.000 2.550 0.000

G12 2.566 -0.143 -2.250 -0.255 0.786 2.214 0.016 2.566 0.081

D12 2.470 -0.200 -2.250 -0.180 0.900 2.100 0.080 2.630 0.000

Q J2 H1 H3 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 2.550 -0.180 -2.250 -0.120 0.900 2.100 0.000 2.550 0.000

G13 2.613 -0.281 -2.250 -0.293 0.562 2.438 0.063 2.613 0.159

D13 2.280 -0.450 -2.250 -0.120 0.900 2.100 0.270 2.820 0.000

derived from the condition (3). Indeed, from the first order
optimality conditions we obtain

R(PAYOFF2) =

{
z∗2 = 0,

z∗2 = ±
√

2γ(1 − γ),

which yields the following implementation result:

D1(E1) =
⎧
⎪⎨

⎪⎩

z∗2 = 0, y(z∗2) = 0, p(z∗2) = 1/γ, γ ≥ 1,

z∗2 = ±
√

2γ(1 − γ), y(z∗2) = 1 − γ, p(z∗2) = 1,

0 < γ < 1.

Suppose now that y
�= z2. It can be verified that in

this case ∂2H(z, μ)/∂y2 = 2(1 − p(x)) = 0. Notice that
p(x) = 1, i.e., it does not depend on the control variable
x. As a result, first-order optimality conditions for

J1(z1) = (z1 − 1)2 + μ̃

∫ z1

0

2γ ds

yield

R(PAYOFF1) = {z∗1 = 1 − γμ̃} .

Therefore, z̄i, i = 1, 2, 3, with μ̃ = p(z1) = 1, is
reachable only for 0 < γ ≤ 1. Solutions to PAYOFF1

that are reachable for γ > 1 do not generate the solution
z̄1 to (E1). For every z̄i, i = 1, 2, 3, to be determined by
z1 we must have

μ̃ =

{
1, 0 < γ ≤ 1,

1/γ, γ > 1,

and J1 = H1, i.e., the price-taking strategy must be
applied by the agent.

Implementation cost. Let us now apply the developed
tools to illustrate the costs of introducing into the system
the countermeasures preventing the distortion of outcomes
under price-anticipating strategies. In particular, we will

show that it is not always profitable for the coordinator to
impose the incentive compatibility constraints.

Consider the following problem:

(E2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize f0(z) = z2
1 + 2z2

2 + 3z2
3

subject to f1(z) = z1 + z2 − z3 = 1,

f2(z) = z1 − z2 + z3 = 2,

over z ∈ R
3.

The corresponding Lagrange function H(z,μμμ) = f0(z)+
μ1(1− f1(z))+ μ2(2− f2(z)) can be easily decomposed
into

H1(z1, μ) = z2
1 − z1(μ1 + μ2),

H2(z2, μ) = 2z2
2 − z2(μ1 − μ2),

H3(z3, μ) = 3z2
3 − z3(μ2 − μ1).

We therefore have H(z,μμμ) = H1(z1, μ) + H2(z2, μ) +
H3(z3, μ) + (μ1 + 2μ2). It can also be verified that

R(E2) =

{
z̄ = (1.5,−.3, .2)T ,

μ̄ = (.9, 2.1)T ,

where

dT ∂2H

∂z2
(z̄, μ̄)d = dT

⎛

⎝
2 0 0
0 4 0
0 0 6

⎞

⎠d > 0, d �= 0.

Implementation of the above global solution to
(E2) requires that three sets of interaction variables be
considered: {z1, z2}, {z1, z3} and {z2, z3}. Only two of
them are feasible, namely

y = (z1, z2), x
�= z3 : Y(x) = (1.5, x − .5)T ,

p(x) = (2x + .5, 2.5 − 2x)T .

y = (z1, z3), x
�= z2 : Y(x) = (1.5, x + .5)T ,

p(x) = (−3x, 3x + 3)T .

For the interactions defined by {z2, z3} the regularity
condition is violated. Table 2 shows the construction of
mechanisms that are feasible for (E2).
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Table 2. Mechanisms designed for Problem (E2).

p1(x) p2(x) Y1(x) Y2(x)

D12 2z3 + 0.5 2.5 − 2z3 1.5 z3 − 0.5

D13 −3z2 3z2 + 3 1.5 z2 + 0.5

Table 3. Mechanism design game.

AGENT

PA PT

COORDINATOR
a 2.630,−0.200 2.639,−0.110

na 2.566,−0.143 2.550,−0.120

Let us first focus on y = (z1, z2), with x
�=

z3, and suppose that there is a price-anticipating agent
in the system optimizing function H3. Therefore, we
assume that the system coordinator applies a fixed-price
coordination mechanism in the setting in which the active
agent applies price-anticipating strategy. Clearly, solution
of the problem of minimizing

H3(x,p(x)) = 3x2 + x(4x − 2)

yields the following outcome:

G12(E2) =

{
z̃ = (1.5,−.357, .14)T ,

μ̃ = (.78, 2.21)T ,

which is not the solution to (E2). In order to implement
R(E2) in the setting in which the price-anticipating
strategy is applied, the agent must be assigned the
subproblem of minimizing

J3(x) = 3x2 + x(4x − 2) − 2x2

= H3(x,p(x)) − h3(x).

Indeed, in such a case it can be demonstrated that

D12(E2) = R(E2) =

{
z∗ = (1.5,−.3, .2)T ,

μ∗ = (.9, 2.1)T ,

as required.

Let us take a closer look at the values of payoffs
that are obtained in each analyzed case, as presented
in Table 1. The solution to the problem of fixed-price
coordination in which price-anticipating strategy is
applied, G12(E2), is characterized by the following
property: H3(z̃3,p(z̃3)) = −.14 < −.12 = H3(z̄3, μ̄).
Thus, it improves the agent’s payoff H3 in comparison
with the solution R(E2). However, at the same time,
H(z̃, μ̃) = 2.57 > 2.55 = H(z̄, μ̄), which means that the
price-anticipating decision z̃3 reduces total performance
H of the system.

Consider now the case in which Problem (PAYOFF3)
is solved. By Theorem 1 we get R(E2) = D12(E2).
However, this does not imply that the same payoffs are
reached in both cases. The obtained results show that
introduction of the price-anticipation countermeasures,
defined by the incentive compatibility constraint (3), rises
the operational cost of the system. This cost is given by
the component h3(z∗3) = 0.08. In the setting considered
the optimal system performance level, H(z̄, μ̄), can
only be reached if the price-anticipating agent is able to
improve his individual performance in comparison with
the level reachable in z̄, i.e., J3(z∗3) = H3(z∗3 ,p(z∗3)) −
h3(z∗3) = −0.2 < −0.12 = H3(z̄3, μ̄). Therefore, if only
the gains generated within the system can be distributed
(exchanged) between the agents, then the external transfer
equal to h3(z∗3) is required to balance the payoffs, or
to satisfy the budget-balancing condition. Consequently,
H(R(E2)) = 2.55 < 2.63 = H(D12(E2)) + h3(z∗3).
Table 1 illustrates attainable costs, denoted by ΔH , of
equilibrium design for Problem (E2).

By the above arguments, it is not always
reasonable for the coordinator to introduce the incentive
compatibility constraints. The following model of
the equilibrium design game provides a justification
for this argument. Table 3 presents the normal form
of the (complete knowledge) game played between
the coordinator and the agent capable of making
price-anticipating decisions. On the one hand, there are
two decisions that may be considered by the coordinator:
introduce a, and not to introduce, na, the incentives into
the system. On the other hand, the agent may decide
to be price-anticipating, PA, or price-taking, PT. There
exists a unique pure-strategy Nash equilibrium point of
the game established by the pair of decisions (na,PA).
Therefore, as we have already argued, it is better for the
coordinator to reach the suboptimal solution with the
price-anticipating agent than the optimal one imposing
the incentive compatibility costs. (Payoffs corresponding
to (a, PT) were calculated under the assumption that the
agent minimizes J3(z3) = 3z2

3 + z3(μ1 − μ2) − 2z2
3 .)
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Table 4. Implementation outcomes for Problem (E3).

Q J3 J4 H1 H2 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 1.839 -0.012 -0.459 -1.349 -0.019 0.968 1.355 0.000 1.839 0.000

G12 1.910 -0.040 -0.552 -1.601 -0.072 0.886 1.644 0.071 1.910 0.250

D12 1.486 -0.021 -0.803 -1.349 -0.019 0.968 1.355 0.352 2.191 0.000

Db
12 1.839 0.323 -0.795 -1.349 -0.019 0.968 1.355 0.000 1.839 0.000

Q J2 J4 H1 H3 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 1.839 -0.019 -0.459 -1.349 -0.012 0.968 1.355 0.000 1.839 0.000

G13 1.939 -0.086 -0.603 -1.628 -0.089 0.759 1.793 0.101 1.939 0.278

D13 1.352 -0.047 -0.918 -1.349 -0.012 0.968 1.355 0.487 2.326 0.000

Db
13 1.839 0.412 -0.890 -1.349 -0.012 0.968 1.355 0.000 1.839 0.000

Q J2 J3 H1 H4 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 1.839 -0.019 -0.012 -1.349 -0.459 0.968 1.355 0.000 1.839 0.000

G14 1.853 -0.045 -0.037 -1.242 -0.594 0.687 1.542 0.014 1.853 0.111

D14 1.771 -0.066 -0.033 -1.349 -0.459 0.968 1.355 0.068 1.906 0.000

Db
14 1.839 -0.045 0.014 -1.349 -0.459 0.968 1.355 0.000 1.839 0.000

Q J1 J3 H2 H4 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 1.839 -1.349 -0.012 -0.019 -0.459 0.968 1.355 0.000 1.839 0.000

G24 3.819 -4.644 -0.092 -0.165 -3.257 4.759 3.609 1.980 3.819 1.330

D24 -6.261 -9.440 -0.021 -0.019 -0.459 0.968 1.355 8.100 9.939 0.000

Db
24 1.839 -9.432 8.071 -0.019 -0.459 0.968 1.355 0.000 1.839 0.000

Q J1 J2 H3 H4 p1 p2 ΔH H + ΔH ‖z̄ − z∗‖
R 1.839 -1.349 -0.019 -0.012 -0.459 0.968 1.355 0.000 1.839 0.000

G34 4.072 -4.832 -0.210 -0.219 -3.478 5.351 3.730 2.233 4.072 1.393

D34 -7.630 -10.789 -0.047 -0.012 -0.459 0.968 1.355 9.468 11.307 0.000

Db
34 1.839 -10.761 9.393 -0.012 -0.459 0.968 1.355 0.000 1.839 0.000

Design of implementation costs. Let us now consider
the problem

(E3)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize f0(z) = z2
1 + 2z2

2 + 3z2
3 + z2

4

subject to f1(z) = 1 − z1 − z2 + z3 = 0,

f2(z) = 2 − z1 + z2 − z3 + z4 = 0,

over z ∈ R
4.

Table 4 illustrates the implementation costs, denoted
by ΔH , and the agents’ payoffs corresponding to
the feasible definitions of interaction variables. The
following conclusion can be drawn from this study:
efficiency of equilibrium design can be controlled, at
least to some extent, by a proper decomposition of the
coordination problem. Indeed, by Theorem 1, a particular
definition of interactions of the control variables, Y(x),
specifies local properties of the equilibrium point.
This observation may be given the following (naive
or intuitive) economic interpretation. In order to
improve the efficiency of competition in the addressed

price-anticipating environment, the market regulator
should properly select the set of regulated commodities.

Let us now show that under suitable conditions the
implementation costs can also be redistributed among the
agents. If n > 1 and it is possible to construct functions
bi(x−i), i = 1, . . . , n, such that

n∑

i=1

bi(x−i) =
n∑

i=1

m∑

j=1

∫ xi

0

fji(s) dpj(s,x−i),

then for the coordination instruments

ηi(xi,x−i)
�=

m∑

j=1

∫ xi

0

pj(s,x−i) dfji(s)

+ bi(x−i) (5)

we get the balancing condition

n∑

i=1

ηi(xi,x−i) =
n∑

i=1

m∑

j=1

pj(x)fji(xi),
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as required.
Consider the collection of mechanisms

implementing the global solution to (E3), presented
in Table 5. Let us take the decomposition defined by
y = (z1, z2) and x = (z3, z4). Since fj and pj are affine
functions, it is possible to design the following balancing
rules:

bi(xk) = 0.5x2
k

2∑

j=1

ajk
∂pj

∂xk
(xk), i, k ∈ {1, 2}, i �= k.

The required payoffs in the equilibrium are given by

J3(z∗3 , z∗4) = H3(z∗3 ,p(z∗3 , z∗4)) − 2(z∗3)2 + .75(z∗4)2

= .32 > −.012 = H3(z∗3 ,p(z∗3 , z∗4)),

J4(z∗4 , z∗3) = H4(z∗4 ,p(z∗3 , z∗4)) − .75(z∗4)
2 + 2(z∗3)2

= −.79 < −.46 = H4(z∗4 ,p(z∗3 , z∗4)).

As can be easily noticed, with the coordination
instruments defined as above the cost of equilibrium
design is covered by the payoffs of price-anticipating
agents: J3(z∗3 , z∗4) + J4(z∗4 , z∗3) = H3(z∗3 ,p(z∗3 , z∗4)) +
H4(z∗4 ,p(z∗3 , z∗4)). There are no external transfers
required to coordinate the agents’ controls. In the
equilibrium the required transfers are provided by the
agents themselves. This, however, immediately implies
that there is a trade-off that cannot be fully eliminated.
Introduction of the above balanced coordination rules may
discourage the agents from playing the game. Namely, if
functions bi(x−i) are used, then the participation (or indi-
vidual rationality) constraints

Ji(x∗
i ,x

∗
−i) ≤ J0

i , i = 1, . . . , n, (6)

may be violated in the equilibrium. Table 4 illustrates
outcomes that are reachable in the balanced equilibrium
under the assumption that the condition (6) is not taken
into account by the agents optimizing their control
variables. Notice that differences between the balanced
and unbalanced payoffs may be substantial and cannot
be omitted in the analysis of the mechanism design
game. Furthermore, the results clearly show that
counterspeculation may be an option for the coordinator
only if the balancing condition can be satisfied.

The following interesting regularity can also be
observed in Table 4. More profitable incentives are
received by this one of a pair of competing agents whose
marginal preference indicator, f ′

0i(xi), is lower. This
suggest that the analysis of equilibrium design costs, as
well as the mechanism design procedure, should take into
account the relation between the intensity of the agents’
preferences, if it is measurable and comparable (Sen,
1970; 1977). In some cases it may be reasonable for
the coordinator to allow the competition only between
the agents characterized by similar preferences. In fact,

this conclusion seems to be compliant with what can be
observed in practice. For example, entry fees and reserve
prices applied in auction design can be viewed as means
of conducting the qualifying process; see the work of
Milgrom and Weber (1982) for an extensive study of
outcomes arising in auctions with a reserve price and entry
fee. Classical results of auction theory can be found in the
contribution by Krishna (2002).

5. Traffic rate control in the Internet

To illustrate the potential impact of the results presented
above we will discuss the design and the properties of
the TCP traffic rate (or congestion) control algorithm
commonly used in communication networks (for
introduction, see Stallings, 1998; Chao and Guo, 2002).

The TCP congestion control algorithm is required to
adapt the traffic rate, i.e., the rate at which a TCP node
sends packets, to the locally observed congestion signals,
usually related to the rate of incoming acknowledgment
(ACK) messages. These congestion signals provide
information about the utilization of the links in the
network and can be interpreted as link capacity prices. It
is, therefore, convenient to interpret TCP as a distributed
mechanism that optimizes the network performance
subject to the link capacity constraints.

In order to engineer a stable and efficient process of
transmission rate adaptation, the following procedure is
usually applied. First, a reference point is defined that
represents preferred outcomes of the resource allocation
problem. The reference point is defined by the optimality
conditions satisfied by a solution to a suitably formulated
optimization problem. Second, based on the specified
optimality conditions a dynamic system is constructed
that is guaranteed to converge to a neighborhood of the
reference point. The definition of the dynamic system
is then used as a design guideline for the algorithms
implemented in the network.

The problem that underlies current designs, mostly
due to Kelly (1997) and Kelly et al. (1998), is defined as
follows:

SYSTEM(U,A, c)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maximize
n∑

i=1

Ui(xi)

subject to AT x ≤ c
over xi ≥ 0, i = 1, . . . , n.

In the above formulation the routing matrix A consists of
elements Aij = 1 if Link j is in User i’s route D(i) and
Aij = 0 otherwise. Elements of vector c = (c1, . . . , cm)
denote the finite capacity of links in the network. Notice
that specification of the utility functions Ui, i = 1, . . . , n,
is not available due to decentralized nature of the network.
It should also be clear that we are dealing with the problem
of designing a coordination mechanism m(SYSTEM).
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Table 5. Mechanisms designed for Problem (E3).

p1(x) p2(x) Y1(x) Y2(x) b1(x2) b2(x1)

y = (z1, z2) 2z3 − 0.5z4 + 0.5 −2z3 + 1.5z4 + 2.5 0.5z4 + 1.5 z3 − 0.5z4 − 0.5 0.75z2
4 2z3

2

y = (z1, z3) −3z2 − z4 3z2 + 2z4 + 3 0.5z4 + 1.5 z2 + 0.5z4 + 0.5 z2
4 3z2

2

y = (z1, z4) 6z3 − 6z2 4z2 − 4z3 + 2 z3 − z2 + 1 2z3 − 2z2 − 1 5z3
2 5z2

2

y = (z2, z4) 4z3 − 8z1 + 10 6 − 4z1 z3 − z1 + 1 2z1 − 3 2z2
3 6z2

1

y = (z3, z4) 12 − 6z2 − 10z1 6 − 4z1 z1 + z2 − 1 2z1 − 3 3z2
2 7z2

1

Suppose that each network user may submit to the
network a bid θi ≥ 0 denoting willingness to pay for the
traffic rate xi = θi/λi ≥ 0, where λi ≥ 0 can be regarded
as a charge per unit traffic flow for user i. Let us also
assume that each user i, taking λi =

∑m
j=1 Aijμj > 0 as

given, chooses θi that solves the problem

USERi(Ui, λi) maximize Ui

(
θi

λi

)

− θi over θi ≥ 0.

Next, suppose that, given the vector θ = (θ1, . . . , θn) of
bids, the network sets prices (Lagrange multipliers) μj ≥
0, j = 1, . . . , m, and rates xi ≥ 0, i = 1, . . . , n, solving
the problem

NETWORK(A, c, θ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maximize
n∑

i=1

θi log(xi)

subject to AT x ≤ c
over xi ≥ 0, i = 1, . . . , n.

Proposition 2, presented below, shows that under
the assumption that the users are price-takers
a feasible solution arbitrarily close to the solution of
SYSTEM(U,A, c) can be found by a distributed algorithm
solving NETWORK(A, c, θ(t)) at time t and, on a larger
time scale, driving θ(t) to θ̄ defining an optimal solution
to SYSTEM(U,A, c).

Theorem 2. (Equilibrium decentralization conditions
(Kelly, 1997)) Suppose that Ui is an increasing, strictly
concave and continuously differentiable function over
xi ≥ 0 for i = 1, . . . , n. There exist vectors λ̄ =
(λ̄1, . . . , λ̄n), θ̄ = (θ̄1, . . . , θ̄n) and x̄ = (x̄1, . . . , x̄n)
such that

• θ̄i solves USERi(Ui, λ̄i), i = 1, . . . , n;

• x̄ solves NETWORK(A, c, θ̄);

• θ̄i = λ̄ix̄i, i = 1, . . . , n.

The vector x̄ then also solves SYSTEM(U,A, c).

Based on the above result the distributed rate control
algorithm can be derived from the following system of

differential equations:

RATE(A,q, θ)
⎧
⎪⎨

⎪⎩

dxi

dt
(t) = κ

[
θi − xi(t)

∑

j
Aijμj(t)

]
, i = 1, . . . , n,

μj(t) = qj(
∑

i
Aijxi(t)), j = 1, . . . , m.

System RATE(A,q, θ) describes the network-wide traffic
rate adjustment process, xi(t), i = 1, . . . , n, with
feedback provided to each network node by the congestion
signals μj(t), j = 1, . . . , m. By construction, it exploits
the properties of an equilibrium point, described in
Theorem 2, applying the function θi log(xi) as a model
of User i’s preference indicator. Furthermore, as can be
noticed, we are indeed dealing with a uniform-price-based
coordination mechanism.

For a fixed signal θi, i = 1, . . . , n, a well-behaved
and suitably designed function qj , j = 1, . . . , m, (not
necessarily differentiable), system RATE(A,q, θ) can be
proved to converge to the point minimizing the function

m∑

j=1

∫ y

0

qj(s) ds −
n∑

i=1

θi log xi, y =
n∑

i=1

Aijxi.

Suppose next that each user i updates signals θi according
to the following price-taking control rule:

θi(t) = xi(t)U ′
i(xi(t)), i = 1, . . . , n.

It can be demonstrated that with θ(t) evolving as above
the rates x(t) converge to a stable point x̄ minimizing

m∑

j=1

∫ y

0

qj(s) ds −
n∑

i=1

Ui(xi), y =
n∑

i=1

Aijxi.

Since for a suitable choice of qj , j = 1, . . . , m, the above
function arbitrarily closely approximates objective in
SYSTEM(U,A, c), it follows that x̄ solves relaxation of the
problem. Details concerning practical implementations of
the above algorithm can be found in the works of Low
and Lapsley (1999), La and Anantharam (2000), Mo and
Walrand (2000), Malinowski (2002), Low et al. (2002;
2003), Low (2003), Srikant (2003), and Wei et al. (2006).
Clempner and Poznyak (2011) provide a discussion of
best-reply dynamics in noncooperative games.
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Price-anticipating congestion control. Since the
equilibrium conditions, desired by the coordinator, are
built into the congestion control protocol, they are usually
commonly known to the network users. On the other
hand, the network users are autonomous in choosing their
protocol implementations and modifying the parameters
of the rate control algorithm. In other words, there exists
information asymmetry between the coordinator and
the network users, which creates incentives to apply the
price-anticipating strategies.

To act as a price-anticipating agent, the network user
may modify the rule according to which θi(t) is updated.
For example, the user may submit

θi(t) = xi(t)Ũ ′
i(xi(t)),

where Ũ ′
i(xi(t)) < U ′

i(xi(t)).

Another possible modification sets

θi(t) = x̃i(t)λi(t),

where x̃i(t) maximizes payoff function Ui(xi) −
xi

∑m
j=1

∫ yj

0 Aijqj(s) ds, with yj =
∑n

k=1 Akjxk

estimated by the user. Details concerning the design of
the above price-anticipating bidding strategies are given
by Karpowicz (2010). Johari (2004) presents a study
of (uniform-price) mechanisms generating outcomes with
bounded loss of efficiency.

The idea which underlies the construction of the
above price-anticipating control rules is simple: the user
should reveal to the network a reduced level of demand.
Since the network is required to satisfy the observed
demand for traffic, its reduced level may give rise to a low
price equilibrium in which some of the price-anticipating
users receive improved payoffs or traffic rates. A survey
of results on demand reduction problem is provided by
Krishna (2002), Milgrom (2004), and Karpowicz (2011).

Counterspeculation. In order to reduce the potentially
adverse effects of price-anticipation, the coordinator may
find it reasonable to implement a modified version to the
rate control protocol. Let us discuss a concept of such
a design by considering the FAST TCP congestion control
algorithm (see, e.g., Jin et al., 2005).

To control the rate at which packets are transmitted
FAST TCP algorithm updates the congestion window
wi ≥ 0, i.e., the amount of data the sender can
transmit into the network at a given time, based on the
observed average round-trip time and average queuing
delay. Precisely, each traffic source i = 1, . . . , n, adapts
wi according to the following rule:

wi(t + 1) = γ

(
diwi(t)

di + λi(t)
+ θi

)

+ (1 − γ)wi(t), (7)

where di ≥ 0 denotes the round-trip propagation delay,
λi ≥ 0 denotes the round-trip queuing delay for source
i and γ ∈ (0, 1]. Under some reasonable conditions,
already mentioned above, the algorithm can be proved to
converge to

w̄i = θ̄i + x̄idi, θ̄i = x̄iλ̄i, i = 1, . . . , n. (8)

Thus, in simple terms, in the equilibrium point source
i maintains θ̄i = x̄iλ̄i packets in the buffers along its
path and x̄idi packets in the transmission lines (Low
et al., 2002; Wei et al., 2006; Mo and Walrand, 2000).

Suppose now that the network users may apply
the price-anticipating strategy to adapt their congestion
windows. By Theorem 1 and the arguments given
in Section 3, under the proper definition of link
pricing function qj , j = 1, . . . , m, a solution x∗ in
a neighborhood of (8) can still be reached by the agents
adapting wi according to (7). For this to be possible under
the assumption that the agents are price-anticipating,
the network must provide to the users the rate control
incentives given by

η̄i(λi, xi) = xiλi − h̄i(xi), i = 1, . . . , n,

h̄i(xi) =
m∑

j=1

∫ xi

0

Aijs dqj(s +
∑

k �=i

Akjxk) − bi(x−i),

where λi =
∑m

j=1 Aijqj(yj), i = 1, . . . , n, and
bi(x−i) is the (budget or transmission delay) balancing
component.

To close this section, let us briefly refer to the
related traffic engineering aspects. By Theorem 1, in
the equilibrium, source i transmits packets at rate x̄i if it
incurs the transmission cost η̄i(λ̄i, x̄i). The corresponding
charge per unit traffic flow for i should therefore be
defined by

λ∗
i = max{λ̄i − h̄i(x̄i)/x̄i, 0}.

This result can be given the following interpretation.
Suppose that λ∗

i > 0 with h̄i(x̄i) > 0 for some x̄i > 0.
Under these assumptions, source i adjusts its rate to x̄i if
it observes the average delay λ∗

i < λ̄i, which corresponds
to θ∗i = θ̄i− h̄i(x̄i) < θ̄i packets maintained in the buffers
along the routing paths for w∗

i = w̄i − h̄i(x̄i) < w̄i.
Hence, the network motivates the source to optimally
adjust its rate by providing to it the Quality of Service
(QoS) parameters that are improved in comparison to
those arising as a solution to SYSTEM(U,A, c). This
implies that the network must be capable of providing
differentiated services to the interacting sources, for
example, by applying suitable Active Queue Management
(AQM) techniques. It should also be noticed that for the
equilibrium to be practically implementable it is necessary
that the total amount of buffering in the network be at least
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∑n

i=1 θ∗i , i.e., the (budget) balancing condition must be
satisfied. To our best knowledge, the above requirements
can be supported by the currently available networking
technology. However, all in all, it should be noticed that
the traffic engineering cost imposed by the mechanism
may be substantial.

6. Summary

The problem of Nash equilibrium design has been
intensively studied for decades. It should be recognized
that there are many well known results establishing the
existence and uniqueness of such constructions (see, e.g.,
Hurwicz, 1979; Maskin, 1999; Rosen, 1965; Green and
Laffont, 1979; Laffont and Martimort, 2002; Myerson,
1981). Results presented in this paper expand this
collection by illustrating the relationship between the
properties of Lagrange multipliers, the Nash equilibrium
of the addressed price-anticipation game and the condition
of incentive compatibility. In this respect they may
be viewed as an attempt to generalize some recent
contributions on the design of networking games with
price-anticipating agents (Johari and Tsitsiklis, 2009;
Johari, 2004; Yang and Hajek, 2007; 2005; Maheswaran
and Basar, 2004).

In our studies we have also referred to the
control-theoretic design of price-based coordination rules
in hierarchical systems (Findeisen, 1968; Findeisen et
al., 1978; 1980; Apcan et al., 2010). The incentive
compatibility conditions, which we have derived for
the class of price-anticipation games, were applied in
a study of the corresponding mechanism design costs.
These costs can be intuitively related to the information
monopoly that exists in the examined class of systems.
Namely, each agent is capable of taking advantage of
privately held information that is required to solve the
interaction balancing (coordination) problem. Since it
is not possible to fully eliminate the costs of enforcing
incentive compatibility, they may play the key role in the
mechanism design decision-making process.

Examples that we have given show that it is possible
to distribute them among the agents interacting in the
system. However, imposing incentive compatibility
constraints may be an option for the coordinator only if the
balancing condition can be satisfied. On the other hand,
the coordinator may sacrifice the incentive compatibility
property and introduce balanced mechanisms that are
characterized by acceptable implementation costs (or
efficiency loss). For more recent results in this subject,
see the works of Johari and Tsitsiklis (2004) as well as
Johari et al. (2005).

Finally, we have discussed an example of the
engineering application of the developed analytic
framework. Namely, we have discussed the design of
TCP congestion control algorithms to illustrate how

price-anticipation games may be induced in hierarchical
systems.
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