
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 4, 971–984
DOI: 10.2478/v10006-012-0072-z

THE ISLAND MODEL AS A MARKOV DYNAMIC SYSTEM

ROBERT SCHAEFER ∗, ALEKSANDER BYRSKI ∗, MACIEJ SMOŁKA ∗∗

∗ Department of Computer Science
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: {schaefer,olekb}@agh.edu.pl

∗∗Institute of Computer Science
Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

e-mail: smolka@ii.uj.edu.pl

Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations
and can perform a much broader search than single-population ones. However, their formal analysis does not seem to
have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of
island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by
Vose, Rudolph and their collaborators. An original and crucial feature of the framework we propose is the mechanism of
inter-deme agent operation synchronization. It is important from both a practical and a theoretical point of view. We show
that under a mild assumption the resulting Markov chain is ergodic and the sequence of the related sampling measures
converges to some invariant measure. The asymptotic guarantee of success is also obtained as a simple issue of ergodicity.
Moreover, if the cardinality of each island population grows to infinity, then the sequence of the limit invariant measures
contains a weakly convergent subsequence. The formal description of the island model obtained for the case of solving a
single-objective problem can also be extended to the multi-objective case.

Keywords: genetic algorithms, asymptotic analysis, global optimization, parallel evolutionary algorithms, Markov chain
modeling.

1. Introduction

In the introductory part we present an extensive
motivation, state of the art and preliminaries necessary to
sketch out the contents and results of this contribution.

1.1. Motivation. Evolutionary algorithms turned out
to be a universal optimization technique which had
already been successful in many practical problems (see,
e.g., Bäck et al., 2000; Brabazon and O’Neill, 2006;
Mesghouni et al., 2004; Kowalczuk and Białaszewski,
2006) that must be approached with the use of heuristic
algorithms. However, when dealing with heuristic
algorithms, an effort should be made to prove that they
are really able to find or even get close to the desired set of
solutions. Such a conclusion may be drawn on the basis of
qualitative analysis of certain features of algorithms, such
as, e.g., a guarantee of success (see, e.g., Rinnoy Kan and
Timmer, 1987), the type and speed of convergence.

Many results were obtained for Monte Carlo

type strategies in which the sampling measure is not
modified during computation (see, e.g., Wood and
Zabinsky, 2002). Adaptation of probability measures
of heuristic algorithms (being an effect of a “learning”
process conducted by the algorithm) makes mathematical
modelling more difficult.

A significant number of mathematical models of
evolutionary algorithms (based on the analysis of Markov
chains) which have already been proposed successfully
to model single-population algorithms, e.g., the formal
model presented by Vose (1998) and Rudolph (1997)
constituted a basis for further analysis of stochastic
features of fundamental genetic mechanisms. In
particular, they proved the asymptotic guarantee of
success (Horst and Pardalos, 1995; Rinnoy Kan and
Timmer, 1987) of their behavior, which formally
confirmed their application in global optimization.

Further examples of research on the modeling of
Genetic Algorithms (GAs) proposed by other researchers
provide a deeper insight into the long term, steady

{schaefer, olekb}@agh.edu.pl
smolka@ii.uj.edu.pl

972 R. Schaefer et al.

state behavior of large population GAs (e.g., Davis
and Principe, 1991; Suzuki, 1993; Rudolph, 1994) or
modeling specific features of GAs such as selection,
genetic drift, niching, etc. (e.g., Goldberg and Segrest,
1987; Mahfoud, 1991; Horn, 1993).

Many authors use a Markov-based model of GAs
for evaluating the convergence rate and computational
complexity (see, e.g., Rudolph, 1997; Mühlenbein, 1992).
Liekens (2005) successfully extended the work of Vose
to study long term evolutionary behavior of small
populations of haploid and diploid individuals in dynamic
fitness environments. Schmitt (2001) provides a complete
study of various aspects of genetic algorithms, with
the stress on asymptotic features such as convergence,
additionally exploring the ergodicity of their Markovian
model.

Parallel versions of genetic algorithms (e.g., the
island model) proved to be important, advantageous
models of computations, because they follow the idea of
allopatric speciation (Li and Yang, 2008; Skolicki and de
Jong, 2004; Alba and Tomassini, 2002; Paredis, 1998;
Potter and De Jong, 2000), which helps to increase the
population diversity and allows achieving a reasonable
balance between exploration and exploitation by means
of population decomposition and migration (Back et
al., 1997; Cantú, 1995; 2000). Another advantage is
that they create technical possibilities of decreasing the
computation time, thus allowing implementation of these
systems in distributed environments according to, e.g., the
master-slave model (see, e.g., Cantú-Paz, 1995; Whitley
et al., 1997).

The modeling of various population and
multi-population algorithms has been carried out for
many years. A construction of such models was
conducted in the cases of simulation of biological
populations (finite and infinite cases) as early as in the
late 1970s (Nagylaki, 1979). There have also been
more recent works that apply Markov chains to model
population dynamics for ecological simulations (for a
broader reference, see, e.g., the work of Buckley et al.
(2010).

A complete model for examining stochastic
dynamics of Island Models (IMs) for finite populations
has not been proposed yet. One of the possible reasons
is the complexity of this task (Skolicki, 2007). On
the other hand, there have been several approaches
to model parallel versions of evolutionary algorithms,
taking into account different features of these models,
e.g., takeover time, convergence, computation speed
(cf. Lässig and Sudholt, 2010; Rudolph, 2006; Whitley
et al., 1997; Whitley, 1992; Cantú-Paz, 2000). These
approaches usually focus on particular cases of algorithms
or problems (e.g., the (1 + 1) evolutionary strategy or
linearly separable problems). The stochastic model of
the multi-deme strategy HGS solving a single problem

by using various encodings and various accuracies was
introduced by Schaefer et al. (2012).

Designing appropriate models allowing analyses
of complex computing techniques, such as parallel
evolutionary algorithms or other metaheuristics, will
surely make it possible to take advantage of the rigorous
analytical tools in more complex applications, such as,
e.g., described by Kołodziej and Xhafa (2011) or Terzo
et al. (2011).

1.2. Formal analysis of island models: State
of the art. The popularity of biologically inspired
algorithms has generated the need for an enhancement
of single-population approaches, including separation of
individuals, which results in a qualitative change in the
behavior of evolutionary algorithms (Cantú-Paz, 1995;
Skolicki, 2007; Rudolph, 2006). It is usually carried out
in two ways:

• grouping individuals into subpopulations
(coarse-grained models, island models, hierarchical
genetic strategy, etc.) (Gordon et al., 1992; Schaefer
and Telega, 2007),

• locating individuals on a grid and restricting their
interaction to some neighborhood (fine-grained
models, cellular models) (Manderick and Spiessens,
1989; Mühlenbein, 1989; Tomassini, 2005).

A further taxonomy may use the following features:

• encoding: in order to easily perform operations such
as migration, islands should use the same encoding
scheme;

• genetic engine: the system may be hetero- or
homogeneous, therefore each island may run a
different evolutionary algorithm which is easily
characterized by setting the selection scheme,
crossover and mutation operators;

• constant or variable number of individuals: all
islands may be of the same or different cardinality;
the cardinality of the population on an individual
island may be constant or vary during evolution;

• migration topology: islands may be connected by a
full graph, a ring, a torus, etc.;

• strategies for emigration, migration and immigra-
tion: way of selecting migrants (Rudolph, 1994),
choosing a target island and incorporating migrants
into the target population.

In this subsection, a short survey of the models
constructed for such evolutionary algorithms is presented.

Whitley (1992) uses a special case of the model
introduced by Vose and Liepins (1991) to propose the

The island model as a Markov dynamic system 973

way for computing the number of certain schemata in a
single population, as well as in the island model (with
ring topology) for optimization of deceptive problem
functions. Whitley et al. (1997) report the island
model applied to optimization of linearly separable
problems to be more effective in finding extrema than a
single-population genetic algorithm.

Cantú-Paz (2000) presents a model considering the
so-called “gambler’s ruin problem” (Harik et al., 1999),
which is used to compute the number of correct building
blocks (representing desired solutions) present in the
population. The author assumes that the islands first
operate autonomously (without exchanging individuals).
After converging to a single building block, migration is
undertaken. The author gives a formula to compute the
probability of converging to the correct building block of
a certain number of demes, as well as the distribution
of the number of demes that converge correctly after a
certain number of epochs. His discussion is supported
by a mathematical analysis based mainly on using the
Bernoulli binomial probability distribution, and a number
of experiments carried out in the case of different
migration rates and topologies. His observations have
proved that parallel genetic algorithms reach solutions
of the same quality as single-deme genetic algorithms,
though much faster. This makes them an interesting
alternative and paves the way for taking advantage of
various possibilities of supporting such computations,
using various flavors of distributed computing.

The studies by Droste and co-workers (Droste et
al., 1998a; 1998b) found continuation, e.g., in the work
of Lässig and Sudholt (2010), who extend the case
considered by Droste to a parallel evolutionary algorithm,
and point out that such a decomposition of population
leads to a significant speedup of computation without
increasing the total number of evaluations.

Rudolph (2006) provides a stochastic analysis
leading to the evaluation of upper bounds of takeover
time in the parallel evolutionary algorithm with migration
among the demes connected with different topologies.

Whitley et al. (1997) analyze experimentally the
behavior of parallel genetic algorithms constructed
according to Vose’s model for linearly separable
functions; however, they do not provide the reader with
any analysis of the model—just state that they extend the
heuristic function and introduce migration inside a ring
topology with a specific migration policy. Their results
are discouraging for parallel evolutionary algorithms.
Fortunately, the application of the system is very specific
and of course these results should not be generalized to
all problems (according to the so-called “no free lunch
theorem” (Wolpert and Macready, 1997)).

Byrski and Schaefer (2009) as well as Schaefer et al.
(2009) try to formalize a certain type of systems from
the class of memetic computing: evolutionary multi-agent

systems. The description of the space of system states and
Markovian transition functions are given. The proposed
framework may become useful for analysis of a broader
class of parallel population-based algorithms.

1.3. Outline of the proposed model. Let us assume
that the domain of the problem to be solved is represented
by a finite genetic universum U, #U = r < +∞.
Assuming an arbitrary linear order in U , we may use it
for indexing vectors x ∈ R

r so that x = (xξ)ξ∈U .
The problem is also characterized by the fitness

function, f : U → [0, Δ], Δ < +∞, which may
sometimes be identified with the vector of its values f =
(fξ)ξ∈U .

We assume that this strategy leads to solving the
global optimization problem that may be formulated as
finding argmaxξ∈U{fξ}. In other words, all ξ̂ such that
fξ̂ ≥ fξ, ∀ξ ∈ U should be found. The problem itself
does not affect in any way our formalism, therefore our
deliberations are not problem-dependent as in some other
works (e.g., Whitley et al., 1997).

Following the taxonomy presented in Section 1.2, we
would like to state that our multi-deme genetic strategy
covers the following cases:

• coarse-grained, island-like models of evolution,
population decomposed into a number of genetic
islands; the number of individuals residing on
each island may vary among them (see Section 3,
Eqn. (8)),

• finite encoding, the same genetic universum U is
used on all islands (see Section 2.1);

• at the beginning of the system’s work, individuals
of each population are randomly created using a
predefined, particular probability distribution that
may vary among the islands (see Section 6.1);

• two succession schemes for obtaining the next
generation on each island are considered (see Section
2.2);

– SSS: the standard one, in which an intermediate
population (mating pool) is constructed,

– VSS: the one used in the model of Vose
(1998), in which the subsequent generation
is constructed one-by-one through picking
individuals from the previous generation and
after mutating and crossing over adding the
offspring to the subsequent generation;

• possible different mixing operations (mutation,
crossover) used on different islands (see Section 3);

• uniform selection scheme on all islands (see
Section 3);

974 R. Schaefer et al.

• stochastic/deterministic emigration policies;
migrants may be chosen using a deterministic
rule, or sampled using some probability distribution
(see Sections 4.1, 4.2),

• stochastic/deterministic migration topologies, an
actual migration target may be chosen randomly or
deterministically (see Sections 4.1, 4.2);

• common selection of target and migrant populations
used as the immigration policy (see Section 4.3);

• agent-based synchronization mechanism (following
the method presented by Byrski and Schaefer (2009)
as well as Schaefer et al. (2009)), necessary to
construct one Markov chain for the whole system
(see Section 5).

��

��
��

��
���

�
�

�

	
��
����
��������
�

	
��
�����
��������
�

���

��
��
�

��
	

��
��
��

�

��
��
��
�

��
�	

�
�
��
��

�

Fig. 1. Agent-based synchronization mechanism.

The island-based model is a concurrent processing
model with local memory (not all of its elements may
access and modify its memory contained on the islands;
however, an exchange of information exists between the
islands: individuals migration). A precise model for such
a system does not exist.

In order to construct such a model, one of the
following, well-known approaches can be followed: trace
theory (Diekert and Rozenberg, 1995), process algebra
(Hennessy, 1988), Petri nets (Peterson, 1981), message
passing Pi-calculus (Milner, 1990), or message passing
actor model (Hewitt et al., 1973). The last of the
above-mentioned models (message passing actor model)
seems best suited for the problem of synchronisation in
the parallel island model, as it is very close to the practical
implementation of such a system and may be easily
enhanced by introducing the notion of an agent (that will
perform additional actions, instead of synchronisation,
such as load balancing (Grochowski et al., 2004)).

Such a definition of concurrency becomes an
inevitable step which has to precede the construction
of the stochastic Markovian model. Subsequent
synchronization points must be identified, so that they

can be mapped into appropriate transformations between
Markov chain steps. A more relaxed synchronization
scheme is possible to be constructed (based on, e.g.,
message queues), though it would be very hard to model
it as a single Markov chain.

Therefore, an evolution process performed on the
islands is synchronized by the predefined agents (local:
LAi and master: MA) (see Fig. 1) that communicate
among themselves to arrange proper scheduling for
making changes to the system state. The changes of the
system state are divided into two types: local (processing
the population) and global (performing migration). The
master agent makes a decision on which type of state
changes should be performed, with a certain probability at
the current moment (population processing or migration),
and orders the local agents to behave accordingly. The
local actions are performed in parallel on each island.
Every local action changes only the state of the island
where it is performed. The global action depends on and
can change the state of at least two islands.

The details of this synchronization mechanism
together with pseudo-codes of both types of agents will
be given later (in Section 5). This description has
to be preceded by a precise, formal definition of all
stochastic sampling and decision operations, which will
be performed in Sections 2–4.

In Section 6, the Markov probability transition
function for the whole strategy is constructed. Later we
show that under a mild assumption the Markov chain is
ergodic and the sequence of sampling measures converges
(see Theorem 1, Corollary 1), which in particular leads
to the asymptotic guarantee of success. Moreover, if the
cardinality of each island population grows to infinity,
then the sequence of the limit invariant measures contains
a weakly convergent subsequence (see Theorem 2).

2. Sampling measures for a single
population

Let us introduce some notions and constructions treating a
single population GA, necessary for later modeling of the
parallel strategy.

2.1. Preliminaries. The finite population being a
multiset of elements from the genetic universum U may
be denoted as a tuple P = (U, ηP), where the function
ηP : U → N ∪ {0} returns the number of clones of each
genotype. Moreover, the cardinality of such a population
may be computed as μ =

∑
ξ∈U ηP (ξ) (see, e.g., Aparicio

et al., 1999; Schaefer and Telega, 2007).
Let us introduce “Vose’s simplex”:

R
r ⊃ Λr = {x ∈ R

r : 0 ≤ xξ ≤ 1,
∀ ξ ∈ U,

∑

ξ∈U

xξ = 1}, (1)

The island model as a Markov dynamic system 975

associated with the finite genetic universum U which
contains all frequency vectors of populations of
individuals from U . The frequency vector xP ∈ Λr of the
population P has entries xP

ξ = (1/μ) ηP (ξ), ξ ∈ U . Of
course, if μ < +∞, then xP may belong to a finite subset
Xμ (#Xμ = n < +∞) of the simplex Λr only. In other
words, each element of Xμ corresponds to exactly one
population of cardinality μ < +∞ composed of clones of
genes from U .

Note that Λr can also be identified with the space of
all probabilistic measuresM(U) on the set of genotypes
(see, e.g., Schmitt, 2001; Schaefer and Telega, 2007).
In the sequel, M(A) denotes the space of probabilistic
measures defined on a Σ-algebra over the set A. To avoid
confusion, we formally introduce a one-to-one mapping:

Θ : Λr
 x→ Θ(x) ∈ M(U) (2)

that allows us to identify a frequency population vector
x ∈ Λr with the related probabilistic measure Θ(x) ∈
M(U).

We will intensively use the operators that map Λr

into Λr (introduced by Vose and Nix), which allows us
to describe comprehensively the dynamics of finite and
infinite population genetic algorithms with finite genetic
universa (see Nix and Vose, 1992; Vose, 1998; Schmitt,
2001). We will consider the selection operator F : Λr →
Λr that represents the stochastic effect of selection and
the mixing operator M : Λr → Λr associated with the
genetic operations, namely, the crossover coupled with the
mutation.

The ξ-th coordinate of the selection operator returns
the probability of selecting an individual with the
genotype ξ ∈ U from the population represented by the
vector x ∈ Λr. Formally, we denote this probability
by Θξ(F (x)). Similarly, Θξ(M(x)) is the probability
of obtaining an individual with the genotype ξ ∈ U
by mixing from the population represented by the vector
x ∈ Λr.

In the case of a genetic universum composed of
binary strings (e.g., the SGA case, U = Ω (see Vose,
1998)) the selection operators imposed by proportional,
tournament and ranking selection schemes are described
by Vose (1998, Section 4.2), along with mixing consist in
binary crossover and positional, bitwise mutation (Vose,
1998, Sections 4.3–4.5).

2.2. Succession schemes.

Observation 1. Given the probability distribution ρ ∈
M(U) such that ρξ is the probability of obtaining an
individual with a genotype ξ ∈ U in the next epoch, the
probability of obtaining the next population of cardinality
μ < +∞, represented by a vector y ∈ Xμ, is given by the

polynomial probability distribution:

Prμ
ρ(y) =

μ!
∏

ξ∈U (μ · yξ)!

∏

ξ∈U

(ρξ)μ·yξ . (3)

The observation immediately stems from the
polynomial distribution features (see, e.g., Billingsley,
1995). The evaluation of a population sampling
probability by using the polynomial distribution was
introduced by Nix and Vose (1992).

We will apply two succession schemes (the schemes
of obtaining the next epoch population from the current
one). The first one, called the Standard Succession
Scheme (SSS), consists in selecting the intermediate
population of parental individuals of the same cardinality
μ by independent μ-fold sampling according to the
probability distribution Θ(F (x)). The probability of
obtaining the intermediate population might be computed
using the formula (3) by setting ρ = Θ(F (x)),
where x ∈ Xμ stands for the current population
vector. The next-epoch population is then derived from
the intermediate one by means of admissible genetic
operations (mixing is a composition of these operations).
The probability of the next-epoch population may be
evaluated again using (3) by setting ρ = Θ(M(z)),
where z ∈ Xμ denotes now the intermediate population
vector. Summing up, according to the Bayes rule (see,
e.g., Billingsley, 1995) the probability of the next-epoch
population obtained by the standard succession rule is
described by the following function:

τSt : Xμ ×Xμ
 (x, y)→ τSt(x, y)

=
∑

z∈Xμ

Prμ
Θ(F (x))(z) · Γzy, (4)

where the n× n matrix Γ matrix is given by the formula

Γxy = Prμ
Θ(M(x))(y), x, y ∈ Xμ. (5)

The second scheme uses the composition G = M ◦
F : Λr → Λr called the the heuristic operator (or
simply heuristic). It was introduced by Vose (1998) for
the simple genetic algorithm. The probability of the next
epoch population is given now by the following function:

τG : Xμ ×Xμ
 (x, y)→ τG(x, y) = Prμ
Θ(G(x))(y).

(6)
We will call it the Vose Succession Scheme (VSS). The
VSS might be implemented by μ-fold execution of the
following three steps (Vose, 1998, Chapter 5):

1. select two parental individuals from the current
population,

2. mutate each of them,

976 R. Schaefer et al.

3. cross the mutated parents and add one randomly
selected child to the next epoch population.

Because Xμ is finite (#Xμ = n < +∞), the
transition probability functions (4), (6) can be represented
as the transition matrix Q so that for x, y ∈ Xμ we have

Qxy =
{

τSt(x, y) if SSS is applied,
τG(x, y) if VSS is used.

(7)

The exact meaning of the matrix Q will depend on the
context in which the succession scheme is determined.

3. Formal description of sampling measures
for the island model

We assume that there are s ∈ N locations called “islands”
containing populations P 1, . . . , P s being the multisets

P i = (U, ηP i), ηP i : U → N ∪ {0}

composed of clones of genotypes from a single finite
genetic universum U, #U = r < +∞. The populations
are finite: #P i = μi < ∞ for i = 1, . . . , s. Each
population P i is associated with its frequency vector
xP i ∈ Xμi ⊂ Λr, #Xμi = ni < +∞, i = 1, . . . , s.
In order to simplify expressions in the sequel, we will use
the notation xP i

= xi with i = 1, . . . , s.
The state of the island system will then be an element

of the Cartesian product

X
df= Xμ1×, . . . ,×Xμs ⊂ (Λr)s, (8)

where Xμi is the space of states for the i-th island.
Instances x = (x1, . . . , xs) ∈ X will be called states
of the island model, whereas their coordinates xi, i =
1, . . . , s will be called local state instances or the island
states.

If a particular i-th island evolves independently (it
does not run the immigration policy), then each step of
its evolution is governed by the selection operator F :
Λr → Λr, which is common to all of the islands and the
specific mixing operator M i : Λr → Λr. The selection
operator parameterized by the fitness function represents
the influence of the global optimization problem to be
collectively solved by all of the islands. The mixing
operator expresses the random effect of applying genetic
operations (e.g., mutations, crossovers, inversions) to the
genotypes of the i-th island. Different kinds of operations
should be established for a particular island for the whole
computation process, but they may vary among islands,
so in general M i might differ from M j for i
= j.
Furthermore, the composition Gi = M i ◦ F : Λr → Λr

constitutes the “heuristic” of the i-th island.
We also introduce μi×μi matrices Qi, Γi defined by

means of formulas analogous to (7), (5) with M, G, Xμ

replaced by M i, Gi, Xμi , namely, for xi, yi ∈ Xμi , i =
1, . . . , s we have

Γi
xi yi = Prμi

Θ(Mi(xi))(y
i),

Qi
xi yi =

{ ∑
zi∈Xμi

Prμi

Θ(F (xi))(z
i) · Γi

zi yi for SSS,

Prμi

Θ(Gi(xi))(y
i) for VSS.

(9)

4. Migration with common selection

Next, for each island let us define a sub-population called
the “migrant”,

Ej = (U, ηEj), ηEj : U → N ∪ {0},

composed of individuals selected from the j-th island
population P j . We assume that all migrants are of the
same finite size m, so that

#Ej =
∑

ξ∈U

ηEj (ξ) = m

for all j = 1, . . . , s. The most common situation is when
m < μi for i = 1, . . . , s. We will denote by ej ∈ Xm ⊂
Λr migrants’ frequency vectors and by nm = #Xm <
+∞ the cardinality of their family.

Islands are interconnected with a set of directed paths
Path ⊂ {1, . . . , s}2 along which migrants may pass.
Moreover, we denote by

Ii = {j ∈ {1, . . . , s}; (j, i) ∈ Path}

the set of numbers of islands from which migrants may
come to the i-th island. Moreover, we denote by Ki =
#Ii the cardinality of these sets for all 1, . . . , s.

Creating the migrant Ej consists in cloning selected
individuals from P j (deterministically or randomly), so
the source population is not changed after this operation.

4.1. Emigration policies. Let us now assume that the
migrant Ei with the frequency vector ei ∈ Xm ⊂ Λr

is selected deterministically by means of the following
function:

Φi : Xμi
 xi �→ ei ∈ Xm, (10)

which defines a specific emigration policy for each island.
A typical example of such a selector might take the values

Φi
ξ(x

i) =

⎧
⎪⎨

⎪⎩

1 if ξ = min{j ∈ U ;
fj = maxk∈U{fk

⌈
xi

k

⌉}},
0 otherwise,

(11)

where ξ ∈ U, xi ∈ Λr, the ceiling function
⌈
xi

k

⌉
returns 1

when xi
k
= 0 and 0 otherwise, and fj = f(j) is the fitness

of j ∈ U . The above formula expresses the case in which

The island model as a Markov dynamic system 977

the migrant is composed of clones of one of the best fitted
individuals in the population represented by x ∈ Λr.

Let us assume in turn that migrants are chosen
randomly, according to probability distributions
determined by operators Di : Λr → Λr. The probability
of selecting a particular migrant ei ∈ Xm from the
i-th island equals Prm

Θ(Di(xi))(e
i), according to (3) (see

Observation 1).

4.2. Migration policies. We now assume that migrants
come to an arbitrary i-th island deterministically along
all possible paths, i.e., all paths starting on islands with
numbers from Ii. Denote by

W i = P i ∪
⋃

j∈Ii

Ej = (U, ηP i +
∑

j∈Ii

ηEj) (12)

the population appearing on the i-th island after such a
migration. The frequency vector xW i ∈ Xμi+Ki·m of
this population is given by the formula

xW i

=
1

μi + Ki ·m

⎛

⎝μix
i + m

∑

j∈Ii

ej

⎞

⎠ . (13)

Next, denote by

ki =
m

μi
, i = 1, . . . , s (14)

the proportion between the size of migrants and the size
of the i-th island’s population. Then (13) gets the form

xW i

=
1

1 + Ki · ki

⎛

⎝xi + ki

∑

j∈Ii

ej

⎞

⎠ . (15)

We now pass to the case in which migrants are
transferred along connections selected randomly from the
set Path . To this end, let us introduce a family of simple
random decision variables

ωij : X →M({0, 1}), (i, j) ∈ Path, (16)

such that ωij(x)(1) is the probability of migration from
the i-th to the j-th island assuming the state x =
(x1, . . . , xs) of all islands. Moreover, we assume that
ωij(x) is independent of ωkl(x) if (i, j)
= (k, l) for all
x ∈ X . These variables are evaluated by the master agent
during the IM evolution (see Pseudocode 5.2).

Let us define the set of auxiliary random variables
αi : X → M(2Ii), i = 1, . . . , s such that for all A ⊂ Ii

we have

αi(x)(A) =
∏

j∈A

ωij(x)(1) ·
∏

j∈Ii\A

ωij(x)(0). (17)

Now the population appearing on the i-th island after the
migration becomes also a random variable which takes the
value

W i
A = P i ∪

⋃

j∈A

Ej = (U, ηP i +
∑

j∈A

ηEj) (18)

with the probability αi(x)(A). The frequency vector
related to W i

A is now given by

xW i
A =

1
1 + KA · ki

⎛

⎝xi + ki

∑

j∈A

ej

⎞

⎠ , (19)

where KA = #A. Of course, xW i
A ∈ Xμi+KA·m.

4.3. Immigration policy. The general immigration
policy on each island i = 1, . . . , s consists in performing
a common selection from the native population together
with all incoming migrants W i. The result of such
common selection serves in turn as a basis for the proper
succession schemes SSS or VSS (see Section 2.2).

The common selection may be characterized by the
family of operators

Si : X → Λr, i = 1, . . . , s, (20)

such that Si
ξ(x) stands for the probability of selecting an

individual with the genotype ξ ∈ U as a parent on the
i-th island, assuming that x ∈ X is the current state of
the whole IM. The generic mapping family {Si}, i =
1, . . . , s, depends on both the emigration policy, i.e. the
way migrants are distinguished from their source islands,
and the migration policy, i.e., the way migrants are passed
to the destination islands. Exact formulas defining these
operators for emigration and migration policies described
in Sections 4.1 and 4.2 will be drawn in the next section.

4.4. Probability distributions of common selection.
Let us start with the simplest case in which distinguishing
and sending migrants are performed in a deterministic
way. Gathering the formulas (10) and (15) leads to the
following observation.

Observation 2. If the island model is in a state
x = (x1, . . . , xs) and the deterministic emigration
and migration policies are applied, then the common
selection is performed using the probability distribution
Θ(Si(x)) ∈M(U) so that

Si(x) = F

⎛

⎝ 1
1 + Ki · ki

⎛

⎝xi + ki

∑

j∈Ii

Φj(xj)

⎞

⎠

⎞

⎠

(21)
for all islands labeled by i = 1, . . . , s.

978 R. Schaefer et al.

Now we pass to the case in which migrants are sent
along the edges randomly selected. If the global state of
the IM equals x ∈ X , then migrants are coming to the
i-th island from islands labeled by the elements of the
set A ⊂ Ii (see (17)) producing the extended population
W i

A whose frequency vector is xW i
A (see (18), (19)) with

the probability αi(x)(A). Then applying the Bayes rule
(see, e.g., Billingsley, 1995), we can extend the result of
Observation 2 to the following one.

Observation 3. If the island model is in a state x =
(x1, . . . , xs) and the deterministic emigration policy and
the stochastic migration policy are applied, then for an
arbitrary island labeled i ∈ {1, . . . , s} the common
selection is performed using the probability distribution
Θ(Si(x)) ∈M(U) so that

Si(x) =
∑

A⊂Ii

αi(x)(A) · F (xW i
A), (22)

where xW i
A is given by (19).

It is easy to notice that the random migration case
generalizes the deterministic one as described before. It
is enough to assume ωij(x)(1) = 1, ∀x ∈ X, ∀(i, j) ∈
Path; then αi(x)(Ii) = 1 and αi(x)(A) = 0, ∀A
=
Ii, ∀x ∈ X , so (22) is reduced to (21).

Next, we will consider the case in which migrants
are obtained by random sampling and then sent
deterministically to the destination island. Let us
assume the global IM state X
 x = (x1, . . . , xs);
then the probability of sampling the migrants
Ej1 , . . . , EjKi with the frequency vectors ej1 , . . . , ejKi

from the island populations P j1 , . . . , P jKi equals∏
γ=1,...,Ki

Prm
Θ(Dj(xj))(e

jγ), where Ii = {j1, . . . , jKi},
because sampling is performed independently on each
island (see Section 4.1). Now, applying the Bayes rule
(see, e.g., Billingsley (1995)), we can extend again the
result of Observation 2.

Observation 4. If the island model is in a state x =
(x1, . . . , xs) and the stochastic emigration policy and
the deterministic migration policy are applied, then for
an arbitrary island labeled i ∈ {1, . . . , s} the common
selection is performed using the probability distribution
Θ(Si(x)) ∈ M(U) so that (23) is satisfied, where Ii =
{j1, . . . , jKi}.

Using a similar justification as in the case of
Observation 3, we may extend the result of Observation 4
to the case of non-deterministic migrant transfer.

Observation 5. If the island model is in a state x =
(x1, . . . , xs) and the stochastic emigration and migration
policies are applied, then for an arbitrary island labeled
i ∈ {1, . . . , s} the common selection is performed using

the probability distribution Θ(Si(x)) ∈ M(U) so that

Si(x) =
∑

A⊂Ii

αi
A(x) · Si

A(x), (24)

where A = {j1, . . . , jKA} ⊂ Ii and Si
A(x) is defined by

(25).

As mentioned before, the random migration case
generalizes the deterministic one. Obviously, by setting
ωij(x)(1) = 1, ∀x ∈ X, ∀(i, j) ∈ Path , the formulas
(24), (25) are reduced to (23).

5. Agent-based concurrent island model

The island model considered in this paper is governed by
two kinds of autonomous agents:

• LAi, i = 1, . . . , s: island agent, manages the
i-th island, contains the proper data structures
representing the population P i and actions used
for proper operations on it. At the end of every
generation the agent computes some predefined
statistics (by calling the function islandStatistics())
and passes them to the master agent.

• MA: master agent, synchronizes actions of island
agents, orders them to perform some groups of
actions. The MA collects island statistics in order to
verify the stopping condition (by calling the function
evaluateStopCondition()).

The necessary synchronization among agents will be
based on the following communication primitives:

• send(address , m1, m2, . . .) is used to send optional
data (denoted by the list m1, m2, . . .) to the agent
with the provided address ;

• b receive(address , m1, m2, . . .) is used to receive
optional data (denoted by the list m1, m2, . . .) from
the agent with the provided address . The activity
of the agent invoking b receive is suspended until
properly structured data from the given address are
received (blocking receive).

In order to perform the action of migration
throughout the system, an additional mechanism for
asynchronous communication is needed, because in the
most general case migration between islands may become
very complex (one location may send migrants to many
of its neighbours and accept the migrants from many
sources). Therefore, we leverage the concept of message
queues and associate each local island with one of them.
In this case, each location may send migrants to the
message queue of its neighbors and receive migrants from
others:

The island model as a Markov dynamic system 979

Si(x) =
∑

(ej1 ,...,e
jKi)∈(Xm)Ki

F

⎛

⎝ 1
1+Ki · ki

⎛

⎝xi + ki

∑

γ=1,...,Ki

ejγ

⎞

⎠

⎞

⎠ ·
∏

γ=1,...,Ki

Prm
Θ(Dj(xj))(e

jγ), (23)

Si
A(x) =

∑

(ej1 ,...,e
jKA)∈(Xm)KA

F

⎛

⎝ 1
1+KA · ki

⎛

⎝xi + ki

∑

γ=1,...,KA

ejγ

⎞

⎠

⎞

⎠ ·
∏

γ=1,...,KA

Prm
Θ(Dj(xj))(e

jγ). (25)

• qsend(to, emigrant) simply sends the migrant to the
neighboring islands whose addresses are contained in
the set to;

• qreceive(from) is more complex, it waits for all
migrants coming from the islands whose addresses
are contained in the set from to appear in the message
queue of the current island and then returns the set
being a union of these migrants.

Each island agent LAi may perform actions
represented by the following primitives :

• INIT i() creates a new island population by μi-time
sampling with replacement from U according to
the probability distribution σi ∈ M(U) (see
Section 6.1).

• STEP i(pop) performs one step of evolution starting
from the population vector pop. This step is
implemented by selection followed by genetic
operations performed according to one of the
possible succession models (VSS or SSS) (see
Section 2.2).

• NSTEP i(pop) performs nstepi epochs of evolution
on the i-th island starting from the population vector
pop, where nstepi ≥ 1 stands for the parameter of
each island (see Section 6.2).

• EXPELi(pop) expels migrants from the i-th island
population with the population vector pop (see
Section 4). Two cases are considered:

– deterministic: migrants are chosen according to
the deterministic rule, e.g., by hard selection
(see (10), (11) Section 4.1);

– stochastic: the migrant is obtained by
the m-times sampling with return from
U , according to the probability distribution
Di(x) ∈ M(U), where x ∈ X is the current
state of the island model (see Section 4.1).

• ACCEPT i(pop, immigrant) performs the common
selection of the current island population denoted
by the population vector pop together with migrants

contained in the immigrant structure and mixing,
according to the succession rule specific for the i-th
island.

Below, we will introduce pseudocodes of both the
island and the master agent. The primitives introduced
above, as well as in the previous and the next sections,
were intensively utilized in their description. Moreover,
for the arbitrary state of the island model x ∈ X we
will denote by δ(x), ωij(x) ∈ {0, 1}, i, j = 1, . . . , s,
the evaluation of the decision random variables, e.g., the
results of the one-time sampling from {0, 1}, according to
the probability distributions δ(x), ωij(x), i, j = 1, . . . , s,
respectively (see Section 6.3 and the formula (16) in
Section 4.2).

In Pseudocode 5.1, an algorithm for LAi is
presented. After initializing the island population, the
island agent communicates its willingness to the master
agent and awaits the order reply . If the order is LOCAL,
it performs locally nstepi epochs of evolution. When
it receives the MIGR order from the master agent with
appropriate parameters (neighbors that will expel and
accept migrants), it uses its procedures to send migrants
to the queues of its neighbors and accept migrants from
them. The implementation of the qreceive procedure
may be based on pooling the queues until all expected
migrants arrive. Then, the common selection and mixing
are performed. If the set of incoming migrants is empty,
then it performs a single step of the local evolution.

The master agent (see Pseudocode 5.2) waits for
the willingness messages from all island agents and then
chooses randomly whether a local or global (migration)
action should be performed. If a local action is
chosen, each LAi is ordered to perform nstepi epochs of
evolution. Otherwise, edges along which migration will
occur are chosen randomly and island agents are notified
of the addresses of those neighbours who are willing
to accept and expel migrants. Moreover, the master
agent receives statistical data from the island agents
and evaluates the stopping condition. The information
about reaching the stopping condition is reported to the
island agents. The version of the MA algorithm for
the deterministic migration can be obtained by a proper
setting of the decision variables ωij(x), i, j = 1, . . . , s

980 R. Schaefer et al.

(see Sections 4.2 and 4.4).

Pseudocode 5.1: ALGORITHM OF LAi.

pop ← INIT i()
stopCondition ← false
while not stopCondition

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

send(MA)
b receive(MA, reply, to, from)
switch reply

case LOCAL pop ← NSTEP i(pop)

case MIGR

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if to
= ∅

then

⎧
⎨

⎩

emigrant ←
EXPELi(pop)
qsend(to, emigrant)

if from
= ∅

then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

immigrant ←
qreceive(from)
pop ←
ACCEPT i(pop,
immigrant)

else pop ← STEP i(pop)
send(MA, islandStatistics())
b receive(MA, stopCondition)

Pseudocode 5.2: ALGORITHM OF MASTER AGENT.

islandStatistics ← ∅
stopCondition ← false
local ← {i : i = 1, . . . , s}
while not stopCondition

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each j ∈ local do b receive(j)
if δ(x) = 0

then for each j ∈ local do send(j,LOCAL)

else

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

edges ← ∅
for each (i, j) ∈ Path

do
{

if ωij(x) = 1
then edges ← edges ∪ (i, j)

for each j ∈ local
do send(LAj ,MIGR,
{k : (k, j) ∈ edges},
{k : (j, k) ∈ edges})

for each j ∈ local

do

⎧
⎨

⎩

b receive(j, iStat)
islandStatistics ←
islandStatistics ∪ {iStat}

stopCondition ←
evaluateStopCondition(islandStatistics)
for each j ∈ local do send(j, stopCondition)

6. Stochastic dynamics of the island model
for finite populations

6.1. Initial step. The island model starts with
an “initial step” in which the island populations are
randomly initialized according to the scheme described
by Observation 1. The probability of sampling initial
population P i with the frequency vector xi ∈ Xμi is
described by the polynomial distribution Prμi

σi(xi) (see
the formula (3)), where σi ∈ M(U) are probability
distributions given arbitrarily for all i ∈ 1, . . . , s.

6.2. Local state transitions. The “local step” consists
in executing nstepi genetic epochs concurrently by each
i-th island.

Observation 6. The probability transition function of
nstepi epochs of local evolution on the i-th island τ i

nstep :
Xμi →M(Xμi) is given by the following formula:

τ i
nstep(xi, yi) = ((Qi)nstepi)xiyi , ∀xi, yi ∈ Xμi .

(26)

Observation 7. The probability transition function
τ i
cs+m : X → M(Xμi) of the common selection on the

i-th island composed of mixing is given by the following
formula:

τ i
cs+m(x, yi)

=

⎧
⎨

⎩

∑

zi∈Xμi

Prμi

Θ(Si(x))(z
i) · Γi

zi yi for SSS,

Prμi

Θ(Mi(Si(x)))(y
i) for VSS,

(27)

where x ∈ X is the current state of the IM, and yi ∈ Xμi

is the next step population on the i-th island. Si(x) is
computed using one of the formulas (21)–(25), according
to the type of migration policy.

6.3. Global state transitions. Immediately from
Observation 6 and from the isolation of islands during the
“local step”, the following observation can be drawn.

Observation 8. Let X
 x = (x1, . . . , xs) be the current
state of the island model; then the transition probability
function for the “local step” τloc : X → M(X) is given
by the following formula:

τloc(x, y) =
∏

i=1,...,s

τ i
nstep(xi, yi), ∀x, y ∈ X. (28)

Similarly, from Observation 7 and owing to
immigration, common selection and mixing are
performed independently on each island, we may
obtain the following observation.

The island model as a Markov dynamic system 981

Observation 9. Let X
 x = (x1, . . . , xs) be the
current state of the island algorithm; then the probability
transition function for the “migration step” τmigr : X →
M(X) is given by the following formula:

τmigr (x, y) =
∏

i=1,...,s

τ i
cs+m(x, yi), ∀x, y ∈ X. (29)

We assume that the execution of the “migration
step” is performed with the probability pmigr (x) that also
depends on x ∈ X , therefore the family of random
variables {δ(x)}x∈X ⊂ M({1, 0}) with the probability
distributions {pmigr (x), 1 − pmigr (x)}x∈X is given. Of
course the “local step” may be performed with the
probability 1− pmigr (x).

Observation 10. The probability transition function τ :
X → M(X) for the island algorithm is given by the
following formula:

τ(x, y) = pmigr (x) τmigr (x, y)
+ (1− pmigr (x)) τloc(x, y), ∀x, y ∈ X.

6.4. Features of the Markov model. In this
subsection we shall examine some asymptotic features of
the described Markov model. All of them are connected
with the ergodicity of the system. Let us then start with
some remarks on Markov chain ergodicity. There exist
several definitions of this notion and we shall use the
one by Iosifescu (1980, Section 2.6.1). According to the
author, a finite Markov chain is called ergodic if it is
irreducible, i.e., if all states of the chain communicate,
which means that it is possible to get from every state
to every other state with a positive probability in a finite
number of steps. In fact, it turns out (see below) that our
chain possesses a stronger property. Namely, it is regu-
lar, which means that its states are aperiodic. Note that
many authors (see, e.g., Kushner, 1971, Section 2.7.2)
include, aperiodicity of states to the definition of the
ergodic Markov chain.

Theorem 1. If all mixing operators are strictly positive
(i.e. (M i(xi))ξ > 0 ∀ ξ ∈ U, ∀xi ∈ Xμi , i = 1, . . . , s),
then the Markov chain associated with the island model is
regular (i.e., ergodic in the stronger sense).

Proof. If (Mi(x))ξ are positive for all ξ ∈ U, x ∈
Xμi , i = 1, . . . , s, then all matrices Qi, i = 1, . . . , s have
only strictly positive entries (see the formulas (3), (9)).
Moreover, for the same reason, τ i

cs+m(x, y) takes only
positive values for all x, y ∈ X . Finally, τmigr (x, y),
τloc(x, y) and τ(x, y) are also strictly positive for all
x, y ∈ X . The probability of reaching an arbitrary state
y ∈ X from the arbitrary previous one x ∈ X in a single
step is also strictly positive. Thus all states communicate
and have period 1 (i.e., they are aperiodic). �

Remark 1. Given the assumptions of Theorem 1,
the island model possesses an asymptotic guarantee of
success (Horst and Pardalos, 1995; Rinnoy Kan and
Timmer, 1987). The ergodicity guarantees that the island
model can reach any state from the space X in a finite
number of steps. In particular, it can reach all states
representing populations containing local extrema.

Corollary 1. A simple issue of the ergodic theorem (see,
e.g., Billingsley, 1995) is that for all x ∈ X the sequence
{τp(x, ·)} converges weakly to some measure
μ1,...,μs ∈
M(X) while p → ∞. The measure
μ1,...,μs does not
depend on the starting state x ∈ X and is strictly positive
(i.e.,
μ1,...,μs({y}) > 0, ∀y ∈ X).

Observation 11. Observations 6–10 can be applied to
the case of the most conventional island model in which
SGA constitutes the basic mechanism governing island
populations. Then U = Ω will be the universum of binary
genotypes, #U = r = 2l, where l stands for the length
of binary strings, F is the proportional selection operator
common to all islands and Mi is the mixing operator
associated with the binary mutation and crossover on the
i-th island (see Vose, 1998). Moreover, nstepi = 1, i =
1, . . . , s. Theorem 1 and Corollary 1 are also true in this
case when the mutation rate (the probability of changing
any arbitrary bit in each genotype) is strictly positive (see
Vose, 1998).

Remark 2. Note that any probabilistic measure
 ∈
M(X) can be naturally extended by zero to a probabilistic
measure on the whole (Λr)s. We shall identify
 with such
an extension.

Theorem 2. Let {(μn
1 , . . . , μn

s)}n=1,2,...; μn
i ∈ N, i =

1, . . . , s be any sequence such that μn
i → ∞ (n → ∞)

for all i = 1, . . . , s. Then the associated sequence
{
μn

1 ,...,μn
s
} of invariant measures (cf. Corollary 1) has

a subsequence which converges weakly to a probabilistic
measure
∗ ∈ M((Λr)s).

Proof. According to Remark 2, measures
μn
1 ,...,μn

s

can be considered measures over the whole (Λr)s, so

μn

1 ,...,μn
s
∈ M((Λr)s). Let us note that, since Λr

is compact, so is (Λr)s. Thus the following obvious
equality:

μn
1 ,...,μn

s
((Λr)s) =
μn

1 ,...,μn
s
(X) = 1,

∀ (μn
1 , . . . , μn

s) ∈ N
s

implies that the sequence {
μn
1 ,...,μn

s
} is tight (see

Billingsley, 1995). Then the thesis is a straightforward
consequence of Prokhorov’s theorem (Billingsley, 1995,
Theorem 29.3). �

982 R. Schaefer et al.

7. Conclusions

Parallel, multi-deme evolutionary algorithms usually
outperform the single-population ones (e.g., because of
the reduction of the computation time and the ability
to perform a much broader search). However, the
problem of the asymptotic guarantee of success in their
existing mathematical models does not seem to have been
addressed extensively.

We have presented an island-like model for parallel
evolutionary algorithms governed by software agents,
which deals in a rigorous way with population activity
scheduling (see Section 5). This approach has allowed
us to use the single stationary Markov chain as the basis
for our model of the whole system.

The appropriate space of system states and
stochastic operators, including special common selection
operators (see (20)) used for migration purposes, were
introduced. The Markov transition probability function
was effectively established (see Observations 6–10).

We have shown that under a mild assumption
(the mixing operators are strictly positive) the resulting
Markov chain is ergodic (see Theorem 1). Moreover, the
sequence of the related sampling measures converges to
some invariant measure (see Corollary 1). In particular,
this conclusion is true if the simple genetic algorithm with
a strictly positive mutation governs the evolution on each
island (see Observation 11).

The asymptotic guarantee of success for the island
model was also obtained as a simple issue of ergodicity.
The island model can reach any state from the space
X (in a finite number of steps), and therefore all states
representing populations containing local extrema are
reachable (see Remark 1).

If the cardinality of each island population grows
to infinity, then the sequence of the limit invariant
measures contains a weakly convergent subsequence (see
Theorem 2).

The global optimization problem itself does not
affect in any way our formalism, and therefore our
deliberations are not problem-dependent as in some other
works (e.g., Whitley et al., 1997).

The model proposed can be extended to the case of
various encodings used for creating genetic spaces for
each island, as well as to the case of various selection
and common selection schemes on each island. Allowing
such relaxation would lead to a considerable growth of
complexity and make the paper unreadable.

The formal description of the island model obtained
for the case of solving a single-objective problem may
be extended to the multi-objective case. The selection
operator on each island must be determined by the proper
selection operator as in the work of Gajda et al. (2010),
and the emigration policy has to be properly designed.

Moreover, it seems that the agent-based scheduling

scheme suggested by the authors can be extended to
other types of multi-deme genetic strategies, so that the
asymptotic of these strategies might be analysed in the
same way as in the case of the island model.

Acknowledgment

The work presented in this paper was partially supported
by the Polish National Science Centre Project No. N 519
405737, and by the grant Biologically inspired mecha-
nisms in planning and management of dynamic environ-
ments funded by the Polish National Science Centre (No.
N N516 500039).

References
Alba, E. and Tomassini, M. (2002). Parallelism and evolutionary

algorithms, IEEE Transactions on Evolutionary Computa-
tion 6(5): 443–462.

Aparicio, J., Correia, L. and Moura-Pires, F. (1999). Populations
are multisets-plato, in W. Banzhaf, J. Daida, A.E. Eiben,
M.H. Garzon, V. Honavar, M. Jakiela and R.E. Smith
(Eds.), Proceedings of the Genetic and Evolutionary Com-
putation Conference, Orlando, Florida, USA, 13–17 July
1999, Vol. 2, Morgan Kaufmann, San Francisco, CA,
pp. 1845–1850.

Bäck, T., Fogel, D. and Michalewicz, Z. (2000). Evolutionary
Computation: Basic Algorithms and Operators, Vols. 1
and 2, Institute of Physics Publishing, Bristol/Philadelphia,
PA.

Back, T., Hammel, U. and Schwefel, H.-P. (1997). Evolutionary
computation: Comments on the history and current state,
IEEE Transactions on Evolutionary Computation 1(1):
3–17.

Billingsley, P. (1995). Probability and Measure,
Wiley-Interscience, Hoboken, NJ.

Brabazon, A. and O’Neill, M. (2006). Biologically Inspired
Algorithms for Financial Modeling, Springer Verlag,
Berlin/Heidelberg.

Buckley, F., Nicol, S. and Pollett, P. (2010). Preface to the
selected papers on modeling and control of metapopulation
networks, Ecological Modeling 221(21): 2512–2514.

Byrski, A. and Schaefer, R. (2009). Stochastic model
of evolutionary and immunological multi-agent systems:
Mutually exclusive actions, Fundamenta Informaticae
95(2–3): 263–285.

Cantú-Paz, E. (1995). A summary of research on parallel
genetic algorithms, IlliGAL Report No. 95007, University
of Illinois, Chicago, IL.

Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic
Algorithms, Kluwer Academic Publishers, Norwell, MA.

Davis, T.E. and Principe, J.C. (1991). A simulated annealing like
convergence theory for the simple genetic algorithm, Pro-
ceedings of the 4th International Conference on Genetic
Algorithms, San Diego, CA, USA, pp. 174–181.

The island model as a Markov dynamic system 983

Diekert, V. and Rozenberg, G. (1995). The Book of Traces,
World Scientific, Singapore.

Droste, S., Jansen, T. and Wegener, I. (1998a). On
the optimization of unimodal functions with the (1+1)
evolutionary algorithm, Proceedings of the 5th Interna-
tional Conference on Parallel Problem Solving from Na-
ture, Amsterdam, The Netherlands, pp. 13–22.

Droste, S., Jansen, T. and Wegener, I. (1998b). A rigorous
complexity analysis of the (1+1) evolutionary algorithm
for separable functions with Boolean inputs, Evolutionary
Computation 6(2): 185–196.

Gajda, E., Schaefer, R. and Smołka, M. (2010). Evolutionary
multiobjective optimization algorithm as a Markov system,
Proceedings of the 11th International Conference on Par-
allel Problem Solving from Nature, PPSN XI, Kraków,
Poland, pp. 617–626.

Goldberg, D.E. and Segrest, P. (1987). Finite Markov chain
analysis of genetic algorithms, Proceedings of the 2nd In-
ternational Conference on Genetic Algorithms on Genetic
Algorithms and Their Application, Cambridge, MA, USA,
pp. 1–8.

Gordon, V., Whitley, D. and Bohn, A. (1992). Data flow
parallelism in genetic algorithms, in R. Manner and
B. Manderick (Eds.), Parallel Problem Solving from Na-
ture 2, Elsevier Science, Amsterdam, pp. 553–542.

Grochowski, M., Schaefer, R. and Uhruski, P. (2004). Diffusion
based scheduling in the agent-oriented computing systems,
in R. Wyrzykowski, J. Dongarra, M. Paprzycki and J.
Waśniewski (Eds.), Parallel Processing and Applied Math-
ematics, Lecture Notes in Computer Science, Vol. 3019,
Springer, Berlin/Heidelberg, pp. 97–104.

Harik, G., Cantú-Paz, E., Goldberg, D.E. and Miller, B.L.
(1999). The gambler’s ruin problem, genetic algorithms,
and the sizing of populations, Evolutionary Computation
7(3): 251–253.

Hennessy, M. (1988). Algebraic Theory of Processes, The MIT
Press, Cambridge, MA.

Hewitt, C., Bishop, P. and Steiger, R. (1973). A universal
modular ACTOR formalism for artificial intelligence, Pro-
ceedings of the 3rd International Joint Conference on Ar-
tificial Intelligence, Stanford, CA, USA, pp. 235–245.

Horn, J. (1993). Finite Markov chain analysis of genetic
algorithms with niching, Proceedings of the 5th Inter-
national Conference on Genetic Algorithms, Urbana-
Champaign, IL, USA, pp. 110–117.

Horst, R. and Pardalos, P. (1995). Handbook of Global Opti-
mization, Kluwer, Norwell, MA.

Iosifescu, M. (1980). Finite Markov Processes and Their Appli-
cations, John Wiley & Sons, Alphen aan den Rijn.

Kołodziej, J. and Xhafa, F. (2011). Modern approaches to
modeling user requirements on resource and task allocation
in hierarchical computational grids, International Jour-
nal of Applied Mathematics and Computer Science 21(2)
243–257, DOI: 10.2478/v10006-011-0018-x.

Kowalczuk, Z. and Białaszewski, T. (2006). Niching
mechanisms in evolutionary computations, International
Journal of Applied Mathematics and Computer Science
16(1): 59–84.

Kushner, H. (1971). Introduction to Stochastic Control, Rinehart
and Winston, Holt.

Lässig, J. and Sudholt, D. (2010). General scheme for analyzing
running times of parallel evolutionary algorithms, in
R. Schaefer, C. Cotta, J. Kołodziej and G. Rudolph
(Eds.), Proceedings of the 11th International Confer-
ence on Parallel Problem Solving from Nature: Part I,
Springer-Verlag, pp. 234–243.

Li, C. and Yang, S. (2008). An island based hybrid evolutionary
algorithm for optimization, in X. Li, M. Kirley, M. Zhang,
D.G. Green, V. Ciesielski, H.A. Abbass, Z. Michalewicz,
T. Hendtlass, K. Deb, K.C. Tan, J. Branke and Y. Shi
(Eds.), SEAL, Lecture Notes in Computer Science, Vol.
5361, Springer, Berlin/Heidelberg, pp. 180–189.

Liekens, A. (2005). Evolution of Finite Populations in Dy-
namic Environments, Ph.D. thesis, Technische Universiteit
Eindhoven, Eindhoven.

Mahfoud, S. (1991). Finite Markov chain models of an
alternative selection strategy for the genetic algorithm,
Complex Systems 7(2): 155–170.

Manderick, B. and Spiessens, P. (1989). Fine-grained parallel
genetic algorithms, in J. Schaffer (Ed.), Proceedings of
the Third International Conference on Genetic Algorithms,
Morgan Kauffman, San Francisco, CA, p. 428.

Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary
algorithms for job-shop scheduling, International Jour-
nal of Applied Mathematics and Computer Science 14(1):
91–103.

Milner, R. (1990). Functions as processes, in M. Paterson (Ed.),
Automata, Languages and Programming, Lecture Notes in
Computer Science, Vol. 443, Springer, Berlin/Heidelberg,
pp. 167–180.

Mühlenbein, H. (1989). Parallel genetic algorithms, population
genetic and combinatorial optimization, in J. Schaffer,
(Ed.), Proceedings of the Third International Conference
on Genetic Algorithms, Morgan Kauffman, San Francisco,
CA, pp. 416–421.

Mühlenbein, H. (1992). How genetic algorithms really work:
Mutation and hillclimbing, in R. Männer and B. Manderick
(Eds.), Proceedings of PPSN ’92, Elsevier, Amsterdam,
pp. 15–26.

Nagylaki, T. (1979). The island model with stochastic migration,
Genetics 91(1): 163–76.

Nix, A.E. and Vose, M.D. (1992). Modeling genetic algorithms
with Markov chains, Annals of Mathematics and Artificial
Intelligence 5(1): 79–88.

Paredis, J. (1998). Coevolutionary algorithms, in T. Bäck,
D. Fogel and Z. Michalewicz (Eds.), Handbook of Evo-
lutionary Computation, 1st Suppl., IOP Publishing/Oxford
University Press, Bristol/Oxford.

Peterson, J.L. (1981). Petri Net Theory and the Modeling of
Systems, Prentice Hall, Upper Saddle River, NJ.

984 R. Schaefer et al.

Potter, M.A. and De Jong, K.A. (2000). Cooperative
coevolution: An architecture for evolving coadapted
subcomponents, Evolutionary Computation 8(1): 1–29.

Rinnoy Kan, A. and Timmer, G. (1987). Stochastic
global optimization methods, Mathematical Programming
39: 27–56.

Rudolph, G. (1994). Massively parallel simulated annealing and
its relation to evolutionary algorithms, Evolutionary Com-
putation 1(4): 361–383.

Rudolph, G. (1997). Stochastic processes (Chapter B.2.2),
Models of stochastic convergence (Chapter B.2.3), in T.
Bäck, D.B. Fogel and Z. Michalewicz (Eds.), Handbook
of Evolutionary Computations, Oxford University Press,
Oxford.

Rudolph, G. (2006). Takeover time in parallel populations with
migration, Proceedings of the 2nd International Confer-
ence on Bioinspired Optimization Methods and Their Ap-
plications (BIOMA 2006), Ljubljana, Slovenia, pp. 63–72.

Schaefer, R., Byrski, A., Kołodziej, J. and Smołka, M.
(2012). An agent-based model of hierarchic genetic
search, Computers and Mathematics with Applications,
DOI: 10.1016/j.camwa.2012.02.052, (accepted).

Schaefer, R., Byrski, A. and Smołka, M. (2009). Stochastic
model of evolutionary and immunological multi-agent
systems: Parallel execution of local actions, Fundamenta
Informaticae 95(2–3): 325–348.

Schaefer, R. and Telega, H. (2007). Foundation of Global Ge-
netic Optimization, Studies in Computational Intelligence,
Vol. 74, Springer Verlag, Berlin/Heidelberg/New York,
NY.

Schmitt, L.M. (2001). Theory of genetic algorithm, Theoretical
Computer Science 259(1): 1–61.

Skolicki, Z. (2007). An Analysis of Island Models In Evolution-
ary Computation, Ph.D. thesis, George Mason University,
Fairfax, VA.

Skolicki, Z. and de Jong, K. (2004). Improving evolutionary
algorithms with multi-representation island models, 8th In-
ternational Conference on Parallel Problem Solving from
Nature, PPSN, Birmingham, UK, pp. 420–429.

Suzuki, J. (1993). A Markov Chain Analysis on a Genetic
Algorithm, in S. Forrest (Ed.), Proceedings of the 5th In-
ternational Conference on Genetic Algorithms, Urbana-
Champaign, IL, USA, June 1993, Morgan Kaufmann, San
Francisco, CA, pp. 146–154.

Terzo, O. Mossucca, L., Cucca, M. and Notarpietro R.
(2011). Data intensive scientific analysis with grid
computing, International Journal of Applied Mathe-
matics and Computer Science 21(2): 219–228, DOI:
10.2478/v10006-011-0016-z.

Tomassini, M. (2005). Spatially Structured Evolutionary Algo-
rithms: Artificial Evolution in Space and Time, Natural
Computing Series, Springer, Berlin/Heidelberg.

Vose, M. (1998). The Simple Genetic Algorithm: Foundations
and Theory, MIT Press, Cambridge, MA.

Vose, M. and Liepins, G. (1991). Punctuated equilibria in
genetic search, Complex Systems 5: 31–44.

Whitley, D. (1992). An executable model of a simple genetic
algorithm, in L.D. Whitley (Ed.), Foundations of Genetic
Algorithms 2, Morgan Kaufmann, San Francisco, CA,
pp. 45–62.

Whitley, W.D., Rana, S.B. and Heckendorn, R.B. (1997). Island
model genetic algorithms and linearly separable problems,
in D. Corne and J.L. Shapiro (Eds.), Selected Papers
from the AISB Workshop on Evolutionary Computing,
Springer-Verlag, London, pp. 109–125.

Wolpert, D.H. and Macready, W.G. (1997). No free lunch
theorems for optimization, IEEE Transactions on Evolu-
tionary Computation 1(1): 67–82.

Wood, G.R. and Zabinsky, Z.B. (2002). Stochastic adaptive
search, in P.M. Pardalos and H.E. Romeijn (Eds.), Hand-
book of Global Optimization, Vol. 2, Kluwer, Norwell,
MA.

Robert Schaefer is a full professor at the De-
partment of Computer Science and Electronics,
AGH University of Science and Technology in
Kraków, Poland. His main, recent areas of re-
search include genetic algorithms in solving con-
tinuous global optimization problems and com-
puting multi-agent systems. His former research
areas were modeling the blood flow in arteries
modeling nonlinear flows in porous media.

Aleksander Byrski obtained a Ph.D. in 2007 at
the AGH University of Science and Technology
in Kraków. His research interests include agent-
based computation, biological-inspired computa-
tion and artificial intelligence.

Maciej Smołka obtained a Ph.D. in 2000 at the
Jagiellonian University in Kraków. His research
interests include stochastic modeling of compu-
tational systems, artificial intelligence, stochastic
and deterministic optimal control.

Received: 23 November 2011
Revised: 19 May 2012

	Introduction
	Motivation
	Formal analysis of island models: State of the art
	Outline of the proposed model

	Sampling measures for a single population
	Preliminaries
	Succession schemes

	Formal description of sampling measures for the island model
	Migration with common selection
	Emigration policies
	Migration policies
	Immigration policy
	Probability distributions of common selection

	Agent-based concurrent island model
	Stochastic dynamics of the island model for finite populations
	Initial step
	Local state transitions
	Global state transitions
	Features of the Markov model

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

