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A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and em-
pirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies
ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through
exhaustive studies over combinations of three distinct classification algorithms and four ECOC methods employed in the
multi-label classification problem. The experimental results revealed that (i) the Bode–Chaudhuri–Hocquenghem (BCH)
code matched with any multi-label classifier results in better classification quality; (ii) the accuracy of the binary relevance
classification method strongly depends on the coding scheme; (iii) the label power-set and the RAkEL classifier consume
the same time for computation irrespective of the coding utilized; (iv) in general, they are not suitable for ECOCs because
they are not capable to benefit from ECOC correcting abilities; (v) the all-pairs code combined with binary relevance is not
suitable for datasets with larger label sets.
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1. Introduction

Error-Correcting Output Codes (ECOCs) have been used
to address diverse problems in pattern recognition; for
example, in designing combined classifiers (or ensemble)
ECOCs may provide diversity among classifiers by
means of dichotomies, which may boost the accuracy
of classification. Their ability to reinforce the
classification accuracy may be utilized in problems
concerning classification of complex outputs such as
multi-label classification. ECOC origins are based
on theoretic achievements in communication. Studies
over ECOCs were addressing the problem of recovering
the original signal block transmitted through a noisy
channel. Assuming that a signal represents binary-coded
information of classes assigned to instances and a noisy
channel is built of binary classifiers, ECOCs, in an
appropriate settlement, may be successfully applied to
multi-class classification. In such a setup the multi-class
problem is reduced to several binary classification
problems and thanks to the ECOC correcting ability a
small portion of wrongly inferred decisions by binary
classifiers may be recovered.

The main contribution of the paper is the framework
presented in Section 4 and tested in Section 6. It
introduces coding before the learning of the multi-label
classifier and encoding after learning and testing to
make use of ECOC correction abilities. Additionally,
experimental results have shown that some combinations
of ECOC and multi-label classification methods may
be more accurate than a single multi-label classifier
itself, while other combinations have lower quality (see
Section 6).

1.1. Problem description. The standard, conventional
classification assumes each instance is associated with
exactly one of a finite set of possible classes. An
extended classification problem may allow instances to
be associated with several labels simultaneously, which
is addressed by multi-label classification, usually denoted
as a label-set. Classical classification aims to learn a
function f that maps an input x ∈ X to an output class
c ∈ C, i.e., results of classification—values y belong to
only one of the classes from C, X −→ C. If the number of
classes is two (card(C) = 2), we have the simplest, binary
classification. In the case of card(C) > 2, classification
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is called multi-class or multi-nomial but it still assigns a
single class c ∈ C to each input instance (case) x. An
example of the multi-class problem is the assignment of
mother tongues to people. Each person x can be a native
speaker of only one language—class c out of many in C,
e.g., John’s mother tongue is English but Eve’s is Chinese.

The goal of mapping to multi-label target is, in
turn, to associate an input instance x to a subset y of
all possible distinct labels L, y ⊂ L. The set Λ of
all subsets y existing in the data (y ∈ Λ) is itself a
subset of the power set 2L of all labels L: Λ ⊂ 2L.
This means that multi-label classification is a mapping:
X −→ 2L. In consequence, x can have assigned many
labels from L. For example, people can speak many
languages (not only their mother tongues). In such a
case, the label set L represents all human languages
(with, e.g., 200 elements), whereas Λ is the set of all real
combinations of languages (note that Λ does not contain
all 2200 possible combinations—one cannot speak as
many as 100 languages) and y ∈ Λ is a concrete set of
languages spoken by a person x, e.g., Λ = {{Chinese},
{German}, {English}, {Polish}, {Swahili},
{English, Polish}, {English, Polish, Swahili},
{Chinese, German, Polish}}. Hence, classification
may result in the following assignments:
John −→ {English, Polish, Swahili}, Eve −→
{Chinese, German, Polish}, Peter −→ {English,
Polish}, Ubunu −→ {Swahili}.

The difference between the class set C used in binary
or multi-class classification and the set of distinct labels
L is more philosophical, rather than formal. A class
is usually understood in terms of common properties
of its members x (Sammut and Webb, 2011), whereas
a label (also called a class label) can be treated as
a short description of the class. Anyway, it should
be emphasized that there exists exactly one label l ∈
L for each corresponding class c ∈ C. Finally, one
may state that in multi-label classification we actually
predict many equivalent classes. The essential difference
between multi-class (including binary) and multi-label
classification consists in their either simple or complex
output, respectively, i.e., a single class is predicted in
the case of a multi-class problem but many labels (class
labels) are assigned to a single instance x in multi-label
classification.

Due to implementation reasons (encoding/decoding),
the target output values y will not be treated as a subset of
L but as an equivalent binary vector with the length of
card(L). Hence, we order all possible labels and each
y’s vector coordinate equals ‘1’ if the corresponding label
occurs for a given instance x or ‘0’ otherwise, i.e., if L is
ordered 〈English, German, Polish〉, then y = 〈1, 0, 1〉
means that a person linked with y speaks English and
Polish.

In general, a multi-label classification problem can

be solved either as a set of decomposed, independent
binary (single-label) classification problems (binary
relevance, see Section 3.1) or as a coherent complex
task (see Sections 3.2, 3.3, and 4). The former treats
the assignment of each label l ∈ L independently and
aggregation of their results afterwards, e.g., a person x (i)
speaks English or not, (ii) speaks Polish or not, (iii) speaks
Chinese or not, etc. However, then we lose some possible
existing relations between labels, e.g., people tend to
speak languages used in the neighbouring countries so
Polish is more likely to co-occur with German, rather
than with Swahili. In the latter, we consider all possible
labels simultaneously inside the classification method,
making good use of correlations between labels. This
second ensemble approach is extensively studied in
further sections and it is a basis for the new framework
for multi-label classification with error correcting output
codes (Section 4).

1.2. Motivation. The multi-label prediction problem
has plenty of possible application domains, e.g., in
meta-learning (Jankowski, 2012). We can find them
in almost every place where we have many-to-many
relationships between known (X) and unknown (L)
objects. For example, we would like to recommend to
each student a set of courses in a lifelong e-learning
service based on prior selections and profiles of other
students. We may also want to predict what package
(set) of services a new customer is willing to buy. In
another case, one can automatically assign a set of
descriptive tags-labels to texts (Schapire and Singer, 2000)
or multimedia objects—videos or pictures (Boutell et al.,
2004) in a multimedia sharing system. The authors of
this paper have utilized multi-label classification in debt
portfolio valuation where the output of classification for
each debt is a set of repayments in the following periods
(Kajdanowicz and Kazienko, 2009a; 2009b).

The main goal of the paper is to introduce a new
ECOC-based framework for multi-label classification and
evaluate it on real data sets in comparison with other
methods. The conducted experiments provide a thorough
study over several distinct multi-label classification
algorithms (binary relevance, label power-sets and
random k-label-sets) as well as various ECOC designs:
the repetition code, the Bode–Chaudhuri–Hocquenghem
(BCH) code or the all-pairs code applied to the problem.

This paper is a comprehensively extended and
completely rewritten version of the work by Kajdanowicz
et al. (2011). The main contribution of this paper
compared with that by Kajdanowicz et al. (2011) is
that the problem is explicitly and precisely placed in
the domain of multi-label classification and the general
framework is proposed. Additionally, new experiments
on a wide range of datasets from different domains
are carried out, using 12 combinations of ECOC and
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multi-label classifiers (only one used by Kajdanowicz
et al. (2011)), as well as various quality measures.

1.3. Paper outline. After an analysis of related
work in Section 2, three main approaches to multi-label
classification are presented in Section 3: binary relevance,
label power-set and RAkEL. The crucial idea of the
paper, i.e., the framework for application of ECOCs
to multi-label classification, is introduced in Section 4.
Three selected error correcting output codes methods
as well as a brief discussion on application of ECOCs
to the multi-label classification problem can be found
in Section 5. Experimental studies on six data sets
using combinations of the three multi-label classifiers
discussed in Section 3 (binary relevance, label power-set
and RAkEL) with four ECOC methods from Section 5
(none, repetition, BCH and all-pairs) together with the
analysis of their results are described in Section 6. Section
7 contains general conclusions.

2. Related work

Multi-label classification as the supervised classification
task assumes the general possibility of each data instance
to be associated with multiple class labels. Thus, the
problem of multi-label classification requires specialized
methods and algorithms in order to provide satisfactory
solutions. With respect to the current focus in the
field, multi-label learning has three main challenges:
(i) discovering and modelling label dependencies, (ii)
dimensionality handling (output space of 2L instead ofL),
and (iii) design of evaluation measures and loss functions
(Read et al., 2011).

From the point of view presented by Tsoumakas et al.
(2011), multi-label classification algorithms might be
divided into two groups, concerning the way of problem
handling: (i) problem transformation methods and (ii)
algorithm adaptation methods.

In the problem transformation method, multi-label
classification is converted into many single-label
(binary) problems making it more flexible, general
and scalable as there exists a wide variety of classical
classification algorithms which might be applied. Problem
transformation methods may utilize any off-the-shelf
single-label classifier, e.g., the kNN, decision trees,
SVMs, naive Bayes, etc. There are relatively many
different multi-label classification methods that make use
of the problem transformation concept. For instance,
Binary Relevance (BR), which trains one binary classifier
separately for each label (see also Section 3.1), the
Label Power-set (LP), where every label-set constitutes a
single class-label (see Section 3.2), random k-label-sets
(RAkEL) (Tsoumakas and Vlahavas, 2007), in which an
ensemble of classifiers is trained by means of different
small random subset of the label-set (cf. Section 3.3),

the classifier chain (Read et al., 2011) similar to binary
relevance but modelling cascades of classifiers, ensembles
of pruned sets (Read et al., 2009), ranking by pairwise
comparison (Hullermeier et al., 2008), multi-label
pairwise perceptron (Loza Mencia and Furnkranz, 2008),
etc.

Another idea of multi-label classification handling is
addressed by algorithm adaptation methods. In general,
these methods adapt an existing single-label (binary class)
classifier for the multi-label purpose, but such solutions
are usually problem-specific. Some algorithm adaptation
methods use the concept of problem transformation
but only internally. Among others, one can enumerate
modified decision trees (Clare and King, 2001), adapted
version of conditional random fields (Ghamrawi and
McCallum, 2005), a Back-propagation Perceptron
for Multi-Label Learning (BP-MLL) (Zhang and
Zhou, 2006), Multi-class Multi-label Perceptron (MMP)
(Crammer and Singer, 2003), multi-label kNN (Zhang
and Zhou, 2007), or AdaBoost.MH and AdaBoost.MR
(Schapire and Singer, 2000).

Overall, the multi-label classification is a research
problem that emerges in many application domains,
among others in protein function classification (Zhang and
Zhou, 2006), semantic classification of images (Boutell
et al., 2004), text categorization (Schapire and Singer,
2000) or repayment prediction in debt portfolio valuation
(Kajdanowicz and Kazienko, 2009a; 2009b).

There exists almost no work combining ECOC
methods with multi-label classification except preliminary
work of the authors (Kajdanowicz et al., 2011) followed
by that of Ferng and Lin (2011) as well as Zhang and
Schneider (2011). It should be noticed that the ideas
presented by Ferng and Lin (2011) can be derived from
the preceding work of Kajdanowicz et al. (2011) and the
recent paper aligns all the achievements in ECOC support
in multi-label classification. Additionally, the current
paper provides competitively arranged experimental
studies compared with the work of Ferng and Lin
(2011) (see Section 6). However, the ECOC impact
on multi-label classification has not been exhaustively
studied and requires further research.

3. Multi-label classification

This section brings deeper insight into selected
multi-label classification algorithms—the ones utilized in
experiments.

3.1. Binary relevance. In the binary relevance
approach each label constitutes a separate binary problem.
Therefore, the method requires learning as many binary
base classifiers as there are labels l in the label-set L.
This makes the method competitive in time complexity
(L binary models). However, the method has a huge
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drawback—it does not explicitly model label correlations,
which results in loosing some vital information and may
provide poor prediction quality.

3.2. Label power-set. The idea of the label power-set
classification algorithm is very simple, but this simplicity
simultaneously brings some limitations. It is assumed
in the algorithm that each existing combination (subset)
λ ∈ Λ of labels becomes a separate single-class and next a
standard multi-class classification problem is solved. This
implies that, in the worst case, the total number of distinct
class-label sets may equal the minimum of two: 2card(L)

(the number of all combinations from the label-set L,
i.e., the quantity of the power set of L) and the number
of instances—card(X). Nevertheless, this technique is
reported to result in good performance. Special attention
in application of label power-set classification should be
paid to issues related with label sparsity and overfitting.

3.3. Random k-label-set. Random k-label-set builds
an ensemble of m classifiers for randomly sampled
k-element label subsets (Tsoumakas and Vlahavas, 2007).
Thanks to that the complexity is reduced to m ×
min(2k, N), where N denotes the number of instances
(N = card(X)). Each randomly sampled k-element
label subset is used to train the label power-set classifier.
After learning, the algorithm returns m classifiers that in
the inference phase accomplish a decision by weighted
voting. The method is believed to be a robust classification
technique with reasonable complexity.

4. Framework for multi-label classification
with error correcting output codes

Multi-label classification with error correcting output
codes is based on the phenomenon that the usage of
a special expansion technique for information coding
provides additional self-correcting abilities. If a given
multi-label classification method is equipped with such
additional training data pre- and post-processing, it can
result in better classification quality—an improvement of
the component multi-label classifier. The entire method is
presented in Algorithm 1 and Fig. 1.

Therefore, the method used in the framework
replaces, the original description of multiple labels
assigned to the trained instances using the encoding
technique. Then, instead of training the multi-label
classifier on original labels, it tries to train on the encoded
ones. Note that the classifier remains the multi-label one.
In the inference phase, the method results in encoded
classification output yenc

m and the final decision needs to
be decoded into the original multi-label space ym.

Hence, the framework provides a general method
matching different coding and error correcting approaches

Fig. 1. Multi-label classification framework based on the coding
and decoding of the label space.

(see Section 5) with different multi-label classification
methods (see Section 3). Based on it, we can test whether
some multi-label classification methods can really take
advantage of ECOC correcting abilities. This means that
even if the decision generated by the multi-label classifier
in the encoded space is wrong, it can still be aligned
to true results while decoding to the original multi-label
space. This comes from the correction phenomenon of
ECOC methods. It may eliminate, to some extent, the
inability of particular multi-label classifiers to generalize
properly or to overfit. On the other hand, some multi-label
classification techniques may be resistant to code-based
corrections. For example, experimental studies revealed
that power-set and RAkELs multi-label classifications
do not benefit from ECOCs, while the binary relevance
method does (see Section 6).

The second property of the framework is rather its
drawback. The coding of original label information
always provides a higher dimensionality of the output
modelled inside multi-label classifiers. This property
makes the classification methods more computationally
expensive and for some of them it may provide even worse
accuracy.

The proposed method is in close relation to the
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Algorithm 1. General process of multi-label classification
by means of error correcting output codes.

Require: training dataset Dtr = {〈xn, yn〉}N
n=1,

testing instances Dts = {〈xm, ·〉}M
m=1,

ECOC design: encoder enc(·), decoder dec(·),
multi-label classifier h(·)

1: Learning
2: for all 〈xn, yn〉 ∈ Dtr do
3: encode yn to yenc

n = enc(yn)
4: end for
5: learn ĥ = h(〈xn, yenc

n 〉)
6: Inference
7: for all 〈xm, ·〉 ∈ Dts do
8: classify ˆyenc

m = ĥ(xm)
9: decode ŷm = dec( ˆyenc

m )
10: end for

authors’ previous work (Kajdanowicz et al., 2011) and the
currently emerging direction proposed by Ferng and Lin
(2011).

5. Error correcting output codes in
multi-label classification

Originally, error-correcting output codes were developed
in the field of pattern recognition for problems with
multiple classes. The idea was to avoid solving the
multi-class problem directly and to decompose it into
dichotomies instead. Therefore, a multi-class pattern
recognition problem can be decomposed in the finite
quantity of binary classification problems (Dietterich and
Bakiri, 1995) (Fig. 2). Thus, the aggregated binary
classifiers should be able to recognize a native set of
predefined classes by dividing the pattern recognition
problem into dichotomies (Hong et al., 2008).

The problem of multi-class classification is
decomposed to a combination of multiple binary
classifications accomplished by individual binary
learners. In order to obtain the final decision (a single
class), the outputs from these learners need to be
merged via a simple nearest-neighbour rule. It finds
the class closest to the outputs of the binary classifiers
(according to a given metric). This assignment to the
closest neighbour may correct some errors introduced by
individual binary classifiers.

The most common variations of the binary classifier
combinations are one-against-one and one-against-all
(Duan et al., 2003). The former produces an intuitive
multi-class classifier where at least one binary classifier
corresponds to each class. The hypothesis that a given
object belongs to the selected class is verified against its
membership to one of the others. Such an approach, i.e.,
has a drawback in the case of conflicting answers from
classifiers, which is not quite straightforward. The second

approach the one-against-all method, usually uses the
Winner Takes All (WTA) rule. Each classifier is trained
on instances of the separate class which becomes the
first class, all the other classes correspond to the second
one. Final classification is made on the basis of support
functions using the maximum rule.

However, all the above solutions have been applied
only to the multi-class problem, which has different
nature than the multi-label one (different output). Their
application to the multi-label problem requires some
adaptations. This especially refers to the coding/decoding
method, i.e., transformation of original sets of labels
y (or rather their binary vector representations (see
Section 1.1)). They require to be coded before
the training of classifiers to enable corrections while
decoding. Additionally, base multi-label classifiers
applied to encoded training data should be adequately
utilized to enable proper problem transformation.

As described above, the final classification was
based on decomposition to several binary decisions
undertaken individually but afterwards fused using the
assumed coding scheme. However, the problem can
be considered more generally in terms of properties
of codes used to represent the classification target.
The ECOC design patterns provide a wide variety of
techniques that can be used to enrich the original
signal (class or labels assignment) with redundancy that
may partially recover individual classification errors.
In multi-label classification, this settlement for each
sequence of bits representing original labels y forms
a codeword—an encoded version yenc

m of y. Below,
three basic practical coding methods (ECOC designs) are
presented. The correcting abilities of selected coding
methods are provided in Table 1. By K we denote
the length of the original message (vector representation
of y, K = card(L), (see Section 1.1) and by M
the length of the coded message (yenc

m ). More coding
methods are studied, for instance, by Mackay (2003),
Morelos-Zaragoza (2006), and Kuriata (2008)

5.1. Repetition code. The repetition code is one of the
most basic error correcting output codes. Its coding idea
is accomplished just by repetition of the original message
(binary vector representation of y) several times, one after

Table 1. Correcting abilities of error correcting output codes
(K: length of the original message, M : length of the
coded message).

Coding method Max corrections

Repetition code 1
2
�M

K
� − 1

BCH code M−K
p

All-pairs 1
2
�K−1

2
� − 1
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another (Mackay, 2003). The method assumes that the
transmission channel may be corrupted only in a minority
of these repetitions. Each individual value of the original
message (y) might be recovered by consideration of values
in the encoded message (yenc

m ) that occur most frequently.
Therefore, the decoding takes a majority vote based on all
copies of the original bit.

5.2. Bose–Chaudhuri–Hocquenghem code. The
BCH code, named according to the names of its inventors,
is a cyclic polynomial code over a finite field with
a particularly chosen generator polynomial (Reed and
Chen, 1999). The BCH code for the length M = 2p − 1
provides an ability to correct (M − K)/p errors. The
code is much stronger with respect to correction abilities
than the repetition code, and its advantage is achieved by
the more complicated decoder (Reed and Chen, 1999).

5.3. All-pairs code and multi-label classifica-
tion. The all-pairs code has been initially proposed
by the authors and applied to multi-label classification
(Kajdanowicz et al., 2011). In this method, each original
message (a binary version of y) is assigned a temporal
class (see Fig. 2: temporal class A, B, C corresponding to
101 (English, –, Polish), 111 (English, German, Polish),
100 (English, –, –)—binary vector representations of
multi-label y (Λ), respectively). Then, for such a temporal
class, a dichotomy of original messages is constructed
according to the chosen dichotomy construction method.

In the case of the all-pairs code, we create all possible
pairs of classes, i.e.,

(
card(Λ)

2

)
pairs. There are three

such pairs in Fig. 2: AB, BC, AC. Each pair of temporal
classes constitutes a separate dichotomy to train a separate
classifier. A dichotomy is a binary partition to ‘1’,
equivalent to a given pair (e.g., AB) and ‘0’, the other
temporal classes (refers only class C, other than AB).
Separate classifiers are trained on these dichotomies on
the training set. Hence, we have as many different pairs of
classes, as there are multi-label classifiers i.e.,

(
card(Λ)

2

)
.

These classifiers provide their output that means either a
given pair of temporal classes (1) or not (0), i.e., either AB
or other classes (in our case only class C).

For test data, the multi-label classifiers provide a
list of satisfied class pairs (AB, BC, AC), which form
an output codeword (110), yenc

m . Next, a temporal
class (A, B, C) with the codeword nearest to the one
just obtained is identified using the Hamming distance.
It is class B with the same codeword 110 (Fig. 2).
This is an ensemble of classifiers (Kuncheva, 2005).
Note that codewords delivered by classifiers are not
necessarily the same as temporal codewords (like in Fig.
2). The possible differences in both codewords may
represent potential errors and through transformation from
classifiers’ output to temporal class codewords we are

provided with error correcting abilities. Once a closest
temporal class is discovered, its codeword is decoded
into the corresponding original multiple label vector (ym),
111, and assigned to the testing instance x.

Fig. 2. Classification based on all-pairs encoding (ECOC)
and binary relevance multi-label classification. Set
L = {En—English, De—German, Pl—Polish}, set
Λ = {{En, Pl}, {En, De, Pl}, {En}}. Λ’s elements are
coded to single temporal classes: {En, Pl}—A, {En, De,
Pl}—B, {En}—C.

The all-pairs method generates a code with length
M =

(
K
2

)
= K2−K

2 , K = card(L). As the method
generates a code with a constant minimal Hamming
distance between codewords, it has the ability to recover
1
2�M

K � − 1 bits. Combining both the above observations,
all-pairs coding is able to correct 1

2�K−1
2 � − 1 errors,

which makes it powerful.

6. Experiments and results

6.1. Datasets. The experiments were carried out
on six distinct datasets from four diverse application
domains: semantic scene analysis, bioinformatics, music
categorization and text processing. The image dataset
scene (Boutell et al., 2004) semantically indexes still
scenes. The biological dataset yeast (Elisseeff and
Weston, 2001) concerns micro-array expressions and
phylogenetic profiles for genes classification. In turn, the
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music dataset emotions (Trohidis et al., 2008) contains
data about songs categorized into one or more classes
of emotions. The medical (Pestian et al., 2007) dataset
is based on the Computational Medicine Center’s 2007
Natural Medical Natural Language Processing Challenge
and contains clinical free text reports labelled with disease
codes. Another dataset, enron, is based on annotated
email messages exchanged between Enron Corporation
employees. The last dataset, genbase (Diplaris et al.,
2005), refers to protein classification.

The basic statistics of datasets used in experiments,
such as the number of data instances, the number of
attributes, the number of labels, are presented in Table 2.

6.2. Experimental setup. The main objective of the
performed experiments was to evaluate the accuracy and
efficiency of distinct multi-label classification methods
over various ECOC methods. All combinations of coding
schemes (four methods) and classification algorithms
(three methods) were examined in terms of the Hamming
loss, classification accuracy and computation time
separately for six distinct datasets.

According to the nature of multi-label classification,
the typical, single-label evaluation measures were
insufficient and therefore some standard evaluation
measures of multi-class classifiers from the previous work
have been used in the experiments. The utilized measures
are calculated based on the differences of the actual and
predicted sets of labels over all instances in the test set.
The first measure is the Hamming Loss HL, which was
proposed by Schapire and Singer (2000) and is defined as

HL =
1
N

N∑

i=1

Yi	F (xi)
|Yi| , (1)

where N is the total number of instances xi in the test
set, Yi denotes the actual (real) list of labels, F (xi) is a
sequence of labels predicted by the classifier and 	 stands
for the symmetric difference of two vectors, which is the
vector-theoretic equivalent of the exclusive disjunction in
Boolean logic.

The second evaluation measure used in the
experiments is the Classification Accuracy CA

Table 2. Datasets used in the experiments.
Dataset Instances Attributes Labels Domain

emotions 593 72 6 music
scene 2 407 294 6 images
yeast 2 417 103 14 biology

medical 978 1 449 45 text
enron 1 702 1 001 53 text

genbase 662 1 186 27 biology

(Ghamrawi and McCallum, 2005), defined as

CA =
1
N

N∑

i=1

I(Yi = F (xi)), (2)

where N , Yi, F (xi) have the same meaning as in Eqn. (1),
I(true) = 1 and I(false) = 0.

The measure CA provides a very strict evaluation as
it requires the predicted set of labels to be an exact match
of the true set of labels.

The performance of the analysed methods was
evaluated on the original training-test splitting of datasets
using evaluation measures from Eqns. (1) and (2).
These two metrics are accompanied with empirical
computational time measured during experiments. The
computational time is in fact the sum of times consumed
by coding, learning, inference and decoding. Preserving
the original splitting enables verification of results through
independent research carried out by other scientists.

In the experiments, three multi-label classification
algorithms were considered (Section 4): binary relevance,
the label power-set and random k-label-sets, each
matched separately with four ECOC methods (Section 5):
the repetition code, the Bode–Chaudhuri–Hocquenghem
code, the all-pairs code and no coding. This gave 12
combinations in total. As the examined classification
methods represent the problem transformation approach
to multi-label classification, they required the base learner.
For that purpose, the random forest classifier was used
with 200 trees and 20% of features selected randomly at
every third stage. The experiments were implemented in
the Matlab environment.

To enable comprehensive comparison between
different method combinations (ECOC with a multi-label
classifier), their results, i.e., Hamming Loss HL,
Classification Accuracy CA and processing time, were
ordered from the best to the worst separately for all data
sets analysed; the best was assigned the 1st position, the
next—position 2, and so on. Afterwards, the Friedman
test was applied to figure out if at least one of the
classification methods accompanied by a particular ECOC
is significantly different than the others. A statistically
significant result is declared if the p value is less than 0.05
(5%).

Additionally, the Wilcoxon test for pairwise
comparison is performed with the p value set to 0.05 to
evaluate all ECOC-multi-label combinations significantly
different than the others (according to the Friedman test).

6.3. Results and discussion. As the usage of all-pairs
coding in binary relevance classification requires a large
number of base classifiers (equal to the number of all
pairs of distinct label patterns), it was impossible to
perform experiments on datasets with more than 27 labels.
Hence, processing failed for two datasets: enron with 53
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labels and medical—45 labels. Note that using binary
relevance with the all-pairs code in the processing of
the enron dataset required 283,128 models to be trained.
Finally the rest of the analysis was performed, in fact, on
11 ECOC–classification method combinations. We can
observe that, since the code has better correcting abilities
and generates longer codewords, the binary relevance
technique is not able to construct so many classifiers.
On the other hand—all other examined methods are not
capable to benefit from strong correcting abilities of the
all-pairs code, which results in worse classification quality
(HL and CA)—the codes are too complex and classifiers
are too weak to cover the whole label space.

All reported results which three distinct multi-label
classification methods examined and four ECOCs: no
coding, repetition code, the BCH code and the all-pairs
code, revealed that the best accuracy in terms of
Hamming loss measures is achieved for binary relevance
classification method (see Figs. 3 and 4). For the gen-
base dataset (Fig. 5), binary relevance is one order of
magnitude better than all label power-set and several times
better than RAkEL, regardless the ECOC used. Matching
binary relevance with BCH is always slightly better than
all other ECOC methods. Similar results can be observed
for other datasets.

Fig. 3. Evaluation on the scene dataset: Hamming loss measure
for binary relevance, label power-set and RAkEL multi-
label classifiers using none, repetition, bch and all-pairs
coding.

Concerning results for the classification accuracy,
we can state that, for the scene dataset (Fig. 6), binary
relevance outperforms all other multi-label classifiers and,
combined with BCH and all-pairs coding, is better than
with no and repetition coding. This phenomenon can be
more clearly derived from Fig. 7.

While analysing computational time for the medi-
cal dataset (Fig. 8), combination of binary relevance and
all-pairs code is not presented since it was too complex
to be calculated. However, we can observe that the BCH

Fig. 4. Evaluation on the medical dataset: Hamming loss mea-
sure for binary relevance, label power-set and RAkEL
multi-label classifiers using none, repetition, bch and all-
pairs coding.

Fig. 5. Evaluation on the genbase dataset: Hamming loss mea-
sure for binary relevance, label power-set and RAkEL
multi-label classifiers using none, repetition, bch and all-
pairs coding.

coding makes the classification last much longer. On the
other hand, the computation time for the scene dataset is
constant for the label power-set and RAkEL regardless
of the coding utilized, cf. Fig. 9. We can conclude that
these two multi-label classification methods are much
less dependent on code complexity while considering
computational costs.

Actually, all the above findings can be confirmed
by the results of tests on other datasets, although to
various extent. Moreover, aggregated conclusions can
be derived from the outcome of the Friedman and
Wilcoxon tests performed on HL, CA and time measures
over six distinct datasets. According to the rankings
in Table 3, the best combinations of the classification
technique coding method measured with respect to the
Hamming loss are binary relevance accompanied by
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Table 3. Mean ranks over six examined datasets on the Hamming loss (HL), classification accuracy (CA) and processing time (Time)
measures obtained by ECOC methods in three Friedman tests (applied separately for HL, CA, and time).

Multi-label classifier Code
Mean rank

HL CA Time

binary relevance
none 2.0 2.0 5.33

repetition 2.5 2.67 9.67
bch 2.0 1.33 11.0

label power-set

none 9.5 7.42 2.5
repetition 9.0 8.83 2.83

bch 9.17 7.83 1.17
all-pairs 9.83 8.92 3.83

RAkEL

none 3.67 5.33 8.17
repetition 5.17 7.67 6.5

bch 6.17 8.17 8.67
all-pairs 7.0 5.83 6.33

p value 6.37·10−8 4.14·10−6 2.77·10−8

Table 4. Results of the Wilcoxon signed rank test for HL/CA/Time.
BR-none BR-rep BR-bch LP-none LP-rep LP-bch LP-all-

pairs
RAkEL-
none

RAkEL-
rep

RAkEL-
bch

RAkEL-
all-pairs

BR-none ≈/≈/≈ ≈/≈/+ +/+/≈ +/+/≈ +/+/≈ +/+/≈ ≈/≈/≈ ≈/≈/≈ ≈/+/≈ ≈/≈/≈
BR-rep ≈/≈/≈ ≈/≈/≈ +/+/- +/+/- +/+/- +/+/≈ ≈/≈/≈ ≈/≈/≈ ≈/+/≈ ≈/≈/-
BR-bch ≈/≈/- ≈/≈/≈ +/+/- +/+/- +/+/- ≈/+/- ≈/≈/≈ ≈/+/≈ ≈/+/≈ ≈/≈/-
LP-none -/-/≈ -/-/+ -/-/+ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/+ ≈/≈/+ ≈/≈/+ ≈/≈/≈
LP-rep -/-/≈ -/-/+ -/-/+ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/+ ≈/≈/+ ≈/≈/+ ≈/≈/≈
LP-bch -/-/≈ -/-/+ -/-/+ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/+ ≈/≈/+ ≈/≈/+ ≈/≈/+
LP-all-pairs -/-/≈ -/-/≈ ≈/-/+ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/-/≈
RAkEL-none ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/- ≈/≈/- ≈/≈/- ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈
RAkEL-rep ≈/≈/≈ ≈/≈/≈ ≈/-/≈ ≈/≈/- ≈/≈/- ≈/≈/- ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈
RAkEL-bch ≈/-/≈ ≈/-/≈ ≈/-/≈ ≈/≈/- ≈/≈/- ≈/≈/- ≈/≈/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈
RAkEL-all-pairs ≈/≈/≈ ≈/≈/+ ≈/≈/+ ≈/≈/≈ ≈/≈/≈ ≈/≈/- ≈/+/≈ ≈/≈/≈ ≈/≈/≈ ≈/≈/≈

Fig. 6. Evaluation on the scene dataset: classification accu-
racy measure for binary relevance, label power-set and
RAkEL multi-label classifiers using none, repetition, bch
and all-pairs coding.

BCH coding and with no coding (mean rank 2.0 for
both). However, in the case of the classification accuracy
measure, binary relevance–BCH is much better than
the second one—binary relevance with no coding (1.33
versus 2.0 mean rank). Among all combinations, the
third best classification setup is binary relevance with
repetition code (2.5: HL and 2.67: CA). Simultaneously,
binary relevance with repetition and BCH are the worst

Fig. 7. Evaluation on the yeast dataset: classification accu-
racy measure for binary relevance, label power-set and
RAkEL multi-label classifiers using none, repetition, bch
and all-pairs coding.

with respect to processing time (mean rank 9.67 and
11.0, respectively). This means that better quality goes
with longer processing. However, binary relevance with
no codding appears to be the best trade-off between
quality and efficiency (as of 5.33 mean rank for time).
Significance of the Friedman tests was very high since p
values were close to 0 (see the last row of Table 3).

The fastest methods are based on label power-set
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Fig. 8. Evaluation on the medical dataset: computation time [s]
for binary relevance, label power-set and RAkEL multi-
label classifiers using none, repetition, bch and all-pairs
coding.

Fig. 9. Evaluation on the scene dataset: computation time [s]
for binary relevance, label power-set and RAkEL multi-
label classifiers using none, repetition, bch and all-pairs
coding.

multi-label classification, among which the combination
with the BCH code is the fastest out of all analysed (1.17
mean rank).

The results of the Wilcoxon test for pairwise
comparison presented in Table 4 support the superiority
of binary relevance in terms of accuracy. The acceptance
of the null hypothesis stating there is no statistically
significant difference between a pair of compared
classification scenarios is marked with ‘≈’. On the other
hand, ‘+’ and ‘−’ are used to mark rejection of the null
hypothesis. Intuitively, ‘+’ denotes that the scenario in a
row performed better than the one in the column and ‘−’
stands for the opposite. The symbol ‘/’ is used to separate
the results for each of the evaluation measures: the
Hamming loss, classification accuracy and computation
time.

As can be seen, the binary relevance method with
no ECOC is better than four other methods in HL (look
for ‘+’ symbols in the first row of Table 4) and better
than five methods with respect to AC; simultaneously, it
is neither better nor worse regarding the processing time.
If it is combined with repetition, such combination results
are the same, but it loses against three other methods in
time efficiency. Matching BR with BCH coding provides
even better results for accuracy (better than as many as
six methods), but a bit worse for HL (better than only
three methods). The worst methods are based on the label
power-set classifier: worse than three other methods for
HL and CA. However, they are significantly faster than
five-six other tested methods.

It can be observed that the population of tested
combinations is much more diverse in time efficiency
than in the Hamming loss: 19 pairwise significant
improvements-deteriorations out of a total 55 possible
ones for time and only 11 for HL (16 for CA). This
means that computational complexity of the methods is
more diverse than the differences in the possible quality
achievements.

Similarly to findings based on the Friedman test
(Table 3), the Wilcoxon test proved that the binary
relevance with no codding appears to be the best trade-off
between quality and efficiency.

7. Conclusions

In this paper, a new framework for multi-label
classification is presented. It enables combining various
methods of error correcting output codes with regular
multi-label classification algorithms. The main idea
of the framework is based on the assumption that the
base multi-label classifiers are a noisy channel and the
application of ECOCs may correct classification errors
made by individual classifiers.

Additionally, thorough experimental studies over
binary relevance, label power-set and random k-label-sets
classification algorithms combined with four ECOC
methods: no coding, the repetition code, BCH code
and the all-pairs code were performed separately on six
distinct datasets.

The main conclusions from these experimental
studies are the following: (i) using the proposed
framework for multi-label classification with the BCH
code results in better classification accuracy (according
to the Hamming Loss HL and Classification Accuracy
CA) compared with solutions without any coding and
it refers all classification methods; (ii) binary relevance
accuracy strongly depends on the coding scheme and the
best one is BCH; (iii) the label power-set and RAkEL
consume the same time for computation irrespective of the
coding utilized; (iv) in general, they are not suitable for
ECOCs because they are not able to take advantage from
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the ECOC correction capabilities; (v) the all-pairs code
combined with binary relevance is not suitable for datasets
with a label set larger than 27 items since it requires too
many classifiers inside.
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