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A nonlinear discrete-time control system forced by stochastic disturbances is considered. We study the problem of synthesis
of the regulator which stabilizes an equilibrium of the deterministic system and provides required scattering of random states
near this equilibrium for the corresponding stochastic system. Our approach is based on the stochastic sensitivity functions
technique. The necessary and important part of the examined control problem is an analysis of attainability. For 2D
systems, a detailed investigation of attainability domains is given. A parametrical description of the attainability domains
for various types of control inputs in a stochastic Henon model is presented. Application of this technique for suppression
of noise-induced chaos is demonstrated.
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1. Introduction

An investigation of recently discovered unexpected
phenomena in mechanics, chemical kinetics and
biophysics is connected with the analysis of
corresponding nonlinear dynamical models (Nayfeh and
Balachandran, 2006; Fedotov et al., 2004; Alexandrov
and Malygin, 2011). Numerous control nonlinear systems
operate in zones of transition from order to chaos. After
the pioneering work of Ott et al. (1990), controlling
chaos has focused attention of many researchers. Various
approaches to the solution of problems connected
with both suppression and generation of chaos have
been proposed (Chen and Yu, 2003; Fradkov and
Pogromsky, 1998). For nonlinear dynamical systems
with multiple coexisting attractors, even small stochastic
disturbances can induce random transitions between
the basins of attraction and generate such phenomena
as stochastic resonance (McDonnell et al., 2008),
noise-induced order (Gassmann, 1997; Matsumoto and
Tsuda, 1983) or noise-induced chaos (Gao et al., 1999).
Control theory for stochastic linear systems is well
developed (Åström, 1970; Kučera, 1973). An analysis
of attainability in the state space for these systems was
presented by Digailova and Kurzhanskii (2004).

Control of nonlinear systems with regular and

chaotic oscillations is a challenging and fundamental
problem of modern nonlinear engineering (Sanjuan and
Grebogi, 2010). Analysis of the stochastic stability
and controllability of nonlinear dynamical systems seems
to attract the attention of researchers (Ryashko, 1996;
Karthikeyan and Balachandran, 2011; Zhirabok and
Shumsky, 2012).

In this paper, we investigate the control problem for
a nonlinear discrete-time stochastic system. The aim of
control is the synthesis of a regulator guaranteeing the
deterministic stability of the equilibrium and providing a
required dispersion of random states of a stochastically
forced system near this equilibrium. A detailed
description of the stochastic attractor is given by the
stationary probabilistic density function. Unfortunately,
this function can be found analytically only for the
simplest one-dimensional cases. Thus, asymptotics and
approximations are widely used. For continuous-time
systems, approximations based on stochastic sensitivity
functions were proposed by Mil’shtein and Ryashko
(1995) as well as Bashkirtseva and Ryashko (2000). The
stochastic sensitivity functions technique was successfully
applied to the analysis of stochastic 3D attractors (Ryagin
and Ryashko, 2004; Bashkirtseva and Ryashko, 2009),
backward stochastic bifurcations in the Roessler system
(Bashkirtseva et al., 2010), and an analysis of the
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excitability for the FitzHugh–Nagumo model (Ryashko
and Bashkirtseva, 2011a).

For discrete-time stochastic systems with small
noise, an asymptotic analysis based on the stochastic
sensitivity functions technique was worked out by
Bashkirtseva et al. (2009).

For control systems, by the corresponding choice of
the regulator one can change the stochastic sensitivity of
randomly forced attractors. This approach was used by
Bashkirtseva and Ryashko (2005) for the solution of the
problem of controlling chaos in Brusselator.

A general theoretical method for the synthesis of
a required sensitivity of discrete-time stochastic systems
was proposed by Ryashko and Bashkirtseva (2011b).
A practical realization of this method necessitates a
constructive description of attainability domains. Our
paper focuses on the investigation of attainability domains
and their dependence on the geometry of control inputs.

In Section 2, we give a necessary mathematical
background of the stochastic sensitivity function
technique (Bashkirtseva et al., 2009) and its application
for the control problem introduced by Ryashko and
Bashkirtseva (2011b). For the two-dimensional case, a
method of the geometrical description of the probability
distribution for the stochastic equilibrium based on
dispersion ellipses is presented. In Section 3, we give
a detailed description of attainability domains for 2D
systems. In Section 4, the stochastically forced Henon
system is used for the demonstration of the main ideas
and constructive methods of our theory. For three
different types of control input, a geometrical description
of attainability domains is given. We show constructively
how these domains can be used for the stabilization of
stochastic equilibria and suppression of noise-induced
chaos.

2. Stochastic sensitivity analysis and control

Consider a nonlinear stochastic system

xt+1 = f(xt) + εσ(xt)ξt, t = 0, 1, . . . , (1)

where x is an n-vector, f(x) is a continuously
differentiable n-vector function, σ(x) is a continuous n×
m-matrix function, ξt is an m-dimensional uncorrelated
random process with the parameters

Eξt = 0, Eξtξ
�
t = I, Eξtξ

�
k = 0 (t �= k),

where I is the m × m identity matrix, ε ≥ 0 is a scalar
parameter of the noise intensity. It is supposed that the
corresponding deterministic system (1) (ε = 0) has an
exponentially stable equilibrium xt ≡ x̄.

Let xε
t be a solution of the system (1) with the initial

condition xε
0 = x̄ + εz0. The variable

zt = lim
ε→0

xε
t − x̄

ε

characterizes the sensitivity of the equilibrium x̄ both to
initial data disturbances and random disturbances of the
system (1). For the sequence zt, we have

zt+1 = Azt + Gξt, A =
∂f

∂x
(x̄), G = σ(x̄). (2)

The dynamics of the second moments Zt = Eztz
�
t for the

solution zt of the system (2) are governed by the matrix
equation

Zt+1 = AZtA
� + S, S = GG�. (3)

The inequality ρ(A) < 1, where ρ(A) is the spectral
radius of the matrix A, is a necessary and sufficient
condition for the exponential stability of the equilibrium
x̄ (Elaydi, 1999). From the inequality ρ(A) < 1 it follows
that for any Z0 we have limt→∞ Zt = W , where the
matrix W is a unique solution of the Lyapunov equation

W = AWA� + S. (4)

For nonsingular noise (rank(S) = n), the matrix W is
positive definite.

Let the system (1) have a stochastic attractor
defined by the solution x̄ε

t with a stable stationary
probabilistic distribution p(x, ε). For small Gaussian
noise, the stationary probability density function p(x, ε)of
the random states of the system (1) can be approximated
by the normal distribution

p(x, ε) ≈ exp
(− 1

2ε2 (x − x̄)�W−1(x − x̄)
)

ε
√

(2π)n det(W )
. (5)

Using the matrix W , one can approximate the dispersion
of random states x̄ε

t around the deterministic equilibrium
x̄ as follows:

E(x̄ε
t − x̄)(x̄ε

t − x̄)� ≈ ε2W. (6)

Thus, the matrix W is a simple quantitative characteristic
of the response of the nonlinear system (1) to small
random disturbances in a neighborhood of the equilibrium
x̄. This matrix W plays the role of the stochastic sensitiv-
ity factor of the equilibrium x̄.

Here, the theory of stochastic sensitivity of
the equilibrium will be presented shortly. Detailed
discussions and proofs can be found in the work of
Bashkirtseva et al. (2009).

For the two-dimensional case, the stochastic
sensitivity matrix W has eigenvalues λ1 ≥ λ2 ≥ 0
and corresponding eigenvectors w1, w2. The eigenvalues
λ1 and λ2 are convenient scalar characteristics of the
stochastic sensitivity and determine dispersion values of
random states of the system (1) in the directions w1 and
w2. Consider projections ηi = (x̄ε

t − x̄, wi) of the
deviations of stationary distributed random states x̄ε

t from
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the equilibrium x̄ onto vectors wi. For ηi we have simple
approximations Eη2

i ≈ ε2λi. Thus, the values λ1,2 along
with eigenvectors wi characterize the form and size of the
confidence ellipse

α2
1

λ1
+

α2
2

λ2
= 2ε2β2, β2 = − ln(1 − p). (7)

Here p is the value of the fiducial probability, αi = (x −
x̄, wi).

Consider now a controlled stochastic system,

xt+1 = f(xt, ut) + εσ(xt, ut)ξt, (8)

where x is an n-vector, f(x, u) is a continuously
differentiable n-vector function, u is an l-vector of control
parameters, σ(x, u) is a sufficiently smooth n×m-matrix
function characterizing the dependence of disturbances on
state and control, ξt is an uncorrelated random process
with parameters Eξt = 0, Eξtξ

�
t = I, Eξtξk = 0 (t �=

k), ε is a scalar parameter of noise intensity. It is supposed
that for u = 0, ε = 0 the system (8) has an equilibrium
xt ≡ x̄. A stability of x̄ is not assumed.

Consider a class U of admissible feedbacks u =
u(x) satisfying the following conditions:

(a) u(x) is continuously differentiable and u(x̄) = 0;

(b) for the closed-loop deterministic system

xt+1 = f(xt, u(xt))

the equilibrium x̄ is exponentially stable.

Consider a set of matrices

K = {K ∈ R
l×n, ρ(A + BK) < 1},

where

A =
∂f

∂x
(x̄, 0), B =

∂f

∂u
(x̄, 0), K =

∂u

∂x
(x̄).

Suppose that the pair (A, B) is stabilizable (Wohnam,
1979). This means that neither set K nor class U is
empty.

For any K ∈ K, one can find the stochastic
sensitivity matrix W for the equilibrium x̄. This matrix
is a unique solution of the equation

W = (A + BK)W (A + BK)� + S,

S = GG�, G = σ(x̄, 0).
(9)

Note that the matrix W is completely determined by
the linear approximation of the function u(x) and
independent of higher-order terms. This allows us to
restrict the study without loss of generality to more simple
regulators in the form of linear feedback,

u(x) = K(x − x̄). (10)

Consider a set of admissible stochastic sensitivity
matrices,

M = {M ∈ R
n×n|M � 0},

where M � 0 means that the matrix M is symmetric and
positive definite.

Problem 1. (Stochastic sensitivity synthesis) For the
assigned matrix W ∈ M, it is necessary to find a matrix
K ∈ K guaranteeing the equality WK = W, where WK

is a solution of Eqn. (9).

For some matrices W ∈ M, this problem is
unsolvable. Therefore, we use a notion of attainability
introduced by Ryashko and Bashkirtseva (2011b).

Definition 1. An element W ∈ M is said to be attainable
for the system (8) under the feedback (10) if the equality
WK = W is true for some K ∈ K.

Definition 2. A set of all attainable elements

W = {W ∈ M | ∃K ∈ K, WK = W}

is called the attainability set for the system (8) and (10).

Attainability sets in the state space on a finite
time interval of control were studied by Digailova and
Kurzhanskii (2004) for linear stochastic systems. Our
paper deals with the notion of attainability corresponding
to the problem of control for stochastic attractors.

Let us describe an attainability set. A relation Q 	
P means that the matrix Q − P is non-negative definite.
From Eqn. (9) it follows that WK 	 S for any A, B and
K . This means that W ⊆ MS , where MS = {V ∈
M |V 	 S}. A solution to the problem of the synthesis of
the stochastic sensitivity matrix is given by the following
theorem (Ryashko and Bashkirtseva, 2011b).

Theorem 1. Let the noise in the system (8) be non-
singular (S � 0).

(a) If the matrix B is quadratic and non-singular
( rank(B) = n = l) then W = MS and for any ma-
trix W ∈ MS , Eqn. (9) has a solution,

K = B−1
[
(W − S)

1
2 U� W− 1

2 − A
]
∈ K, (11)

where U is an arbitrary orthogonal n × n-matrix.

(b) If rank(B) < n, then the element W ∈ MS is at-
tainable if and only if the matrix W is a solution of the
equation

PAWA�P = P (W − S)P, (12)

where P = I − BB+ is a projection matrix, ‘+’ means
a pseudoinversion (Albert, 1972). Under these conditions,
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for any matrix W ∈ MS satisfying (12), Eqn. (9) has a
solution,

K = B+
[
(W − S)

1
2 U� W− 1

2 − A
]
∈ K. (13)

Here U is an orthogonal n × n-matrix satisfying the con-
dition

PAW
1
2 = P (W − S)

1
2 U�. (14)

This theorem can be used for the construction
of attainability sets. Indeed, these sets are described
parametrically using a general solution of the matrix
equation (12). In this paper, we focus on the application
of this approach to the two-dimensional case and give a
detailed description of attainability sets for various control
inputs.

Remark 1. Using the presented theory, one can check
the attainability of the assigned stochastic sensitivity
matrix W . For the attainable matrices W , the formulas
(11) and (13) yield an explicit value for the matrix K
of the feedback regulator (10) synthesizing W . Note
that the stochastic sensitivity matrix W is an asymptotic
characteristic of the closed-loop nonlinear system (8), (10)
for infinitesimal noise. For small noise, random states of
a nonlinear system are localized in a small vicinity of the
equilibrium. Due to this localization, parameters of the
linear approximation system define W quite adequately.
For a small noise intensity ε, a dispersion of stationary
distributed random states of the system (8), (10) around
the equilibrium is approximated by (6). In particular,
small values of the assigned W yield small dispersion.

3. Attainability analysis for a 2D system

For a 2D system (n = 2) due to the symmetry of matrices
W and S, we have

A =
[

a11 a12

a21 a22

]
, W =

[
w11 w12

w12 w22

]
,

S =
[

s11 s12

s12 s22

]
,

where

a11 =
∂f1

∂x1
(x̄), a12 =

∂f1

∂x2
(x̄),

a21 =
∂f2

∂x1
(x̄), a22 =

∂f2

∂x2
(x̄).

First, consider the system (8), (10) with the
non-degenerate 2 × 2-matrix B: rank(B) = 2. In
this case, due to Theorem 1, the set of attainable
matrices W coincides with the set MS . Elements of the
attainable matrix W satisfy the following system of three
inequalities:

w11 ≥ s11, w22 ≥ s22,

(w11 − s11)(w22 − s22) ≥ (w12 − s12)2.
(15)

For w12 = s12, attainable diagonal elements of the
matrix W are bounded by w11 ≥ s11, and w22 ≥ s22.

For w12 �= s12, the attainability set can be described
as

w11 > s11, w22 ≥ s22 +
(w12 − s12)2

w11 − s11
.

Geometrically, this means that the attainability domain
is bounded from below by the corresponding hyperbola.
Note that here the non-diagonal element w12 of the
attainable matrix W can be chosen arbitrarily, but
attainable diagonal elements w11 and w22 have to satisfy
the inequalities written above. These inequalities give
much freedom in choosing the elements of W . In
the problem of suppression of large-amplitude stochastic
oscillations, it is reasonable to use a regulator providing
minimal values of stochastic sensitivity. In the case
considered, these values are w11 = s11, w12 =
s12, w22 = s22.

Second, consider the system (8), (10) with the 2 ×
1-matrix B: rank(B) = 1. Without loss of generality, we
can set

B =
[

0
1

]
.

In this case, an attainability set decreases: from (13) an
additional restriction follows,

(a2
11 − 1)w11 + 2a11a12w12 + a2

12w22 + s11 = 0. (16)

Here a pair (A, B) is controllable (Wonham, 1979) if and
only if

rank[B, AB] = rank
[

0 a12

1 a22

]
= 2.

This holds if a12 �= 0.

Consider two subcases.

Case 1. a12 �= 0, a11 �= 0. From (16) it follows that

w12 =
(1 − a2

11)w11 − a2
12w22 − s11

2a11a12
. (17)

Substituting w12 into (15) we have

w11 ≥ s11, w22 ≥ s22,

w2
22 + p(w11)w22 + q(w11) ≤ 0,

(18)

where

p(w11)

=
−2

[
(1 + a2

11)w11 − (1 + 2a2
11)s11 − 2a11a12s12

]

a2
12

,

q(w11)

=
s2
11 + 4a2

11a
2
12(s

2
12 − s11s22) + 4a11a12s11s12

a4
12

.
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The system (18) defines the attainability domain for
the diagonal elements w11 and w22 of matrix W . For any
attainable pair w11, w22, the non-diagonal element w12

can be found uniquely from (17).

Case 2. a12 �= 0, a11 = 0. From (16) it follows that

w22 =
w11 − s11

a2
12

. (19)

Substituting w22 into (15) we have

w11 ≥ s11,

w2
11 − (2s11 + a2

12s22)w11

+ s11(s11 + a2
12s22) ≥ a2

12(w12 − s12)2.

(20)

Here, for any w12, one can find attainable w11 from (20)
and w22 from (19).

Consider a case a12 = 0 when the pair (A, B) is not
controllable. The stabilizability condition implies a2

11 <
1. From (15) and (16) it follows that

w11 =
s11

1 − a2
11

, w22 ≥ s22 +
(w12 − s12)2(1 − a2

11)
s11a2

11

.

Among attainable w22 the minimal value is w22 = s22 for
w12 = s12.

Constructive possibilities of this attainability
analysis are demonstrated for the Henon system in the
next section.

4. Control of a stochastic Henon system

Consider the stochastically forced Henon system (Henon,
1976)

xt+1 = 1 − μx2
t − 0.5yt + εσ1ξt,

yt+1 = xt + εσ2νt, 1 ≤ μ ≤ 2.4,
(21)

where ξt, νt are sequences of independent Gaussian
random disturbances with parameters Eξt = Eνt = 0,
Eξ2

t = 1, Eν2
t = 1, Eξtνt = 0, and ε is a scalar

parameter of the noise intensity.
The corresponding deterministic model (21) (ε = 0)

has the equilibrium (x̄, ȳ), where

x̄ = ȳ =
√

9 + 16μ − 3
4μ

.

The stability of the equilibrium is defined by the criterion
ρ(A) < 1. For the Henon system,

A =
[

a −0.5
1 0

]
,

with a = −2μx̄ = (3 − √
9 + 16μ)/2. The eigenvalues

of the matrix A are solutions of the following equation:

λ2 +
1
2
(
√

9 + 16μ − 3)λ +
1
2

= 0.

Here the criterion of the stability of the equilibria (x̄, ȳ) is
given by

μ < μ∗ =
27
16

= 1.6875.

For μ ∈ [1, 1.6875) this equilibrium is exponentially
stable. When the parameter μ passes the bifurcation
value μ∗ = 1.6875, this equilibrium loses stability. On
the interval (1.6875, 2.5], the Henon system demonstrates
both periodic and chaotic oscillations.

For a small noise intensity (ε > 0), the stochastically
forced trajectories of the system (21) form stochastic
attractors around the corresponding deterministic ones.

Consider a zone μ ∈ [1, 1.6875) of the stochastic
equilibria. A plot of the dispersion D(μ) = E[(x̄ε

t −
x̄)2+(ȳε

t − ȳ)2] of the stationary distributed random states
(x̄ε

t , ȳ
ε
t ) calculated by direct numerical simulation in this

zone is presented in Fig. 1 by circles for ε = 0.005, σ1 =
σ2 = 1. As one can see, the function D(μ) monotonically
grows and changes by more than two orders.

In Figs. 2 and 7(a)–(b) the random states (grey) of
the stochastic Henon system for different values of the
parameter μ are plotted. Stochastically forced equilibria
for μ = 1.1 and μ = 1.6 are presented in Fig. 2. In
Fig. 7(a), one can see a stochastically forced 2-cycle for
μ = 2. For μ = 2.4, the deterministic Henon system
has a stable 4-cycle. Under the random disturbances, this
4-cycle transforms to the stochastic attractor which looks
chaotic (see Fig. 7(b)).

Our probabilistic analysis of the stochastic equilibria
is based on the stochastic sensitivity matrix technique
(see Section 2). For the Henon system (21), due to (4),
elements of the stochastic sensitivity matrix

W =
[

w11 w12

w21 w22

]

1 1.5

−3

−2

−1

μ 

log
10

D 

Fig. 1. Dispersion of random states for the Henon model (21)
for ε = 0.005, s11 = s22 = 1.
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satisfy the following system:

w11 = a2w11 − aw12 + 0.25w22 + s11,

w12 = w21 = aw11 − 0.5w12,

w22 = w11 + s22,

where s11 = σ2
1 , s22 = σ2

2 , s12 = 0. An explicit solution
of this system is the following:

w11 =
12s11 + 3s22

9 − 4a2
, w22 =

12s11 + 3s22

9 − 4a2
+ s22,

w12 =
2a(4s11 + s22)

9 − 4a2
.

Using the elements of this stochastic sensitivity matrix
W , we can approximate the dispersion function D(μ) ≈
Ds(μ) = ε2(w11 + w22). For ε = 0.005, s11 = s22 = 1,
in Fig. 1 the curve Ds(μ) is plotted with a solid line.
As we can see, the function Ds(μ) yields an adequate
approximation of the dispersion D(μ).

The stochastic sensitivity matrix technique allows
us not only to find a dispersion, but to analyze a
spatial arrangement of random states as well. Using the
eigenvalues and eigenvectors of the stochastic sensitivity
matrix W , one can present details of the probabilistic
distribution of the stochastic equilibria via the confidence
ellipses (7). In Fig. 2, for ε = 0.005, s11 = s22 = 1,
fiducial probability p = 0.95 and two values μ = 1.1 and
μ = 1.6, the confidence ellipses (7) and random states
for the Henon model (21) are plotted. As we can see, the
confidence ellipses descriptively reflect the details of the
configurational arrangement for random states.

The Henon map is a canonical model for systems
that exhibit various nonlinear phenomena. This model

0.45 0.47 0.49

0.45

0.47

0.49

x 

y 

Fig. 2. Random states and confidence ellipses for the un-
controlled stochastic Henon model (21) with ε =
0.001, s11 = s22 = 1, fiducial probability p = 0.95
for μ = 1.1 (right) and μ = 1.6 (left).

is actively used by researchers to study different
bifurcations, noise-induced phenomena and control
methods. Transformation of complex multistability to
controlled monostability for a stochastically forced Henon
model was investigated by Goswami and Basu (2002).
For the Henon model, it was shown that stochastic
control of attractor preference can be used to modify the
global structure of coexisting attractors and their basins of
attraction (Martı́nez-Zéregaa and Pisarchik, 2002).

Now, we are going to apply the stochastic sensitivity
functions technique to constructive solution of the control
problem for stochastic attractors of the Henon system.

Consider three variants of control inputs. First
(Control I), the system (21) is governed by two
independent control inputs u1, u2. Second (Control II),
the control u1 acts on the first equation of (21) only.
Third (Control III), the control u2 acts on the second
equation only. These three cases allow clarifying the main
statements of our theory from Sections 2 and 3 and show
constructive possibilities of its applications.

4.1. Control I. Consider the stochastically forced
Henon system

xt+1 = 1 − μx2
t − 0.5yt + u1,t + εσ1ξt,

yt+1 = xt + u2,t + εσ2νt,
(22)

with control inputs u1,t and u2,t. The aim of the control is
to provide stability of equilibria on the whole interval 1 ≤
μ ≤ 2.4 and synthesize the required stochastic sensitivity
matrix W .

We use a feedback regulator in the following form:

u1 = k11(x − x̄) + k12(y − ȳ),
u2 = k21(x − x̄) + k22(y − ȳ).

(23)

Due to Theorem 1, for the system (22), (23), the elements
of attainable matrices W are restricted by the inequalities
(15),

w11 ≥ s11, w22 ≥ s22,

(w11 − s11)(w22 − s22) ≥ w2
12.

The attainability sets for cases w12 = 0 and w12 �= 0 are
demonstrated by crosshatched regions in Figs. 3(a) and
3(b) respectively.

Set w12 = 0. This choice leads to the lack of
correlation of random states x̄ε

t and ȳε
t . Then the elements

w11 and w22 of attainable matrices W are restricted by the
inequalities

w11 ≥ s11, w22 ≥ s22.

As follows from (11), the coefficients of the feedback
regulator (23) guaranteeing the required values w11 ≥



Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems 11

0 s
11

 

s
22

w
11

 

w
22

 

0 w
11
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22

 

s
22

s
11

 

(a) (b)

Fig. 3. Attainability zones: crosshatched region (Henon model (22)) and dashed line (Henon model (24)) for w12 = 0 (a), w12 �= 0
(b).

s11, w12 = 0 , w22 ≥ s22 of the stochastic sensitivity
matrix can be calculated by the formulas

k11 =
√

1 − s11

w11
− a, k12 = 0.5,

k21 = −1, k22 =
√

1 − s22

w22
.

Here U = I .
Possibilities of this regulator to synthesize stochastic

attractors with a different spatial form are demonstrated in
Fig. 4.

We consider four variants of the required stochastic
sensitivity matrices:

W1 =
[

1 0
0 1

]
, W2 =

[
10 0
0 1

]
,

W3 =
[

1 0
0 10

]
, W4 =

[
10 9
9 10

]
.

Random states of the Henon system (22) for μ = 1.6, ε =
0.001, σ1 = σ2 = 1 with controls synthesizing these
required sensitivity matrices are presented in Fig. 4: (a)
for W1, (b) for W2, (c) for W3, (d) for W4. Note that
the matrix W1 is a minimal element in the attainability
set. For the matrix W1, a dispersion of random states
is minimal, too. As a result of the corresponding
control, random states of the system (22) are uniformly
concentrated near equilibria (see Fig. 4(a)) while random
states of the uncontrolled system (21) are widely dispersed
(see Fig. 2, left). In this case, our control compresses
the confidence ellipse of uncontrolled systems and
transforms it to a circle. Varying the required stochastic
sensitivity matrices, we can synthesize dispersion ellipses
of different configurations (see Fig. 4(b)–(d)). Because of
the attainability conditions, all these ellipses contain the
circle from Fig. 4(a).

Note that, for W �= S, a matrix K of feedback
coefficients in (11) depends on the arbitrary orthogonal
matrix U . Let W = 2S. For the system (21) with
σ1 = σ2 = 1, this means that

W =
[

2 0
0 2

]
, W

1
2 =

[ √
2 0

0
√

2

]
,

(W − S)
1
2 =

[
1 0
0 1

]
, U =

[
cosϕ − sinϕ
sin ϕ cosϕ

]
.

Here U = U(ϕ) is a one-parametrical family of
orthogonal 2 × 2-matrices.

As follows from (11), the feedback matrices K
synthesizing the stochastic sensitivity matrix W form a
one-parametrical family, too:

K(ϕ) =

⎡

⎣

√
2

2 cosϕ + 2μx̄
√

2
2 sin ϕ + 1

2

−
√

2
2 sin ϕ − 1

√
2

2 cosϕ

⎤

⎦ .

The control cost function J = Eu2 is

J(ϕ) = ε2tr(K�KW )

= ε2

[
4
√

2μx̄ cosϕ + 3
√

2 sin ϕ + 8μ2x̄2 +
9
2

]
.

The function J(ϕ) has a minimal value,

J0 = ε2(4.5 + 8μ2x̄2 −
√

18 + 32μ2x̄2),

for

ϕ0 = atan
( 3

4μx̄

)
.

4.2. Control II. Consider now the stochastically
forced Henon system

xt+1 = 1 − μx2
t − 0.5yt + u1,t + εσ1ξt,

yt+1 = xt + εσ2νt,
(24)
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Fig. 4. Random states and confidence ellipses for the stochastic Henon model (22) with μ = 1.6, ε = 0.001, s11 = s22 = 1, fiducial
probability p = 0.95 and control inputs synthesizing different stochastic sensitivity matrices: w11 = 1, w22 = 1, w12 = 0
(a), w11 = 10, w22 = 1, w12 = 0 (b), w11 = 1, w22 = 10, w12 = 0 (c), w11 = 10, w22 = 10, w12 = 9 (d).

with a single control input u1,t.
The aim of the control is to provide a stability of

equilibria on the whole interval 1 ≤ μ ≤ 2.4 and
synthesize the required stochastic sensitivity matrix W .

In this case,

B =
[

1
0

]
, rank[B, AB] = rank

[
1 −2μx̄
0 1

]
= 2,

so the pair (A, B) is controllable.
We use a feedback regulator in the following form:

u1 = k11(x − x̄) + k12(y − ȳ). (25)

For the system (24), (25),

B+ =
[

1 0
]
, BB+ =

[
1 0

0 0

]

,

P = I − BB+ =

[
0 0

0 1

]

.

Since rank(B) < 2, for attainability analysis
and design of the feedback control we use Part (b)
of Theorem 1. From the attainability condition (12)
it follows that the elements of the assigned stochastic
sensitivity matrix W satisfy the system

w11 ≥ s11, (w11 − s11)(w22 − s22) ≥ w2
12,

w22 = w11 + s22.
(26)

The attainability sets of the system (24), (25) for cases
w12 = 0 and w12 �= 0 are plotted with dashed lines
in Figs. 3(a) and (b), respectively. As we can see, the
attainability set for the system (24), (25) with a single
control input under the restriction (26) is essentially
smaller than the attainability set for the system (22), (23)
with two control inputs. Note that in these two cases
attainability domains do not depend on the parameter μ
of the deterministic Henon system. Set w12 = 0. Then
the elements w11 and w22 of attainable matrices W are
restricted by the relations

w11 ≥ s11, w22 = w11 + s22.
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Fig. 5. Confidence ellipses for the stochastic Henon model (24) with μ = 1.6, ε = 0.001, s11 = s22 = 1, fiducial probability p =

0.95 and control inputs synthesizing different stochastic sensitivity matrices w11 = 2, w22 = 3 (small), w11 = 4, w22 = 5
(middle), w11 = 9, w22 = 10 (large) for w12 = 0 (a), w12 = 1 (b).

Here

W
1
2 =

[ √
w11 0

0
√

w11 + s22

]

,

(W − S)
1
2 =

[ √
w11 − s11 0

0
√

w11

]

.

Now we have to find an orthogonal 2 × 2-matrix U
satisfying the condition (14). Let

U =

[
cosϕ − sinϕ

sin ϕ cosϕ

]

.

Then

PAW
1
2 =

[
0 0

√
w11 0

]

,

P (W − S)
1
2 U� =

[
0 0

√
w11 sin ϕ

√
w11 cosϕ

]

.

As follows from (14), sin ϕ = 1, cosϕ = 0, and the
orthogonal matrix U can be uniquely found:

U =

[
0 −1

1 0

]

.

Using this matrix in the formula (13), we get the
coefficients

k11 = 2μx̄ , k12 = 0.5 −
√

w11 − s11

w11 + s22
(27)

of the regulator (25) guaranteeing the required values of
the stochastic sensitivity matrix for the system (24).

An analogous constructive procedure allows finding
coefficients of the regulator (25) for the case w12 �= 0.

In Fig. 5, we present confidence ellipses for the
Henon model (24) with μ = 1.6, ε = 0.001, s11 =
s22 = 1, fiducial probability p = 0.95 and control inputs
synthesizing the different stochastic sensitivity matrices

W1 =

[
2 w12

w12 3

]

, W2 =

[
4 w12

w12 5

]

,

W3 =

[
9 w12

w12 10

]

for two values, w12 = 0 (Fig. 5(a)) and w12 = 1
(Fig. 5(b)). As one can see, the attainability condition
(26) restricts a variety of synthesized confidence ellipses
essentially. However, even in the framework of this
restriction, our regulator (25) allows localizing random
states near the equilibrium (x̄, ȳ).

3 4 5 6
0

50

100

150

w
11

 

w
22

 

Fig. 6. Boundaries of attainability domains for the stochastic
Henon model (28) with s11 = s22 = 1 for μ = 1.6
(dotted), μ = 2 (dashed), μ = 2.4 (solid).
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4.3. Control III. Consider now the stochastically
forced Henon system

xt+1 = 1 − μx2
t − 0.5yt + εσ1ξt,

yt+1 = xt + u2,t + εσ2νt,
(28)

with the single control input u2,t.
In this case,

B =
[

0
1

]
, rank[B, AB] = rank

[
0 −0.5
1 0

]
= 2,

so the pair (A, B) is controllable.
We use a feedback regulator in the following form:

u2 = k21(x − x̄) + k22(y − ȳ). (29)

For the system (28), (29),

B+ =
[

0 1
]
, BB+ =

[
0 0

0 1

]

,

P = I − BB+ =

[
1 0

0 0

]

.

From the attainability condition (12) it follows that
for this case the elements of the assigned attainable
stochastic sensitivity matrix W must satisfy the system

w11 ≥ s11, w22 ≥ s22,

(w11 − s11)(w22 − s22) ≥ w2
12, (30)

(a2(μ) − 1)w11 − a(μ)w12 + 0.25w22 + s22 = 0,

where a(μ) = −2μx̄(μ) = (3 −√
9 + 16μ)/2. Thus, the

element w12 is uniquely defined by the elements w11, w22:

w12 =
a2(μ) − 1

a(μ)
w11 +

1
4a(μ)

w22 +
s22

a(μ)
. (31)

Eliminating w12 from (30), we get the following quadratic
inequality for the attainability domain:

w2
22 + 8[(2a2 + 1)s11 − (a2 + 1)w11]w22

+ 16[(s11 + (a2 − 1)w11)2 + a2s22(w11 − s11)] ≤ 0.

Here, in contrast to the previous cases (Controls I
and II), the attainability domain for the values w11, w22

depends essentially on the parameter μ. This dependence
is demonstrated in Fig. 6, where the boundaries of
attainability domains are plotted for different values μ =
1.6 (dotted), μ = 2 (dashed), μ = 2.4 (solid). The
corresponding attainability domains are arranged on the
right of the boundaries.

Here, we focus on the problem of suppression of
the stochastic and noise-induced chaotic oscillations via
stochastic sensitivity synthesis. An uncontrolled Henon

system with ε = 0.005, s11 = s22 = 1 demonstrates
these regimes for μ = 2 (see Fig. 7(a), grey) and μ = 2.4
(see Fig. 7(b), grey).

To suppress stochastic oscillations of high amplitude
for the system (21) with μ = 2, we use the regulator
(29) which provides stability of the equilibrium (x̄, ȳ)
with small stochastic sensitivity. Set w11 = 4.5, w22 =
40. These values belong to the attainability domain (see
Fig. 6). From (30) it follows that w12 = −11.48. Using
(13) and (14) for synthesis of this stochastic sensitivity
matrix, we construct the regulator (29) with feedback
coefficients k21 = 4.622 and k22 = 1.467. This regulator
provides oscillations of small amplitude near the stable
equilibrium (x̄, ȳ) (see Figs. 7(a) and 8(a)).

To suppress chaotic oscillations for the system (21)
with μ = 2.4, we set w11 = 6, w22 = 50. These
values belong to the corresponding attainability domain
(see Fig. 6). From (30) it follows that w12 = −15.52.
The same algorithm based on (13), (14) gives us feedback
coefficients k21 = 4.752, k22 = 1.342. In Figs. 7(b)
and 8(b), it is shown that the regulator (29) with these
coefficients suppresses noise-induced chaos successfully.

5. Conclusion

The problem of stabilization and control of stochastic
equilibria for a nonlinear discrete-time stochastic system
was studied. Our method of regulator synthesis is based
on the stochastic sensitivity function technique. To realize
this method, we have to describe attainability sets for the
prescribed stochastic sensitivity matrix.

In this paper, a detailed geometrical description of
attainability domains for various control inputs in general
2D nonlinear discrete-time stochastic systems was carried
out. By the example of a stochastically forced controlled
Henon system we described these attainability domains
constructively and showed how these domains can be
used for the stabilization of stochastic equilibria and
suppression of noise-induced chaos.
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