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This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks
with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered.
A new impulsive differential inequality is derived based on the Lyapunov–Razumikhin method and some novel stability
criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than
some of the previous results. Finally, two numerical examples are given to illustrate the advantages of the obtained results.
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1. Introduction

Hopfield neural networks have been extensively studied
and developed in recent years, and there has been
considerable focus in the literature on Hopfield neural
networks (Cao and Xiao, 2007; Wallis, 2005). It is known
that high-order neural networks, including high-order
Hopfield neural networks, have stronger approximation
property, faster convergence rate, greater storage capacity,
and higher fault tolerance than low-order neural networks,
and hence they have been studied by many researchers
(Ho et al., 2006; Liu and Wang, 2008; Liu et al., 2005;
Ren and Cao, 2006; Xu et al., 2003; 2009).

Due to limited computational time and network
environment, time delays are always inevitable (Tian
et al., 2004; Zhang and Sun, 2010; Weng and Sun, 2009;
Khadra et al., 2009; Liu et al., 2007; Wu et al., 2012b),
especially in the interaction of neurons in biological
and artificial neural networks (Cao and Xiao, 2007; Ho
et al., 2006; Ren and Cao, 2006; Xu et al., 2003;
2009; Stamova and Ilarionov, 2010; Chua an Yang,

1988b; 1988a). The existence of delays is frequently
a source of instability for neural networks. Fixed and
time-varying delays have been considered in the literature
concerning the stability of Hopfield-type neural networks
(Civalleri et al., 1993; Gopalsamy and He, 1994; Lou
and Cui, 2007; van den Driessche and Zou, 1998). If an
equilibrium point of a Hopfield neural network is globally
exponentially stable, then the domain of attraction of
the equilibrium point is the whole space. This is of
importance from both a theoretical and an application
oriented point of view. On the other hand, there are
many abruptly changing phenomena for the states of
biological, economical, control, and telecommunication
systems, which can be well described by impulsive ones.
Systematic analysis of impulsive systems has been widely
considered by Huang and Yang (2010), Yang and Chua
(1997), Wu et al. (2011; 2012a), Lu et al. (2010; 2011;
2012), Liu et al. (2011), Raja et al. (2011) and Sakthivel
et al. (2010a; 2010b; 2010c; 2011).

In the literature, various methods and techniques
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have been effectively utilized for stability analysis
of neural networks, for example, the Linear Matrix
Inequality (LMI) approach (Liu et al., 2005; Ren and Cao,
2006; Xu et al., 2003; 2011; Raja et al., 2011; Sakthivel
et al., 2011; 2010c; 2010a; 2010b; Rong, 2005; Zhang et
al., 2010; Zheng et al., 2011), the Lyapunov–Razumikhin
method (Liu and Wang, 2008; Stamova and Ilarionov,
2010; Stamova et al., 2010; Ahmad and Stamova, 2008)
the Lyapunov functional method (Xu et al., 2003; 2011;
He et al., 2006), the use of properties of the M-matrix (Xu
et al., 2009; Chen, 2001), and differential inequalities (Xu
et al., 2009; Zhang et al., 2010; Li et al., 2008; Li, 2010).
The importance of impulses with time delay lies in the fact
that they can be used to model the impulsive controller
subject to transmission or sampling delays (Khadra et al.,
2009; Zhang et al., 2011). Hence, there are many studies
on the stability of neural networks with delayed impulses
(Ho et al., 2006; Liu et al., 2005). However, the results
on the stability of neural networks of Ho et al. (2006),
Liu and Wang (2008), Liu et al. (2005; 2007), Xu et al.
(2009), Khadra et al. (2009), He et al. (2006), Li (2010)
or Wang and Liu (2007) impose some restrictions on
delays in terms of its relation to the impulse intervals,
while the results of Ren and Cao (2006) as well as Zheng
et al. (2011) require some conditions on the increasing
of time-varying delays. Hence, the existing research on
stability of neural networks with time-delay and impulses
may still be insufficient.

Motivated by the above discussions, we employ
a new Lyapunov-based impulsive differential inequality
with delays, which is different from that of Ho et al.
(2006), Liu et al. (2005), Xu et al. (2009), Li (2010),
Yang and Xu (2005; 2007), Zhou and Wu (2009) or Yue
et al. (1999) and extends the famous Halanay differential
inequality. Even when nonlinear and delay effects are
simultaneously considered in the process of impulses,
our new impulsive differential inequality can be used to
derive novel stability criteria which can remove some
complex restrictions concerning the relations between
impulse times and delays imposed by Ho et al. (2006),
Liu and Wang (2008), Liu et al. (2005; 2007), Xu
et al. (2009), Khadra et al. (2009), He et al. (2006),
Li (2010) or Wang and Liu (2007). For example, the
impulsive interval should be bigger than the upper bound
of the delay function given by Ho et al. (2006), Liu
and Wang (2008) or Liu et al. (2005). Furthermore,
the proposed results do not require the decreasing of the
Lyapunov functions during the continuous segment of the
trajectory all the time, which is required by Stamova and
Ilarionov (2010), Huang and Yang (2010), Stamova et al.
(2010) or Ahmad and Stamova (2008). In addition, the
requirement on the increasing of time-varying delays as
in the works of Ren and Cao (2006) as well as Zheng
et al. (2011) is not needed in the obtained results. Hence,
the impulsive differential inequality presented in the paper

can be applied to analyze the stability of neural networks
to get less conservative sufficient conditions and used to
investigate the stability of genetic regulatory networks,
which will be studied in our future research.

The rest of this paper is organized as follows. In
Section 2, we introduce some notations and definitions.
Impulsive high-order Hopfield-type neural networks with
time-varying delays are described. In Section 3, we
obtain several exponential stability criteria for high-order
Hopfield-type neural networks based on a new impulsive
differential inequality. In Section 4, two examples are
presented to illustrate the advantages of our results.
Conclusions are given in the last section.

2. Preliminaries

Consider the impulsive high-order Hopfield-type neural
network with time-varying delays described by the
following impulsive differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ciu
′
i(t) = − ui(t)

Ri
+

n∑

j=1

Pijgj(uj(t− τj(t)))

+
n∑

j=1

n∑

l=1

Pijlgj(uj(t− τj(t)))

× gl(ul(t− τl(t))) + Ii, t ∈ [tk−1, tk),

Δui(t) =dikui(t−) +
n∑

j=1

W
(k)
ij hj(uj(t− − τj(t)))

+
n∑

j=1

n∑

l=1

W
(k)
ijl hj(uj(t− − τj(t)))

× hl(ul(t− − τl(t))), t = tk, k ∈ N,
(1)

where i ∈ J = {1, 2, . . . , n}, Δui(tk) = ui(tk) −
ui(t−k ), ui(t−k ) = limt→t−k

ui(t), k ∈ N. The time

sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · ,
with limk→∞ tk = ∞; Ci > 0, Ri > 0 and Ii are
the capacitance, the resistance and the external input of
the i-th neuron, respectively. The matrices Pij ,W

(k)
ij and

Pijl,W
(k)
ijl are the first and second-order synaptic weights

of the neural network, and τi(t), i ∈ J is the transmission
delay of the i-th neuron such that 0 ≤ τi(t) ≤ τ , where τ
is a constant.

For simplicity, denote by R
+ the set of nonnegative

real numbers and by R
n the n-dimensional real space.

Use λmin(P ) and λmax(P ) to denote, respectively, the
smallest and the largest eigenvalues of a square matrix
P . I denotes the identity matrix of degree n. The norm
|| · || is either any vector norm or the induced matrix norm.
Furthermore, diag(a1, a2, . . . , an) denotes the diagonal
matrix with elements in diagonal equal to a1, a2, . . . , an.

Throughout this paper, we assume that the neuron
activation functions gi(u) and hi(u), satisfy the following



Stability analysis of high-order Hopfield-type neural networks. . . 203

conditions with constants Mi, Ni,Ki, Li, i ∈ J :

|gi(ui)| ≤Mi |hi(ui)| ≤ Ni, ∀ui ∈ R;

0 ≤ gi(ui) − gi(vi)
ui − vi

≤ Ki,

0 ≤ hi(ui) − hi(vi)
ui − vi

≤ Li,

(2)

for all ui �= vi, ui, vi ∈ R, i ∈ J .
It should be noticed that above assumptions are

commonly used by Ho et al. (2006), Liu and Wang (2008),
Liu et al. (2005), Xu et al. (2011) and Zheng et al. (2011).
Define

M = [M1,M2, . . . ,Mn]T ,

N = [N1, N2, . . . , Nn]T ,
K = diag(K1,K2, . . . ,Kn),
L = diag(L1, L2, . . . , Ln).

The initial condition for the system (1) is given by
ui(s) = ψi(s), s ∈ [t0 − τ, t0], where ψi : [t0 − τ, t0] →
R, i = 1, 2, . . . , n, is a piecewise continuous function.
From the work of Xu et al. (2009), the system (1) has
an equilibrium point under the condition (2). Let u∗ =
[u∗1, u

∗
2, · · · , u∗n]T be an equilibrium point of system (1).

For i ∈ J and k ∈ N, let

xi(t) = ui(t) − u∗i ,

diku
∗
i +

n∑

j=1

W
(k)
ij hj(u∗j )

+
n∑

j=1

n∑

l=1

W
(k)
ijl hj(u∗j )hl(u∗l ) = 0,

fi(xi(t− τi(t))) = gi(ui(t− τi(t))) − gi(u∗i ),
ϕi(xi(t− τi(t))) = hi(ui(t− τi(t))) − hi(u∗i ).

Then, for each i ∈ J ,

|fi(z)| ≤ Ki|z| and zfi(z) ≥ 0, ∀z ∈ R,

|ϕi(z)| ≤ Li|z| and zϕi(z) ≥ 0, ∀z ∈ R.
(3)

The system (1) can be rewritten as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cix
′
i(t) = − xi(t)

Ri
+

n∑

j=1

(Pij +
n∑

l=1

(Pijl + Pilj)ζl)

× fj(xj(t− τj(t))), t ∈ [tk−1, tk),

Δxi(tk) =dikxi(t−k ) +
n∑

j=1

(W (k)
ij

+
n∑

l=1

(W (k)
ijl +W

(k)
ilj )ξl)

× ϕj(xj(t−k − τj(tk))), k ∈ N,
(4)

where i ∈ J , ζl is between gl(ui(t − τl(t))) and gl(u∗l ),
and ξl is between hl(ul(t−k − τl(tk))) and hl(u∗l ). Define

C = diag(C1, C2, . . . , Cn),
R = diag(R1, R2, . . . , Rn),
Dk = diag(d1k, d2k, . . . , dnk),

W (k) = (W (k)
ij )n×n,

W
(k)
i = (W (k)

ijl )n×n, P = (Pij)n×n,

Pi = (Pijl)n×n, i ∈ J,

PH = [P1 + PT
1 , . . . , Pn + PT

n ]T ,

Ξ(k) = [W (k)
1 + [W (k)

1 ]T , . . . ,

W (k)
n + [W (k)

n ]T ]T ,

ϕ(x(t− − τ(t))) = [ϕ1(x1(t− − τ1(t))), . . . ,

ϕn(xn(t− − τn(t)))]T ,
f(x(t− τ(t))) = [f1(x1(t− τ1(t))), . . . ,

fn(xn(t− τn(t)))]T ,

ζ = [ζ1, . . . , ζn]T ,

Γ = diag(ζ, . . . , ζ), ξ = [ξ1, . . . , ξn]T ,
Λ = diag(ξ, . . . , ξ),

Δx = [Δx1, . . . ,Δxn]T ,

x(t− τ(t)) = [x1(t− τ1(t)), . . . , xn(t− τn(t))]T .

Then the system (4) can be written in the following
equivalent form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′(t) = − C−1R−1x(t) + C−1(P + ΓTPH)
× f(x(t− τ(t))), t ∈ [tk−1, tk),

Δx(tk) =Dkx(t−k ) + (W (k) + ΛT Ξk)

× ϕ(x(t−k − τ(tk))), k ∈ N.
(5)

The initial condition for the system (5) is given by x(t) =
φ(t), t ∈ [t0 − τ, t0], where

φ(t) = [φ1(t), . . . , φn(t)]T , t ∈ [t0 − τ, t0]

and

φi(t) = ψi(t) − u∗i , t ∈ [t0 − τ, t0], i ∈ J.

Now we introduce some definitions as follows.

Definition 1. A function V : R
+ × R

n → R
+ is said to

belong to class V0 if

(i) V is continuous in each of the sets [tk−1, tk) × R
n

and for each x ∈ R
n, t ∈ [tk−1, tk), k ∈ N,

lim(t,y)→(t−k ,x) V (t, y) = V (t−k , x) exists;

(ii) V (t, x) is locally Lipschizian in all x ∈ R
n, and for

all t ≥ t0, V (t, 0) ≡ 0.
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Definition 2. Given a function V : R
+ × R

n → R
+, the

upper right-hand derivative of V ∈ V0 with respect to the
system (1) is defined by

D+V (t, x(t))

= lim sup
h→0+

1
h

[
V (t+ h, x(t+ h)) − V (t, x(t))

]

for (t, x) ∈ [tk−1, tk) × R
n, k ∈ N.

Definition 3. The trivial solution of the system (5) is
said to be globally exponentially stable if there exist some
constants α > 0 and M̃ ≥ 1 such that, for any initial data
xt0 = φ,

||x(t, t0, φ)|| ≤ M̃ ||φ||τe−α(t−t0), t ≥ t0,

where
(t0, φ) ∈ R

+ × PC([−τ, 0],Rn),

||φ||τ = sup
s∈[−τ,0]

||φ(s)||.

Furthermore, α is called the convergence rate.

3. Main results

It is well known that a differential inequality (called the
Halanay inequality (Halanay, 1966)) is one of the main
tools for studying continuous differential systems and has
been widely applied to stability analysis. However, these
inequalities cannot be applied to impulsive differential
systems directly. Furthermore, some previous results
about differential inequalities cannot be used to deal with
impulsive systems with time delay which appears both in
the continuous and the impulsive part of the system. To
overcome these difficulties, we give the following new
impulsive differential inequality.

Lemma 1. Consider the following impulsive differential
inequalities:

{
D+v(t) ≤ αv(t) + βv̄(t), [tk−1, tk)

v(tk) ≤ akv(t−k ) + bkv̄(t−k ), k ∈ N,
(6)

where v(t) ≥ 0,

v̄(t) = sup
t−τ≤s≤t

v(s),

v̄(t−) = sup
t−−τ≤s<t−

v(s)

and v(t) is continuous except at each tk, k ∈ N. The
sequence {tk} is assumed to satisfy 0 ≤ t0 < t1 < · · · <
tk < · · · , and limk→∞ tk = ∞.

Suppose that

(i) there exists σ > 0 and λ > 0 such that

α+ (βeλτ )/dk−1 ≤ σ − λ,

where dk ≥ ak + bke
λτ , 0 < d0 ≤ 1, k ∈ N;

(ii) ln dk−1 < −(σ + λ)(tk − tk−1), k ∈ N.

Then there exists an M̃ > 1 such that v(t) ≤
M̃ v̄(t0)e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N.

Proof. Let γ = supk∈N{1/dk−1}. From (ii), we can get

ln γ + λτ − (σ + λ)(tk − tk−1) > 0.

Hence, we can choose M̃ ≥ 1 such that

e(σ+λ)(t1−t0) ≤M̃
≤γeλτ−(σ+λ)(t1−t0)e(σ+λ)(t1−t0)

=γeλτ .

(7)

From it follows (7) that

v̄(t0) < v̄(t0)eσ(t1−t0) ≤ M̃v̄(t0)e−λ(t1−t0). (8)

We first show that

v(t) ≤ M̃ v̄(t0)e−λ(t−t0), t ∈ [t0, t1).

To do this, we only need to prove

v(t) ≤ M̃ v̄(t0)e−λ(t1−t0), t ∈ [t0, t1). (9)

If (9) is not true, from (8) there exists t̄ ∈ (t0, t1) such that

v(t̄) > M̃v̄(t0)e−λ(t1−t0) > v̄(t0),

which implies that there exists some t̂ ∈ (t0, t̄) such that

v(t̂) = M̃v̄(t0)e−λ(t1−t0),

v(t) ≤ v(t̂), t ∈ [t0 − τ, t̂], (10)

and there exists some t̃ ∈ (t0, t̂) such that

v(t̃) = v̄(t0), v(t̃) ≤ v(t) ≤ v(t̂), t ∈ [t̃, t̂].

Hence, by (7) and (10), for any t ∈ [t̃, t̂] and s ∈
[−τ, 0], we have

v(t+ s) ≤M̃v̄(t0)e−λ(t1−t0)

≤γeλτ v̄(t0)

=γeλτv(t̃)

≤γeλτv(t), s ∈ [−τ, 0).

By the condition (i) and (6), we get

D+v(t) ≤ αv(t) + βv̄(t)

≤ αv(t) + βγeλτv(t)

≤ (σ − λ)v(t), t ∈ [t̃, t̂].
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Then, by (8),

v(t̂) ≤ v(t̃)e(σ−λ)(t̂−t̃) = v̄(t0)e(σ−λ)(t̂−t̃)

< v̄(t0)eσ(t1−t0) ≤ M̃ v̄(t0)e−λ(t1−t0) = v(t̂),

which is a contradiction. Hence, (9) holds.
Next, we shall show that

v(t) ≤ M̃v̄(t0)e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N.

(11)

Assuming (11) holds for k = 1, 2, . . . ,m, we shall show
that it holds for k = m+ 1, i.e.,

v(t) ≤ M̃ v̄(t0)e−λ(t−t0), t ∈ [tm, tm+1). (12)

Suppose (12) is not true. Then, we define

t̄ = inf{t ∈ [tm, tm+1)|v(t) > M̃v̄(t0)e−λ(t−t0)}.
Since (11) holds for k = m, we have

v(t−m) ≤ M̃ v̄(t0)e−λ(tm−t0),

v(t−m + s) ≤ M̃ v̄(t0)e−λ(tm+s−t0), s ∈ [−τ, 0).

Hence
v̄(t−m) ≤ M̃ v̄(t0)e−λ(tm−τ−t0). (13)

From (6) and (13), we have

v(tm) ≤ (am + bme
λτ )M̃ v̄(t0)e−λ(tm−t0)

≤ dmM̃v̄(t0)e−λ(tm−t0)

= dmM̃v̄(t0)eλ(t̄−tm)e−λ(t̄−t0)

< dmM̃v̄(t0)eλ(tm+1−tm)e−λ(t̄−t0)

< M̃v̄(t0)e−λ(t̄−t0),

(14)

where the last inequality comes from (ii). Hence, t̄ > tm,
and by the continuity of v(t) in the interval [tm, tm+1) we
have

v(t̄) = M̃v̄(t0)e−λ(t̄−t0), v(t) ≤ v(t̄), t ∈ [tm, t̄].
(15)

From (14), there exists some t∗ ∈ (tm, t̄) such that

v(t∗) = dmM̃ v̄(t0)eλ(tm+1−tm)e−λ(t̄−t0),

v(t∗) ≤ v(t) ≤ v(t̄), t ∈ [t∗, t̄].

On the other hand, for any t ∈ [t∗, t̄], s ∈ [−τ, 0],
either t+ s ∈ [t0 − τ, tm) or t+ s ∈ [tm, t̄].

If t+ s ∈ [t0 − τ, tm), we obtain

v(t+ s) ≤ M̃ v̄(t0)e−λ(t+s−t0)

≤ M̃ v̄(t0)e−λ(t̄−t0)eλ(t̄−t)eλτ

≤ eλ(tm+1−tm)M̃v̄(t0)e−λ(t̄−t0)eλτ .

If t+ s ∈ [tm, t̄ ] from (15), we obtain

v(t+ s) ≤ M̃v̄(t0)e−λ(t̄−t0)

≤ eλ(tm+1−tm)M̃ v̄(t0)e−λ(t̄−t0)eλτ .

Hence, from the condition (ii), for any s ∈ [−τ, 0] we
have

v(t+ s) ≤ v(t∗)eλτ/dm (16)

≤ v(t)eλτ/dm, t ∈ [t∗, t̄].

Finally, by the condition (i) as well as (6) and (16), we
have

D+v(t) ≤ (α+ βeλτ/dm)v(t)
≤ (σ − λ)v(t), t ∈ [t∗, t̄].

According to (ii), we have

v(t̄) ≤ v(t∗)e(σ−λ)(t̄−t∗)

= dmM̃ v̄(t0)eλ(tm+1−tm)e−λ(t̄−t0)e(σ−λ)(t̄−t∗)

< e−(σ+λ)(tm+1−tm)M̃v̄(t0)eλ(tm+1−tm)

× e−λ(t̄−t0)e(σ−λ)(t̄−t∗)

= e−σ(tm+1−tm)M̃v̄(t0e−λ(t̄−t0)e(σ−λ)(t̄−t∗)

< M̃v̄(t0)e−λ(t̄−t0) = v(t̄),

which is a contradiction. Hence, (12) holds. By induction,
we can obtain that (11) holds for any k ∈ N. This
completes the proof. �

Remark 1. The impulsive differential inequality was
widely used in the stability analysis of dynamic systems
including neural networks (Ho et al., 2006; Liu et al.,
2005; Xu et al., 2009; Li, 2010; Yang and Xu, 2005; Yang
and Xu, 2007; Yue et al., 1999). It is known that −α >
β ≥ 0 was assumed by Li (2010), Yang and Xu (2005) or
Yue et al. (1999); furthermore, tk − tk−1 ≥ δτ for some
δ ≥ 1 was also assumed by Xu et al. (2009), Li (2010) or
Yue et al. (1999). However, both of the above-mentioned
assumptions are deleted in Lemma 1. The impulsive
delay differential inequalities developed by Yang and Xu
(2007) as well as Zhou and Wu (2009) deal with the case
without time delay in impulses. Furthermore, to use the
method of Yang and Xu (2007), one needs to solve the
deduced differential equations, which may be difficult.
By Lemma 1, we only need to check the coefficients of
the impulsive delay differential inequalities to judge the
stability. Hence, from certain perspective, our lemma
is less conservative than that of Ho et al. (2006), Liu
et al. (2005), Xu et al. (2009), Li (2010), Yang and Xu
(2005; 2007) or Yue et al. (1999), and extends the famous
Halanay differential inequality.

The impulsive differential inequality can be widely
used for impulsive control of neural networks and
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stability analysis of impulsive neural networks including
Hopfield-type neural networks, BAM neural networks,
as well as impulsive control and synchronization of
chaotic systems, and so on. In the following, by
employing Lemma 1, we shall present several criteria on
globally exponential stability for the delayed high-order
Hopfield-type neural networks (1) with the impulsive
effect. Let u∗ = [u∗1, u

∗
2, . . . , u

∗
n] be an equilibrium

point of the system (1). Then x = [0, 0, . . . , 0]T is an
equilibrium point of system (4) or (5).

Theorem 1. The original point of the high-order
Hopfield-type neural networks (5) is globally exponen-
tially stable with the convergence rate λ/2 if the following
conditions are satisfied:

(i) there exist a matrixQ > 0, constants ε1 > 0, ε2 > 0
and σ > 0, λ > 0 such that

α+ (βeλτ )/dk−1 ≤ σ − λ;

(ii) ln dk−1 < −(σ + λ)(tk − tk−1), k ∈ N, where

α = − λmin(Υ)
λmax(Q)

,

β =
λmax(ε1I + ε2P

T
HPH)max1≤i≤n{K2

i }
λmin(Q)

,

Υ = −QC−1R−1 −R−1C−1Q+
1
ε1
QC−1PPTC−1Q

+
||M ||2
ε2

QC−1C−1Q,

and

dk

≥ 2
λmax(Q)
λmin(Q)

||I +Dk||2

+ 2eλτ λmax(Q)
λmin(Q)

max
1≤i≤n

{L2
i }(||W (k)|| + ||Ξk||||N ||)2.

Proof. We define a Lyapunov function

v(t) = xT (t)Qx(t).

Let t ≥ t0 and t ∈ [tk−1, tk). Then for the upper right
derivative D+v, along the solution of the system (5), we
have

D+v(t) = −xT (t)(QC−1R−1 +R−1C−1Q)x(t)

+ 2xT (t)QC−1Pf(x(t− τ(t)))

+ 2xT (t)QC−1ΓTPHf(x(t− τ(t)))

≤ −xT (t)(QC−1R−1 +R−1C−1Q)x(t)

+
1
ε1
xT (t)QC−1PPTC−1Qx(t)

+ ε1f
T (x(t− τ(t)))f(x(t − τ(t)))

+
1
ε2
xT (t)QC−1ΓT ΓC−1Qx(t)

+ ε2f
T (x(t− τ(t)))PT

HPHf(x(t− τ(t))).

Since ΓT Γ = ||ζ||2I and ||ζ|| ≤ ||M ||, from (3), we get

D+v(t)

≤ −xT (t)Ξx(t) + fT (x(t − τ(t)))

× (ε1I + ε2P
T
HPH)f(x(t− τ(t)))

≤ −λmin(Ξ)||x(t)||2 + λmax(ε1I + ε2P
T
HPH)

× max
1≤i≤n

{K2
i }||x(t− τ(t))||2

≤ − λmin(Ξ)
λmax(Q)

v(t)

+
λmax(ε1I + ε2P

T
HPH)max1≤i≤n{K2

i }
λmin(Q)

× v(t− τ(t))
≤ αv(t) + βv̄(t).

On the other hand, from the condition (ii), for k ∈ N,

v(tk)

=(x(t−k ) + Δx(t−k ))TQ(x(t−k ) + Δx(t−k ))

≤λmax(Q)||(I +Dk)x(t−k )

+ (W (k) + ΛT Ξk)ϕ(x(t−k − τ(tk)))||2
≤λmax(Q)[||I +Dk||||x(t−k )||

+ (||W (k)|| + ||ΛT ||||Ξk||)||ϕ(x(t−k − τ(tk)))||]2.
By the condition (ii) and the assumptions ||ϕ(x(t))|| ≤
max1≤i≤n{Li}||x(t)||, ΛT Λ = ||ξ||2I and ||ξ|| ≤ ||N ||,
we obtain

v(tk) ≤λmax(Q)[||I +Dk||||x(t−k )||
+ max

1≤i≤n
{Li}(||W (k)||

+ ||Ξk||||N ||)||x(t−k − τ(tk))||]2
≤2λmax(Q)||I +Dk||2||x(t−k )||2

+ 2λmax(Q) max
1≤i≤n

{L2
i }(||W (k)|| + ||Ξk||||N ||)2

× ||x(t−k − τ(tk))||2

≤2
λmax(Q)
λmin(Q)

||I +Dk||2v(t−k ) + 2
λmax(Q)
λmin(Q)

× max
1≤i≤n

{L2
i }(||W (k)|| + ||Ξk||||N ||)2v̄(t−k ).

Let

ak = 2
λmax(Q)
λmin(Q)

||I +Dk||2,
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bk = 2
λmax(Q)
λmin(Q)

max
1≤i≤n

{L2
i }(||W (k)|| + ||Ξk||||N ||)2,

k ∈ N. Then the conditions (i) and (ii) of Lemma 1 are
satisfied from the conditions (i) and (ii). Hence, there
exists M̃ > 1 such that v(t) ≤ M̃ v̄(t0)e−λ(t−t0), t ∈
[tk−1, tk), k ∈ N.

||x(t)|| ≤M∗||φ||τe−λ(t−t0)/2, t ≥ t0, (17)

where

M∗ =

√

M̃
λmax(Q)
λmin(Q)

> 1.

This implies that the equilibrium of the impulsive system
(1) is globally exponentially stable and the convergence
rate is λ/2 for any bounded time delay with 0 < τ < +∞.
This completes the proof. �

Remark 2. Theorem 1 does not require the decreasing
of the Lyapunov functions during the continuous portion
of the trajectory all the time, which is required by Huang
and Yang (2010), and shows that impulses contribute to
the exponential stability of some impulsive high-order
Hopfield type neural networks with delays. It is
also important to emphasize that some existing stability
conditions (see, e.g., Ho et al., 2006; Liu and Wang,
20008; Liu et al., 2005; 2007; Khadra et al., 2009; He
et al., 2006; Li, 2010; Wang and Liu, 2007) require
that every impulsive interval should be bigger than the
upper bound of the delay function, while it is indeed
dropped here. Thus, the proposed results are more
practically applicable since they can be applied to deal
with globally exponential stability of neural networks for
any time-varying delay with τ ∈ (0,+∞). Moreover, in
the works of Liu et al. (2005), Li (2010), Yang and Xu
(2005) as well as Yue et al. (1999), α+ β < 0 is required
to be satisfied. According to the condition (i) in Theorem
1, α+β can be positive, zero or negative, which shows less
conservativeness of our results from certain perspective.

4. Numerical examples

The obtained stability conditions contain all the
information of neural networks, and only depend on
physical parameters of neural networks, which can be
checked easily and quickly. Since the new deduced
stability criteria can remove some complex restrictions
on the relations between impulse times and delays, they
are applicable in many practically important problems,
such as the analysis of the dynamics of biological neural
systems with time-varying delays and the design of
globally exponentially stable artificial neural networks.

In the following, we will give two examples to
illustrate the advantages of our results.

Example 1. Consider the high-order Hopfield-type
neural networks with time-varying delays (1) with n =
3 in much the same way as in the example of (Liu
et al., 2005); tk − tk−1 = 0.1, k ∈ N and 0 ≤ τi(t) ≤
0.2. The parameters of the neural networks are given as
follows:

g1(u1) = tanh(0.06u1),
g2(u2) = tanh(0.05u2),
g3(u3) = tanh(0.06u3),
h1(u1) = tanh(0.09u1),
h2(u2) = tanh(0.02u2),
h3(u3) = tanh(0.17u3),

C = diag(C1, C2, C3) = I,

R = diag(R1, R2, R3) = I,

I1 = I2 = 0.
Dk = diag(d1k, d2k, d3k)

= diag(−0.95,−0.84,−0.99),

P =

⎡

⎣
0.98 1.81 6.69
1.60 3.16 −1.29
0.36 −1.92 2.28

⎤

⎦ ,

P1 =

⎡

⎣
0.05 0.14 0.28
−0.06 −0.05 0.11
−0.24 −0.06 −0.09

⎤

⎦ ,

P2 =

⎡

⎣
0.29 −0.10 −0.35
0.23 −0.14 0.25
0.05 0.22 −0.01

⎤

⎦ ,

P3 =

⎡

⎣
−0.23 0.07 0.03
0.09 −0.02 −0.19
0.16 0.01 0.06

⎤

⎦ ,

W =

⎡

⎣
−0.04 −0.05 0.16
0.19 −0.17 −0.02
0.03 0.13 0.04

⎤

⎦ ,

W1 =

⎡

⎣
−0.01 0.01 −0.03
0.08 −0.09 0.07
0.08 −0.01 0.01

⎤

⎦ ,

W2 =

⎡

⎣
0.06 0 0.04
0.04 −0.07 0.07
−0.02 −0.06 0.05

⎤

⎦ ,

W3 =

⎡

⎣
0.04 −0.04 0.01
0.02 0.05 −0.05
−0.02 0.03 −0.02

⎤

⎦ .

In this case, M = N = [1, 1, 1]T , τ = 2, K =
diag(0.06, 0.05, 0.06), L = diag(0.09, 0.02, 0.17).

Let Q = I, ε1 = ε2 = 1 in Theorem 1, by
computation, we have α = 0.0063, β = 0.0067. Let
σ = 1.7473, λ = 1.2977, dk = 0.0732. Then
α + βeλτ/dk−1 − (σ − λ) = −0.8813 < 0; ln dk−1 +
(σ + λ)(tk − tk−1) = −2.3148 < 0. Hence, both (i) and
(ii) of Theorem 1 are satisfied. Then, we can conclude
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that the equilibrium point of (1) is globally exponentially
stable with the convergence rate 0.6489. Figure 1 shows
the trajectories of states of the system with impulsive
disturbances, which approach zero with time.

Since the impulsive interval is excessively less than
the upper bound of time delays, i.e., tk − tk−1 = 0.1 <
τ = 0.2, the results of Ho et al. (2006), Liu and Wang
(2008), Liu et al. (2005; 2007), Khadra et al. (2009), He
et al. (2006), Li (2010) as well as Wang and Liu (2007)
cannot be used for stability analysis of Example 1. On the
other hand, it should be noticed that α + β = 0.013 > 0
in Example 1. Hence, the results of Liu et al. (2005), Li
(2010), Yang and Xu (2005) as well as Yue et al. (1999)
cannot be applied to judge the stability either, since α +
β < 0 is assumed therein. �
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Fig. 1. Time response of states of Example 1 with impulsive dis-
turbances.
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Fig. 2. Time response of states of Example 2 with impulsive dis-
turbances.

Example 2. Consider the high-order Hopfield-type
neural networks (1) with n = 2 with the neuron activation

functions and synaptic weights as in the example of Liu
and Wang (2008), and 0 ≤ τi(t) ≤ 0.3, tk − tk−1 =
0.1, k ∈ N. The parameters are given as follows:

g1(u1) = tanh(0.1u1),
g2(u2) = tanh(0.1u2),
h1(u1) = −(u1 + u2)/2,
h2(u2) = (u1 − u2)/2,

R−1 = diag(0.2, 0.1852),
Dk = diag(d1k, d2k) = diag(−0.5,−0.5),

P = (Pij) =
[ −1 0.6

0.9 −0.9

]

,

W = (Wij) =
[ −0.5 0.5

−0.5 −0.5

]

,

C1 = C2 = 1, P1 = P2 = 0,
W1 = W2 = 0, I1 = I2 = 0.

In this case, M = [1, 1]T , N = [1.6, 0.6]T τ =
2,K = diag(0.1, 0.1), L = 0.

Let Q = 0.2079I, ε1 = 1.2506, ε2 = 1.0438. By
computation, we have a = 0.1852, μ = 0.0213, [||I +
Dk||+ max1≤i≤n{Li}(||W (k)||+ ||Ξk||||N ||)]2 = 0.25.
Let σ = 0.6, λ = 0.2, dk = 0.5. Then α+βeλτ/dk−1 −
(σ−λ) = −0.3263 < 0, ln dk−1 +(σ+λ)(tk − tk−1) =
−0.6131 < 0. Then, we see that the equilibrium point of
(1) is globally exponentially stable with the convergence
rate 0.1 by Theorem 1. Figure 2 shows the stability of
states of the system with impulsive disturbances.

The stability conclusion for this example cannot be
derived by applying the corresponding results of Liu
and Wang (2008), Xu et al. (2009; 2011) Huang and
Yang (2010), Zhang et al. (2010) or Li (2010), since the
impulses considered here are nonlinear and the delay in
the impulses is time-varying. Since the impulsive interval
is excessively less than the upper bound of time delays,
i.e., tk − tk−1 = 0.1 < τ = 0.3, the results of Ho et al.
(2006), Liu and Wang (2008), Liu et al. (2005; 2007),
Khadra et al. (2009), He et al. (2006), Li (2010) or Wang
and Liu (2007) cannot be used for the stability analysis of
this example, either. Furthermore, α + β = 0.0513 > 0
here, then, as Example 1, the results of Liu et al. (2005),
Li (2010), Yang and Xu (2005) as well as Yue et al. (1999)
are useless to judge the stability. �
Remark 3. In biological neural networks, impulsive
effects are likely to exist. For example, when stimulus
from the body or the external environment is received
by receptors, the electrical impulses will be conveyed to
the neural net and impulsive effects arise naturally in the
net. Therefore, a neural network model with delays and
impulsive effects should be more accurate to describe the
evolutionary process of the systems. Then the impulsive
differential inequality obtained in the paper can be applied
to analyse the stability of neural networks.
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5. Conclusion

A new impulsive differential inequality has been
derived and sufficient conditions for globally exponential
stability of the equilibrium point for delayed high-order
Hopfield-type neural networks with impulsive effects have
been presented. The proposed results have been proved
theoretically and experimentally to be less conservative
than some existing stability criteria for impulsive neural
networks.

Furthermore, since genes play a leading role in the
control of cellular processes, gene regulatory networks
have become a hot research area in the biological and
biomedical sciences and have received great attention.
It would be interesting to study the stability of genetic
regulatory networks with impulses. As one of powerful
methods to analyze the stability, the obtained impulsive
differential inequality will be used to investigate the
stability of genetic regulatory networks in our future
research.
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