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We consider a general elliptic Robin boundary value problem. Using orthogonal Coifman wavelets (Coiflets) as basis
functions in the Galerkin method, we prove that the rate of convergence of an approximate solution to the exact one is
O(2−nN ) in the H1 norm, where n is the level of approximation and N is the Coiflet degree. The Galerkin method
needs to evaluate a lot of complicated integrals. We present a structured approach for fast and effective evaluation of these
integrals via trivariate connection coefficients. Due to the fast convergence rate, very good approximations are found at
low levels and with low Coiflet degrees, hence the size of corresponding linear systems is small. Numerical experiments
confirm these claims.
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1. Introduction

Let Ω be a bounded open set in R
d and ∂Ω its Lipschitz

boundary. The outward normal of Ω is denoted by n.
Consider two differential operators L,B in the forms

Lu = −∇ · (σ · ∇u) + β · ∇u+ μu, (1)

Bu = n · σ · ∇u+ γu, (2)

where σ, β and μ are functions defined over Ω and taking
their values in R

d,d,Rd and R, respectively, and γ is a real
valued function defined over ∂Ω.

Given two functions f : Ω → R and g : ∂Ω → R,
consider the problem of finding a function u : Ω → R

such that { L(u) = f in Ω,
B(u) = g on ∂Ω. (3)

The boundary condition in the problem (3) is called the
third type or the Robin boundary condition. This equation
is applicable in many fields of physics and engineering,
e.g., heat transfer with a convection boundary or advection
diffusion problems.

The Galerkin method is a common technique
used for numerical solution of differential and integral
equations (Bandrowski et al., 2010). In brief, it converts
the boundary value problem to a variational formulation.

Considering a family of basis functions, the variational
formulation is converted to a linear system where its
corresponding matrix is called the stiffness matrix. The
unknowns of the linear system are expansion coefficients
of an approximate solution in linear combination of basis
functions.

A common choice of basis functions are finite
element interpolation functions (Reddy, 2006; Ern and
Guermond, 2004), but application of wavelets in the
Galerkin method (for differential and integral equations)
is too wide (Akbari and Kerayechian, 2012; Saberi et
al., 2012; El-Gamel, 2006; Hashish et al., 2009; Nowak
et al., 2010; Vampa et al., 2010).

Nevertheless, general problems like (3) are rarely
considered. These kinds of problems call for computing
a lot of complicated integrals, called ‘connection
coefficients’, to obtain the linear system; especially when
the variational formulation is not symmetric, we have to
evaluate all entries of the stiffness matrix, not nearly half
the total entries in a symmetric situation. Moreover, the
arising linear systems are ill-conditioned and therefore
the solutions are not stable. Hence the theory does not
coincide with numerical experiments. Nearly all papers
in this area contain several references to preconditioning
techniques to solve ill-conditioned linear systems. As
has been mentioned, we use Coiflets as basis functions
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in the Galerkin method, i.e., for ϕ, a Coiflet of degree
N , and in the level of approximation n, we consider the
family of {ϕ(2nx − i)} as basis functions. The sampling
approximation theorem shows that Coiflets are powerful
in interpolating functions (see Theorem 1). With the
help of this theorem, we find a suitable approximation of
variational formulation which facilitates the proof of the
fast rate of convergence and especially fast evaluation of
stiffness matrix entries.

The fast rate of convergence results in very good
numerical results, at low levels of approximation,
with low degrees of Coiflets, because the size of the
corresponding linear system becomes (relatively) small
and we can use regularization techniques to solve linear
systems (Jensen and Hansen, 2007). These techniques
apply (somehow) dense factorizations of the stiffness
matrix which is not suitable for large scale systems,
in contrast to preconditioning methods, where sparse
(usually deflected) factorizations are considered (Saad,
1996). Instead, regularization techniques are more
accurate and therefore we find stabilized solutions to
ill-conditioned linear systems.

Accurate and fast evaluation of stiffness matrix
entries depends on accurate and fast evaluation of
connection coefficients. A problem that arises in the
wavelet-Galerkin method is evaluation of these values
on the interval (Lin and Zhou, 2001). The highly
oscillatory nature of wavelet basis functions makes
standard numerical quadrature of integrals near the
boundary impractical. This difficulty motivates the
researchers to combine the wavelet-Galerkin method with
the fictitious domain approach. As a result, evaluation
of connection coefficients on the interval converts to
evaluation on R

d, which is a simple and straightforward
process. Moreover, domains with an arbitrary boundary
can be considered, but some additional computations
are imposed (Baccou and Liandrat, 2006; Resnikoff and
Wells, 1998).

With a simple and effective approach, we precisely
evaluate connection coefficients on the interval. Exact
values of Coiflet coefficients, presented by Cerna et al.
(2008), help us to increase the accuracy. With this
facility we do not use the fictitious domain approach and
consequently additional computations are discarded.

Outline. First we give an introduction to Coiflets and
the sampling approximation theorem. In Section 3,
the approximation of variational formulation is proposed
and we prove fast convergence with the rate of
O(2−nN ). Next we define and evaluate trivariate
connection coefficients and we use them to implement the
Coiflet-Galerkin method. Finally, to confirm the theory
and effectiveness of the proposed method, some numerical
experiments are presented.

2. Coiflets

In 1989, R. Coifman suggested the design of orthogonal
wavelet systems with vanishing moments for both scaling
and wavelet functions. They were first constructed by
Daubechies (1992), who named them Coiflets. The
construction of Coiflets and their properties are treated,
e.g., by Cerna et al. (2008), Daubechies (1992), or
Resnikoff and Wells (1998). This section is a summary
of the work of Resnikoff and Wells (1998, Section 9.2.).

Let ϕ, ψ be, respectively, the scaling and the wavelet
functions, where ϕ satisfies the refinable equation,

ϕ(x) =
N1∑

k=N0

akϕ(2x− k). (4)

The compact support of ϕ is [N0, N1].

Let ϕk(x) = ϕ(x − k) and ϕnk(x) = 2
n
2 ϕk(2nx).

Definition 1. An orthonormal wavelet system with
compact support is called a Coiflet system of degree N
if the functions ϕ and ψ satisfy

∫
xlψ(x) dx = 0,

∫
xlϕ(x) dx = δ0l,

l = 0, . . . , N. (5)

Lemma 1. Let ϕ be a continuous Coiflet scaling function
of degree N. Then

∑
k

(x− k)lϕk(x) = δ0l, l = 0, . . . , N. (6)

Moreover, if ϕ is differentiable, then

∑
k

(x− k)lϕ′
k(x) = −δ1l, l = 0, . . . , N. (7)

Remark 1. Henceforth, c is constant, independent of n,
and not necessarily the same at each occurrence.

For Coiflets, the sampling approximation theorem
asserts the exponential approximation in the degree, by
sampling at equidistant points.

Theorem 1. (Sampling approximation theorem) Let Ω be
a domain in R

d and ϕ ∈ Cα(R) a differentiable (α ≥ 1)
Coiflet scaling function of degree N. Let

X = (x1, . . . , xd) ∈ R
d, I = (i1, . . . , id) ∈ Z

d,

Φn
I (X) = ϕni1(x1) · · ·ϕnid

(xd).

If f ∈ CN,1(Ω), then

‖f − Snf‖L2(Ω) ≤ c 2−n(N+1),

‖f − Snf‖H1(Ω) ≤ c 2−nN ,
(8)
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where

Snf(X) = 2−
d
2 n

∑
I∈Λn

f
( i1

2n
, . . . ,

id
2n

)
Φn

I (X). (9)

The index set Λn is

Λn = {I ∈ Z
d | supp (Φn

I (X)) ∩ Ω 	= ∅}. (10)

The constant c depends on ϕ and the smoothness of f.

Henceforth, when we write Snf , the hypothesis of
Theorem 1 is assumed implicitly. A part of the proof of
Theorem 1 is adopted to prove what follows.

Proposition 1. Let f ≥ δ̄ > 0 for a constant δ̄. There exist
n ≥ 0 and a positive constant δ such that Snf ≥ δ > 0.

Here α in ϕ ∈ Cα(R) is called a Sobolev exponent
and shows the smoothness of scaling function. For a
fixed Coiflet degree, different scaling coefficients, aks,
can be found (Resnikoff and Wells, 1998), but they differ
in α. The scaling coefficients and the Sobolev exponent
of our desired Coiflets are presented in Table 1. They are
obtained from the method proposed by Cerna et al. (2008).

3. Coiflet-Galerkin method and error
analysis

In this section we prove the fast rate of convergence.
Henceforth, the following assumptions are made on the
data of Eqn. (3) to confirm the existence of integrals in
variational formulation and its approximation:

σ ∈ [L∞(Ω)]d,d, β ∈ [L∞(Ω)]d,
γ ∈ L∞(∂Ω), μ,∇ · β ∈ L∞(Ω),

f ∈ L2(Ω), g ∈ L2(∂Ω), (11)

Moreover, we consider the operator L in (1) to be
elliptic i.e., a constant σ0 > 0 exists such that for all ξ ∈
R

d the matrix σ satisfies

ξ · σ(X) · ξ =
d∑

i,j=1

σijξiξj ≥ σ0‖ξ‖2
2 a.e. in Ω. (12)

Multiplying L(u) = f by a (sufficiently smooth) test
function v, integrating over Ω, using Green’s formula, and
applying B(u) = g, we obtain the weak formulation,

∫
Ω

∇v · σ · ∇u+
∫

Ω

(β · ∇u)v

+
∫

Ω

μuv +
∮

∂Ω

γuv =
∫

Ω

fv +
∮

∂Ω

gv.

Note that u, v ∈ H1(Ω) is a possible regularity
requirement on u and v for the integrals over Ω to

be meaningful (Ern and Guermond, 2004). Hence we
consider the following problem:

{
Find u ∈ H1(Ω), s.t.
a(u, v) = �(v), ∀ v ∈ H1(Ω), (13)

where the bilinear form a and the linear form l are

a(u, v) =
∫

Ω

∇v · σ · ∇u

+
∫

Ω

(β · ∇u)v +
∫

Ω

μuv +
∮

∂Ω

γuv, (14)

l(v) =
∫

Ω

fv +
∮

∂Ω

gv. (15)

The relation of the problems (3) and (13) and properties
of bilinear form a are presented in the following theorem
(Ern and Guermond, 2004).

Theorem 2. Consider the assumptions (11). If u solves
(13), then L(u) = f a.e. in Ω and B(u) = g a.e. on ∂Ω.

The bilinear form a is continuous on H1(Ω) ×
H1(Ω), i.e., a constant a0 > 0 exists such that, for all
u, v ∈ H1(Ω),

|a(u, v)| ≤ a0‖u‖H1(Ω)‖v‖H1(Ω).

Now consider the assumption (12). Let

μ0 = ess inf
x∈Ω

(μ− 1
2
∇ · β), γ0 = ess inf

x∈∂Ω
(γ +

1
2
n · β).

If μ0 ≥ 0, γ0 ≥ 0 and μ0 + γ0 > 0, then

∃α > 0, ∀u ∈ H1(Ω), a(u, u) ≥ α‖u‖2
H1(Ω), (16)

i.e., a is a coercive bilinear form. Finally the problem
(13) admits a unique solution which results from the Lax–
Milgram lemma.

In summary, considering the hypothesis of
Theorem 2, we find a unique solution for the problem (13)
which satisfies (3). But H1(Ω) is an infinite dimensional
space and it is not possible to set up a practical method
for finding the solution of (13).

Instead, we replace the space H1(Ω) by a finite
dimensional space V n ⊂ C1(Ω̄) ⊂ H1(Ω),

V n = span{Φn
I (X) : X ∈ Ω, I ∈ Λn}, (17)

where Λn is defined in (10).

Remark 2. The support of some of the basis functions
in V n is not a subset of Ω (but it has intersection
with it), hence the basis functions are not orthogonal
on Ω. To benefit the orthogonality of wavelets, it is
needed to consider a region larger than Ω, which is a
motivation of developing fictitious domain methods (see
Section 5), but we do not adopt this approach and hence
lose orthogonality for some of basis functions.
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Table 1. Scaling coefficients and the Sobolev exponent for Coiflets of degree N = 2, 3, 4.

N, α n an n an n an

−1 0.3293321039 0 1.0148202640 1 0.8870036884
N = 2 2 −0.0444607922 3 −0.2620036884 4 0.0444607922

α = 1.776 5 0.0456678961 6 −0.0148202640

−5 0.0520389765 −4 −0.0094758721 −3 −0.2736020527
N = 3 −2 0.0217240312 −1 0.8865184464 0 1.0078625966

α = 2.174 1 0.3366672127 2 −0.0591732556 3 0.0013235641
4 0.0552419573 5 −0.0029461469 6 −0.0161794573

−4 −0.0033518054 −3 −0.0233262230 −2 0.0091906207
−1 0.3911561391 0 1.0043239777 1 0.8550501499

N = 4 2 −0.0421660096 3 −0.3027375302 4 0.0589250368
α = 2.221 5 0.0912436455 6 −0.0344902265 7 −0.0102986573

8 0.0075684064 9 −0.0010875239

Let un, vn ∈ V n and Snσ and Snβ be a matrix and
a vector with entries

[Snσpq ], [Snβp], p, q = 1, . . . , d. (18)

We proposed the following approximation of
operators a, l in (13):

an(un, vn) =
∫

Ω

∇vn · Snσ · ∇un +
∫

Ω

(Snβ · ∇un)vn

+
∫

Ω

Snμunvn +
∮

∂Ω

Snγ unvn, (19)

ln(vn) =
∫

Ω

Snfvn +
∮

∂Ω

Sng vn. (20)

Hence we considered
{

Find un ∈ V n ⊂ H1(Ω), s.t.
an(un, vn) = ln(vn), ∀vn ∈ V n,

(21)

and we aim to prove ‖u − un‖H1(Ω) ≤ c2−nN , where u
solves (3). Since ‖u − Snu‖H1(Ω) ≤ c2−nN , it suffices
to obtain

‖un − Snu‖H1(Ω) ≤ c2−nN , (22)

and then apply the triangle inequality. We begin with an
immediate result of Proposition 1.

Corollary 1. Let L be an elliptic operator. Then there
exists n ≥ 0 and σn

0 > 0 such that, for all ξ ∈ R
d,

ξ·Snσ·ξ =
d∑

i,j=1

Snσijξiξj ≥ σn
0 ‖ξ‖2

2 a.e. in Ω. (23)

Moreover, the decreasing sequence {σn
0 } converges to σ0.

Applying Proposition 1 and adopting the proof of
Theorem 2, we obtain what follows.

Theorem 3. Let

μn
0 = ess inf

x∈Ω
(Snμ− 1

2
∇ · Snβ),

γn
0 = ess inf

x∈∂Ω
(Snγ +

1
2
n · Snβ).

(i) There exists n ≥ 0 such that μn
0 ≥ 0, γn

0 ≥ 0, and
μn

0 + γn
0 > 0.

(ii) The sequences {μn
0}, {γn

0 } converge to μ0, γ0, re-
spectively.

(iii) There exists n ≥ 0 such that an becomes a coercive
operator, i.e., a constant αn > 0 exists such that

∀un ∈ V n, an(un, un) ≥ αn‖un‖2
H1(Ω), (24)

and sequence {αn} converges to α.

To obtain (22), we prove the closeness of the
operators an and a.

Proposition 2. Let u ∈ H1(Ω) and vn ∈ V n. Then

∣∣∣
∫

Ω

∇vn · Snσ · ∇Snu−∇vn · σ · ∇u
∣∣∣

≤ c2−nN‖vn‖H1(Ω), (25)∣∣∣
∮

∂Ω

Snγ Snu vn − γ u vn

∣∣∣ ≤ c2−nN‖vn‖H1(Ω). (26)

Proof. For i, j = 1, . . . , d, the Schwartz inequality yields

∣∣∣〈∂Snu

∂xi
Snσij − ∂u

∂xi
σij ,

∂vn

∂xj
〉
∣∣∣

≤ ‖vn‖H1(Ω)‖∂S
nu

∂xi
Snσij − ∂u

∂xi
σij‖L2(Ω).

Since Snu ∈ C1(Ω̄) (hence its partial derivatives are
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bounded on Ω̄), by the triangle inequality we obtain

‖∂S
nu

∂xi
Snσij − ∂u

∂xi
σij‖L2(Ω)

≤ ‖∂S
nu

∂xi
Snσij − ∂Snu

∂xi
σij‖L2(Ω)

+ ‖∂S
nu

∂xi
σij − ∂u

∂xi
σij‖L2(Ω)

≤ ‖∂S
nu

∂xi
‖L∞(Ω)‖Snσij − σij‖L2(Ω)

+ ‖σij‖L∞(Ω)‖∂S
nu

∂xi
− ∂u

∂xi
‖L2(Ω)

≤ c2−nN , i, j = 1, . . . , d.

Summation on i and j proves (25). To establish (26),
apply the trace theorem,

‖v‖L2(∂Ω) ≤ c ‖v‖H1(Ω),

and substitute L2(Ω) with L2(∂Ω). The same arguments
give the desired result. �

Considering (25) and (26), it is easy to prove what
follows.

Corollary 2. If the contributed functions are smooth
enough, then for all u ∈ H1(Ω)

|an(Snu, vn) − a(u, vn)| ≤ c2−nN‖vn‖H1(Ω), (27)

|ln(vn) − l(vn)| ≤ c2−nN‖vn‖H1(Ω) (28)

for a function vn ∈ V n.

Corollary 2 prepare us to state the main result.

Theorem 4. The sequence un of solutions of (21) con-
verges to u, the solution of (3), with the rate of O(2−nN ),
i.e.,

‖u− un‖H1(Ω) ≤ c2−nN .

Proof. Since an is bilinear, the relations (27) and (28)
give

an(Snu− un, vn) = an(Snu, vn) − a(u, vn)
+ l(vn) − ln(vn)

≤ c 2−nN‖vn‖H1(Ω).

Replace vn with Snu− un ∈ V n and apply the coercivity
of an

αn‖Snu− un‖2
H1(Ω) ≤ an(Snu− un, S

nu− un)

≤ c 2−nN‖Snu− un‖H1(Ω).

Thus we obtain (22). Recall that {αn} converges to α.
The triangle inequality gives

‖un − u‖H1(Ω) ≤‖un − Snu‖H1(Ω)

+ ‖Snu− u‖H1(Ω) ≤ c 2−nN .

�

Since un ∈ V n, we let

un(X) := 2−
d
2 n

∑
I∈Λn

un
I Φn

I (X). (29)

The unknowns {un
I }I∈Λn should be determined from

(21) by letting vn := Φn
J , J ∈ Λn,

∑
I∈Λn

un
I an(Φn

I ,Φ
n
J) = 2

d
2 n ln(Φn

J ), J ∈ Λn. (30)

Equation (30) is a linear system and its matrix
is positive definite; see the following theorem, which
is proved in any finite element book (e.g. Ern and
Guermond, 2004).

Theorem 5. Let A and b be a matrix and a vector, re-
spectively, with entries

AJI := an(Φn
I ,Φ

n
J), bJ := 2

d
2 n ln(Φn

J ), (31)

for I, J ∈ Λn. Then un in (29) solves (21) iff Un :=
{un

I }I∈Λn solves Ax = b. Since an is coercive, the
stiffness matrix A is positive definite and therefore non-
singular.

4. Connection coefficients on the interval

Let ϕ be a Coiflet of degree N , with compact support
[N0, N1], and let

N2 = N1 −N0 − 1, d1, d2 ∈ {0, 1}, d1 + d2 ≤ 1.

For a level of approximation 2n ≥ N2 and for i, j, k ∈ Z,
we want to evaluate the values of

Γn,d1,d2
ijk :=

∫ 2n

0

ϕ
(d1)
i (x)ϕ(d2)

j (x)ϕ(d2)
k (x) dx, (32)

which are called trivariate connection coefficients. These
values enhance the precision and speed of the computation
for obtaining the linear system. The values of (32)
are combinations of ordinary and boundary connection
coefficients. The former are defined as follows:

Υd1,d2
ij :=

∫
ϕ(d1)(x)ϕ(d2)

i (x)ϕ(d2)
j (x) dx,

i, j ∈ Z, |i|, |j|, |i− j| ≤ N2.

(33)

For other values of i, j, there is no intersection between
the support of integrands, so they vanish. Methods for
evaluating these values for an arbitrarily wavelet scaling
function are proposed in various references (e.g., Latto et
al., 1992) hence we assume they are definite values.

We define boundary connection coefficients as

Λd1,d2
ijk :=

∫ ∞

0

ϕ
(d1)
i (x)ϕ(d2)

j (x)ϕ(d2)
k (x) dx,

|i− j|, |i− k|, |j − k| ≤ N2, i, j, k ≥ 1 −N1.

(34)
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For other values of i, j, k, there is no intersection
between the support of integrands or/and interval [0,∞),
so they vanish.

If r = max(i, j, k) ≥ −N0, then the support of
integrand ϕr in (34), is a subset of [0,∞), and therefore
the bounds of integral in (34) extend to R. In this case a
simple change of variation t = x− i gives

Λd1,d2
ijk =

∫
ϕ(d1)(t)ϕ(d2)

j−i (t)ϕ(d2)
k−i (t) dt

= Υd1,d2
j−i,k−i,

(35)

where Υd1,d2
j−i,k−i are known values.

Hence the values of Λd1,d2
ijk are unknown only for

i, j, k = 1 −N1, . . . ,−N0 − 1, and to evaluate them, we
replace (4) into (34) to obtain a linear system,

Λd1,d2
ijk

=
∫ ∞

0

2d1
∑

p

apϕ
(d1)
2i+p(2x) · 2d2

∑
q

aqϕ
(d2)
2j+q(2x)

· 2d2
∑

r

arϕ
(d2)
2k+r(2x) dx

= 2d0
∑
p,q,r

apaqar

∫ ∞

0

ϕ
(d1)
2i+p(x)ϕ

(d2)
2j+q(x)ϕ

(d2)
2k+r(x) dx

= 2d0

N1∑
p,q,r=N0

apaqar Λd1,d2
2i+p,2j+q,2k+r , (36)

where d0 = d1 + 2d2 − 1. A serious problem is that the
nonhomogeneous linear system (36) may be singular. By
reduction of dependent values we may find nonsingular
systems.

1. If d1 = d2 = 0, then Λ0,0
ijk = Λ0,0

jki = Λ0,0
kij , and hence

we need to evaluate Λ0,0
ijk only for i ≥ j ≥ k. The

resulting linear system is nonsingular.

2. If d1 = 1, d2 = 0, then integration by part gives

Λ1,0
ijk + Λ1,0

jik + Λ1,0
kji = −(ϕiϕjϕk)(0),

Λ1,0
iii = −1

3
ϕ3

i (0).
(37)

These equations with Λ1,0
ijk = Λ1,0

ikj show that we need

to evaluate Λ1,0
ijk only for i ≥ j ≥ k and j ≥ i ≥ k.

The resulting linear system is nonsingular, again.

3. If d1 = 0, d2 = 1, then Λ0,1
ijk = Λ0,1

ikj and we cannot
further reduce the unknowns. The resulting linear
system is singular and we should add some (not
necessarily nonhomogeneous) constraints to obtain
the unique solution. Commonly, these constraints are

constructed by using moment conditions (Romine
and Peyton, 1997; Lin and Zhou, 2001). For arbitrary
i, s, Eqn. (7) yields

ϕi(x) ·
∑

j

jsϕ′
j(x) ·

∑
k

ϕ′
k(x) = 0

⇒
∑
jk

jsΛ0,1
ijk = 0.

Now different constraints may be added to settle the
rank deficiency.

As yet, we have evaluated (and saved) the values
of (33) and (34). To evaluate (32), first we notice that
Γn,d1,d2

ijk can be nonzero only for

i, j, k = 1 −N1, . . . , 2n −N0 − 1,
|i− j|, |i− k|, |j − k| ≤ N2.

(38)

Considering 2n ≥ N2, we divide the feasible region (38)
into three separate parts:

1. i, j, k = 1 − N1, . . . ,−N0 − 1. Since the support
of ϕ(d1)

i is a subset of [−N2, 2n], the upper bound
of integral in (32) is ineffective. Consequently,
Γn,d1,d2

ijk = Λd1,d2
ijk .

2. i ∨ j ∨ k = −N0, . . . , 2n − N1. Without loss of
generality, consider −N0 ≤ i ≤ 2n −N1. Since the
support of ϕ(d1)

i is a subset of [0, 2n], the integral
bounds of (32) are ineffective and a simple change of
variation gives

Γn,d1,d2
ijk = Υd1,d2

j−i,k−i.

3. i, j, k = 2n −N1 + 1, · · · , 2n −N0 − 1. A change
of variation with t = x+ 2n, gives

Γn,d1,d2
i−2n,j−2n,k−2n

=
∫ 2n+1

2n

ϕ
(d1)
i (x)ϕ(d2)

j (x)ϕ(d2)
k (x) dx,

and therefore

Γn,d1,d2
ijk + Γn,d1,d2

i−2n,j−2n,k−2n

=
∫ 2n+1

0

ϕ
(d1)
i (x)ϕ(d2)

j (x)ϕ(d2)
k (x) dx

=
∫
ϕ

(d1)
i (x)ϕ(d2)

j (x)ϕ(d2)
k (x) dx

= Υd1,d2
j−i,k−i. (39)

Notice that, for 2n −N1 + 1 ≤ i ≤ 2n −N0 − 1, the
support of ϕ(d1)

i is a subset of [0, 2n+1]. Moreover,
(i− 2n, j − 2n, k − 2n) lies in Region 1. Therefore,

Γn,d1,d2
ijk = Υd1,d2

j−i,k−i − Λn,d1,d2
i−2n,j−2n,k−2n .
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We summarize the above discussion in a simple function
code. Henceforth n is omitted for simplicity.

function Γd1,d2(i, j, k){
p = min(i, j, k); q = max(i, j, k);

1 if (p < −N1 or q > 2n −N0 or q − p > N2)
return 0;

2 if (q < −N1)
return Λd1,d2

ijk ;
3 if (p > 2n −N1)

return Υd1,d2
j−i,k−i − Λn,d1,d2

i−2n,j−2n,k−2n ;
4 return Υd1,d2

j−i,k−i;
}

Lines 1 to 4 show that (i, j, k) lies outside of the
feasible region (38), inside Region 1, Region 3 and
Region 2, respectively. In next section we show that how
these values help to construct the linear system (31).

5. Implementation of the Coiflet-Galerkin
method

The fictitious domain approach is a usual way of treating
boundary value problems (Baccou and Liandrat, 2006;
Glowinski et al., 2006). In this method, the boundary
value problem on Ω is extended to a linear variational
problem involving a parameter ε in a rectangular
region, say, Ω̂ containing Ω, involving simple boundary
conditions. A solution to the variational problem in Ω̂
restricted to Ω will converge on Ω to a solution of the
main boundary value problem, as the penalty parameter
ε converges to zero (Resnikoff and Wells, 1998).

The advantage is that the numerical treating of a
boundary value problem will be (nearly) independent of
the nature of the boundary of Ω, in contrast to many
finite element methods whose code must be adapted to
the shape of the boundary (Resnikoff and Wells, 1998).
The disadvantage is that the computational cost increases,
specially when Ω has a simple shape. We do not adopt this
approach, because we want to investigate the solution on
Ω = (0, 1)d and our approximation space V n is smaller
than the fictitious domain approach.

For simplicity, we let d = 2 and the result can be used
for d = 1, 3 with obvious modifications especially for
boundary integrals. Henceforth Ω = (0, 1)2. The solution
is presented in (29) and should be determined by the linear
system (30), which we construct soon. The index set Λn

is (see (10))

Λn = {(i, j) ∈ Z
2 | i, j = 1 −N0, . . . , 2n −N1 − 1},

and we use the following notation for (30):

un
I = un

ij , X = (x1, x2) = (x, y),

Φn
I (X) =ϕni(x)ϕnj(y), Φn

J(X) = ϕnk(x)ϕnl(y).

Frequently, the following three integrals appear in
computations:

∫ 1

0

ϕnk(t)
d
dt
ϕnj(t)

d
dt
ϕni(t) dt = 2

5
2n Γ01

kji,

∫ 1

0

ϕnk(t)ϕni(t)
d
dt
ϕnj(t) dt = 2

3
2n Γ10

jki,

∫ 1

0

ϕnk(t)ϕnj(t)ϕni(t)dt = 2
n
2 Γ00

kji.

It is obvious that

∂

∂x
Φn

I = ϕnj(y)
d
dx
ϕni(x),

∂

∂y
Φn

J = ϕnk(x)
d
dy
ϕnl(y).

5.1. Computation of the stiffness matrix. As for (19),
the first integral of an(Φn

J ,Φ
n
I ) is

∫
Ω

∇Φn
J · Snσ · ∇Φn

I dX

=
2∑

p,q=1

∫
Ω

∂

∂xq
Φn

J (X) Snσpq(X)
∂

∂xq
Φn

I (X) dX.

(40)

Let

Snσpq(x, y) = 2−n
∑
rs

σpq
nrsϕnr(x)ϕns(y),

σpq
nrs := σpq

( r

2n
,
s

2n

)
, p, q = 1, 2,

to obtain∫
Ω

Snσ11(X)
∂

∂x
Φn

I (X)
∂

∂x
Φn

J(X) dX

=
∫

Ω

2−n
∑
rs

σ11
nrsϕnr(x)ϕns(y)

· ϕnj(y)
d
dx
ϕni(x) · ϕnl(y)

d
dx
ϕnk(x) dxdy

= 2−n
∑
rs

σ11
nrs

∫ 1

0

ϕnr(x)
d
dx
ϕni(x)

d
dx
ϕnk(x)dx

·
∫ 1

0

ϕns(y)ϕnj(y)ϕnl(y)dy

= 22n
∑
rs

σ11
nrsΓ

01
rikΓ00

sjl.

Now it is obvious that∫
Ω

Snσ21(X)
∂

∂x
Φn

I (X)
∂

∂y
Φn

J (X) dX

= 22n
∑
rs

σ21
nrsΓ

10
irkΓ10

lsj .



24 H. Akbari
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Fig. 1. Boundary condition setting.

Other integrals in (40) are computed similarly. Hence (40)
becomes

∫
Ω

∇Φn
J · Snσ · ∇Φn

I dX

= 22n
∑
rs

(
σ11

nrsΓ
01
rikΓ00

sjl + σ21
nrsΓ

10
irkΓ10

lsj

+ σ12
nrsΓ

10
kirΓ

10
jls + σ22

nrsΓ
00
rikΓ01

sjl

)
.

(41)

Remark 3. A wide range of variation of r, s = 1 −
N1, . . . , 2n − N0 − 1 is not a big problem. Relations of
the feasible region (38) imply that, for a fixed test function
vn(X) = ϕnk(x)ϕnl(y), the index r can vary only in the
interval,

[max(1 −N1, k −N2),min(2n −N0 − 1, k +N2)].

Similar results for other indices are obtained.
Now evaluation of other integrals over Ω in an is

easy,

∫
Ω

(Snβ · ∇Φn
I )Φn

J dX

= 2n
∑
rs

(
β1

nrsΓ
10
irkΓ00

lsj + β2
nrsΓ

00
irkΓ10

jls

)
, (42)

∫
Ω

Snμ Φn
I Φn

J dX =
∑
rs

μnrsΓ00
irkΓ00

lsj , (43)

where

μnrs := μ
( r

2n
,
s

2n

)
,

βp
nrs := βp

( r

2n
,
s

2n

)
, p = 1, 2.

To treat the boundary integrals in (19), let ∂Ω =⋃4
i=1 ∂iΩ, as illustrated in Fig. 1. It is clear that

∮
∂Ω

=
4∑

i=1

∮
∂iΩ

.

On ∂1Ω, y = 0 and 0 ≤ x ≤ 1. Hence∮
∂1Ω

Snγ1 Φn
I Φn

J ds

=
∫ 1

0

Snγ1(x)Φn
I (x, 0)Φn

J(x, 0) dx

=
∫ 1

0

2−
n
2

∑
r

γ1
nrϕnr(x)

· ϕni(x)ϕnj(0) · ϕnk(x)ϕnl(0) dx

=2n
∑

r

γ1
nr ζ

0
jsΓ

00
kir,

where

ζm
kl := ϕk(2nm)ϕl(2nm), γ1

nr := γ1
( r

2n

)
.

Hence the boundary integral of an is∮
∂Ω

Snγ Φn
I Φn

J ds

= 2n
∑

r

(
γ1

nr ζ
0
jsΓ

00
kir + γ2

nr ζ
1
jsΓ

00
kir

+ γ3
nr ζ

0
ikΓ00

jsl + γ4
nr ζ

1
ikΓ00

jsl

)
. (44)

Summation of (41)–(44) gives AJI = an(Φn
I ,Φ

n
J ).

5.2. Computation of the right-hand side. First we
define

ρij =
∫ 2n

0

ϕi(x)ϕj(x) dx. (45)

A simple way of evaluating (45) is

1 =
∑

k

ϕk(x) ⇒ ρij =
∑

k

Γ00
ijk.

Now we let

fnrs := f
( r

2n
,
s

2n

)
, gp

nr := gp
( r

2n

)
,

p = 1, . . . , 4,

and easily obtain∫
Ω

(Snf)Φn
J dX = 2−n

∑
rs

fnrs ρrk ρls,

∮
∂Ω

(Sng)Φn
J ds

=
∑

r

(
g1

nrϕs(0) ρkr + g2
nrϕs(2n) ρkr

+ g3
nrϕr(0) ρks + g4

nrϕr(2n) ρks

)
.

Summation of the two previous equations gives
ln(Φn

J ) and bJ = 2nln(Φn
J) in (31). Now we are ready

to solve some problems to check the effectiveness of the
proposed method.
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Table 2. Relative error norms and the size of linear systems in Example 1.

N n RE(un)L2 RE(Snu)L2 RE(un)H1 RE(Snu)H1 DA(un)∞ size

5 1.1487e-3 2.6629e-4 3.7302e-3 3.7466e-3 2.2969e-3 38
2 6 1.3467e-4 3.1579e-5 7.2441e-4 7.2736e-4 2.5615e-4 70

7 1.6696e-5 3.9548e-6 1.0597e-4 1.0673e-4 3.1272e-5 134

5 1.5956e-4 1.0358e-4 3.4494e-3 3.5158e-3 4.9805e-4 42
3 6 7.6817e-6 6.0994e-6 5.7870e-4 5.8039e-4 2.0534e-5 74

7 4.0643e-7 3.8998e-7 6.6928e-5 6.6937e-5 1.0612e-6 138

5 3.6889e-2 1.0198e-5 1.1737e-2 3.1656e-4 6.8801e-2 44
4 6 7.0988e-7 2.9025e-7 2.5253e-5 2.7234e-5 1.7135e-6 76

7 2.6675e-8 9.6940e-9 1.3800e-6 1.4250e-6 6.0915e-8 140

Table 3. Relative error norms and the size of linear systems in Example 2.

N n RE(un)L2 RE(Snu)L2 RE(un)H1 RE(Snu)H1 DA(un)∞ size

3 3.4383e-3 6.1301e-4 2.4236e-2 5.9185e-3 1.0078e-2 196
2 4 2.9695e-4 7.2015e-5 3.1318e-3 9.9353e-4 9.3381e-4 483

5 2.9728e-5 8.7108e-6 3.2134e-4 1.6362e-4 9.0564e-5 1444

3 7.4172e-4 6.0635e-4 6.4924e-3 1.2440e-2 1.8285e-3 324
3 4 5.4123e-5 3.0341e-5 9.2449e − 4 1.2492e-3 1.4012e-4 675

5 4.2809e-6 1.7356e-6 1.2448e − 4 1.4232e-4 1.1988e-5 1763

4 4 1.0277e-5 1.3151e-6 5.0786e − 5 9.3092e-5 2.6870e-5 783
5 4.1198e-7 4.9999e-8 3.6906e − 6 6.6886e-6 1.1863e-6 1935

6. Experimental results

In this section we present the results of numerical
experiments in which we compute solutions of Eqn.
(3), subject to the Robin boundary condition. In the
previous section we obtained a linear system Ax = b
for unknowns Un = {un

I } in approximate solution un

in (29). Moreover, Snu in (9), is another approximation
of u, which we use for comparison study. Because Snu
is an approximate function, i.e., considering the exact
function u we obtain it, and due to Theorem 1 the high
quality of approximation is obvious. We emphasize the
H1 error norm, because it compares two functions and
their behaviour. In the tables we illustrate the following:

1. RE(un)L2 . Relative L2 error norm of un; also for
Snu in RE(Snu)L2 .

2. RE(un)H1 . Relative H1 error norm of un; also for
Snu in RE(Snu)H1 .

3. DA(un)∞. Discrete absolute error, i.e., letting h =
1/256,we evaluate

max
i=0,...,256

|un(ih) − u(ih)| in R

max
i,j=0,...,256

|un(ih, jh) − u(ih, jh)| in R
2.

4. size. Size of vector Un.

Example 1. We consider a one dimensional problem,{ −(σu′)′ + βu′ + μu = f, x ∈ (0, 1),
σu′ + γu = g, x = 0, 1, (46)

with data functions,

σ(x) =
1 + 2 cos(x) − ln(

√
1 + x)

1 + x2
,

β(x) = −atan(2 x− 1) − esin(πx/2),

μ(x) =
cos (x)
1 + 2 x

+ x− 1, γ(1) = 2, γ(0) = 1.

Try to find the right-hand side functions f, g, if the exact
solution is

u(x) =
e−x2

cos (1 − x/2)
− 2 x tanh (x) + sin (3 π x) .

For levels of approximations n = 5, 6, 7 and with
Coiflets of degrees N = 2, 3, 4, we construct and solve
the linear system. The condition number of linear systems
is of order O(108), O(1010) and O(1016) for N = 2, 3
and 4, respectively. Hence the solutions for N = 2, 3
are stable, but instability for N = 4 needs to apply
a regularization technique. We use Matlab routines of
Hansen (1994). The results are illustrated in Table 2, and
we find that all H1 error norms of un are less than Snu,
except N = 4, n = 5, where its corresponding condition
number is of order O(1022). Notice the size of linear
systems in size. �

Example 2. Now we consider a tow-dimensional
problem. As we have mentioned, the size of stiffness
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matrix is (2n + N2)2 × (2n + N2)2, and hence the
increment in n considerably enlarges the linear system.

Consider the problem (3) on the domain of Fig. 1,
with the following data functions:

σ(x, y) =
[

exp(y − x) 1 + xy
2 − xy cos(x+ y)

]
,

β(x, y) =
[
x− y
y − x

]
, μ(x, y) = cos(y) + cosh(x),

γ1(x) = 1 + x, γ2 = γ3 = γ4 = 0.

Find the right-hand side functions f and g, the exact
solution is

u(x, y) = exp(x2 − y) − sin(x)
(1 + x+ y2)

.

For low levels of approximations n = 3, 4, 5 and with
Coiflets of degrees N = 2, 3, 4, we construct and solve
the linear system with direct methods or regularization
techniques. The condition number of linear systems is of
order O(1018), O(1022) and O(1032) for N = 2, 3 and
4, respectively. The results are illustrated in Table 3 and
remarkable values are presented in bold-face. It should
be noted that ‖ · ‖H1(Ω) is a large norm, i.e., it is the
summation of the L2 norm of a function and all of its
partial derivatives.

7. Conclusion

With low degree Coiflets (N = 2, 3, 4) and in low scales
(n = 3, . . . , 6), we obtained a fine approximation to
the exact solution of (3). The size of linear systems
was considerably small and we could easily apply
regularization techniques for them. The fast rate of
convergence helped to keep n small enough, and exact
evaluation of trivariate connection coefficients caused to
construct linear systems fast and effectively. Experimental
results confirmed the proposed approach.

References
Akbari, H. and Kerayechian, A. (2012). Coiflet-Galerkin method

for solving second order BVPs with variable coefficients in
three dimensions, Numerical Algorithms 61(4): 681–698,
DOI: 10.1007/s11075-012-9558-x.

Baccou, J. and Liandrat, J. (2006). Definition and analysis of a
wavelet fictitious domain solver for the 2-D heat equation
on a general domain, Mathematical Models and Methods
in Applied Sciences 16(6): 819–845.

Bandrowski, B., Karczewska, A. and Rozmej, P. (2010).
Numerical solutions to integral equations equivalent to
differential equations with fractional time, International
Journal of Applied Mathematics and Computer Science
20(2): 261–269, DOI: 10.2478/v10006-010-0019-1.

Cerna, D., Finek, V. and Najzar, K. (2008). On the exact values
of coefficients of Coiflets, Central European Journal of
Mathematics 6(1): 159–169.

Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM,
Philadelphia, PA.

El-Gamel, M. (2006). A wavelet-Galerkin method for a
singularly perturbed convection-dominated diffusion
equation, Applied Mathematics and Computation 181(2):
1635–1644.

Ern, A. and Guermond, J. (2004). Theory and Practice of Finite
Elements, Springer, New York, NY.

Glowinski, R., Pan, T.W. and Periaux, J. (2006). Numerical
simulation of a multi-store separation phenomenon: A
fictitious domain approach, Computer Methods in Applied
Mechanics and Engineering 195(41): 5566–5581.

Hansen P.C. (1994). Regularization Tools: A Matlab
package for analysis and solution of discrete
Ill-posed problems, Numerical Algorithms 6: 1–35,
http://www.mathworks.com/matlabcentral/
fileexchange/52.

Hashish, H., Behiry, S.H., Elsaid, A. (2009). Solving the
2-D heat equations using wavelet-Galerkin method with
variable time step, Applied Mathematics and Computation
213(1): 209–215.

Jensen, T.K. and Hansen, P.C. (2007). Iterative regularization
with minimum-residual methods, BIT Numerical Mathe-
matics 47(1): 103–120.

Latto, A., Resnikoff, H. and Tenenbaum, E. (1992).
The evaluation of connection coefficients of compactly
supported wavele, Proceedings of the Workshop on
Wavelets and Turbulence, Princeton, NJ, USA, pp. 76–89.

Lin, E. and Zhou, X. (2001). Connection coefficients on an
interval and wavelet solution of Burgers equation, Jour-
nal of Computational and Applied Mathematics 135(1):
63–78.

Lin, E.and Zhou, X. (1997). Coiflet interpolation and
approximate solutions of partial differential equations, Nu-
merical Methods for Partial Differential Equations 13(4):
303–320.

Nowak, Ł.D., Pasławska-Południak, M. and Twardowska, K.
(2010). On the convergence of the wavelet-Galerkin
method for nonlinear filtering, International Journal of Ap-
plied Mathematics and Computer Science 20(1): 93–108,
DOI: 10.2478/v10006-010-0007-5.

Reddy, J. (2006). An Introduction to the Finite Element Method,
3rd Edn., McGraw Hill, New York, NY.

Resnikoff, H. and Wells, R.O. Jr (1998). Wavelet Analysis: The
Scalable Structure of Information, Springer-Verlag, New
York, NY.

Romine, C.H. and Peyton, B.W. (1997). Computing connection
coefficients of compactly supported wavelets on bounded
intervals, Technical Report ORNL/TM-13413, Computer
Science and Mathematical Division, Mathematical
Sciences Section, Oak Ridge National Laboratory, Oak
Ridge, TN, http://citeseer.ist.psu.edu/
romine97computing.html.

http://www.mathworks.com/matlabcentral/
fileexchange/52
http://citeseer.ist.psu.edu/
romine97computing.html


Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs 27

Saad, Y. (1996). Iterative Methods for Sparse Linear Systems,
PWS Publishing Company.

Saberi-Nadjafi, J., Mehrabinezhad, M. and Akbari, H. (2012).
Solving Volterra integral equations of the second kind
by wavelet-Galerkin scheme, Computers and Math-
ematics with Application 63(11): 1536–1547, DOI:
10.1016/j.camwa.2012.03.043.

Vampa, V., Martin, M. and Serrano, E. (2010). A hybrid method
using wavelets for the numerical solution of boundary
value problems on the interval, Applied Mathematics and
Computation 217(7): 3355–3367.

Hani Akbari is currently a post doctoral re-
searcher at the School of Energy Resources, Uni-
versity of Wyoming, US. He received his Ph.D.
in numerical analysis from the Ferdowsi Univer-
sity of Mashhad, Iran. His research field is sci-
entific computation for large scale problems of
uncertainly quantification and numerical solution
of partial differential equations.

Received: 24 February 2012
Revised: 11 June 2012


	Introduction
	Coiflets
	Coiflet-Galerkin method and error analysis
	Connection coefficients on the interval
	Implementation of the Coiflet-Galerkin method
	Computation of the stiffness matrix
	Computation of the right-hand side

	Experimental results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




