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In the paper an adaptive linear control system structure with modal controllers for a MIMO nonlinear dynamic process is
presented and various methods for synthesis of those controllers are analyzed. The problems under study are exemplified by
the synthesis of a position and yaw angle control system for a drillship described by a 3DOF nonlinear mathematical model
of low-frequency motions made by the drillship over the drilling point. In the proposed control system, use is made of a
set of (stable) linear modal controllers that create a linear adaptive controller with variable parameters tuned appropriately
to operation conditions chosen on the basis of two measured auxiliary signals. These are the ship’s current forward speed
measured in reference to the water and the systematically calculated difference between the course angle and the sea current
(yaw angle). The system synthesis is carried out by means of four different methods for system pole placement after having
linearized the model of low-frequency motions made by the vessel at its nominal “operating points” in steady states that are
dependent on the specified yaw angle and the sea current velocity. The final part of the paper includes simulation results of
system operation with an adaptive controller of (stepwise) varying parameters along with conclusions and final remarks.
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1. Introduction

Control of multivariable dynamic plants is still the subject
of studies and is the source of many unresolved issues,
especially those concerning nonlinear systems. Nonlinear
control systems are commonly encountered in many
different areas of science and technology. In particular,
problems difficult to solve arise in motion and/or position
control of various vessels, like drilling platforms and
ships, sea ferries, special purpose ships as well as
submarines. Complex motions and/or complex-shaped
bodies moving in the water, and in the case of ships also at
the boundary between water and air, give rise to resistance
forces dependent in a nonlinear way on velocities and
positions, thus causing the floating bodies to become
strongly nonlinear dynamic plants.

In general, there are two basic approaches to solve
the control problem for nonlinear plants. The first one,
called “nonlinear”, consists in synthesizing a nonlinear
controller that would meet certain requirements over
the entire range of control signals variability. The
second approach, called “linear”, consists in designing
an adaptive linear controller with varying parameters to

be systematically tuned up in keeping with changing
plant operating conditions determined by system nominal
“operating points”. Nominal “operating points” are
usually defined in steady states of the plant; however,
these also can be determined in its transient regimes.

The “nonlinear” approach may include techniques
based on the second Lyapunov method, for example,
by employing the sequential backstepping procedure
(Fossen and Strand, 1999; Witkowska et al., 2007)
or methods that consist in system linearizing
through a plant output (or state) related nonlinear
feedback, supported by feedforward compensators
with characteristics being inverse to nonlinear
functions contained in the plant description (Fabri
and Kadrikamanathan, 2001; Zwierzewicz, 2008). In the
case when nonlinear descriptions of the plant are not
known accurately, advantage can be taken of methods
employing artificial intelligence techniques, for example,
those using neural approximators (Tzirkel-Hancock and
Fallside, 1992; Fabri and Kadrikamanathan, 2001; Pedro
and Dahunsi, 2011). Substantial difficulties encountered
in employing this “nonlinear” approach are due to the fact
that control plants are multivariable.
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However, in practice, the second approach, called
“linear”, is more convenient to use, since advantage can be
taken of already proven procedures and commonly known
mathematical methods employed in the design (synthesis)
of linear controllers. Here, linearization of nonlinear
MIMO plants is a prerequisite for the methods to be
employed. The most frequently used way of linearization
consists in taking a Taylor series expansion of a nonlinear
function and then taking only the first order term of
the expansion. After linearization, local linear models
are obtained, valid for small deviations from “operating
points” of the plant.

The obtained linear models with known parameters
or those to be identified are the starting point for applying
many known methods for linear control system design.
These can be both traditional ones to design classic PID
control systems, although being difficult to implement in
the case of MIMO plants, and relatively simple ones to
synthesize systems with multivariable modal controllers
(or possibly LQR/LQG) based on the Luenberger observer
or the Kalman filter (Antoniou and Vardulakis, 2005;
Bańka, 2007; Kaczorek, 1992; Wolovich, 1974). Since
properties exhibited by linear models at different (distant)
“operating points” of the plant may substantially vary, the
controllers used should be either robust (usually of a very
high order, as has been observed by Gierusz (2005)) or
adaptive, switched (Zhai and Xu, 2010; Tomera, 2010;
Bańka et al. 2010b; 2011a) or with parameters being tuned
in the process of operation (Aström and Wittenmark,
1995).

If the description of the nonlinear plant is known,
then it is possible to make use of systems with linear
controllers prepared earlier for possibly all “operating
points” of the plant. Such controllers can create either a set
of controllers with switchable outputs from among which
one controller designed for the given system “operating
point” (Bańka et al., 2010a) is chosen, or multi-controller
structures whose control signal components are formed
as weighted means of outputs of a selected controller
group (fuzzy cluster) according to Takagi–Sugeno–Kang
rules. The weights could be proportional to the degree of
their membership of appropriately fuzzified areas of plant
outputs or other auxiliary measured signals (Tatjewski,
2007).

What all the above-mentioned multi-controller
structures, where not all controllers at the moment are
utilized in a closed-loop system, have in common is
that all controllers employed in these structures must be
stable by themselves, as opposed to a single adaptive
controller with varying (tuned) parameters. This means
that system strong stability conditions should be fulfilled
(Vidyasagar, 1985).

In the paper an adaptive modal MIMO controller
with (stepwise) varying parameters in the process of
operation is studied. As already mentioned, the controller

can also be physically realized as a multi-controller
structure of (stable) modal controllers with switchable
outputs. In such a case, the number of controllers should
be limited to a cluster of controllers with fewer number
of controllers. This cluster should be designed for the
near surroundings of the current operating point of
the system. The remaining controllers, in such a case,
could be stored on the disk or redesigned in on-line
mode adequately to the needs. The modal controllers
making up the adaptive (multi-controller) control system
considered will be designed for all possible “operating
points” of the nonlinear MIMO plant. The appropriate
controller (appropriate set of parameter values of the tuned
controller) will be selected during system operation on
the basis of two auxiliary measured signals, on which the
“operating points” of the nonlinear plant are dependent.

The organization of this paper is as follows. In
Section 2 a mathematical description of the adopted
nonlinear control plant is presented. In Section 3 we
discuss the structure of the proposed control system based
on a set of linear modal controllers that may create an
adaptive controller with (stepwise) varying parameters
conditioned by two additional auxiliary signals, namely,
the ship transitional velocity measured with respect
to water and the calculated difference between the
sea current angle and the actual ship’s yaw angle. In
Section 4 we carry out a survey of synthesis methods
for multivariable modal controllers in both time and
frequency domains using the polynomial approach with
and without solving Diophantine polynomial matrix
equations. Section 5 contains results of controller
synthesis obtained by means of the methods presented in
Section 4. The operation of the found controller sets is
tested in Section 6 by simulation of the designed tuned
controller system with the nonlinear plant model. We end
the paper in Section 7 with conclusions.

2. Description of the control plant

The MIMO nonlinear dynamic control plant is
exemplified here by the drillship Wimpey Sealab having
Lpp = 94.49 [m] in length, B = 15.24 [m] in beam,
with an average draught of H = 5.49 [m ] and with a
displacement of m = 5670 DWT . When operated, the
ship was equipped with a simple (clinometric) Dynamic
Positioning System (DPS) with classical autonomous PID
controllers. The system enabled the vessel to keep on
course and position over the sea bed drilling point with
the help of a 2013 [kW ] main engine and four azimuth
Schottel propellers of 746 [kW] each.

The adaptive (multi-controller) control system
structure considered is studied by means of a 3DOF
nonlinear mathematical model of the ship’s low-frequency
motions, which has been developed on the basis of tests
carried out on a physical model on a scale of 1:20 in
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an American ship model basin (Wise and English, 1975).
The yaw angle and the ship’s position in DSP are defined
in an Earth-based fixed reference system whose axes are
directed northwards (N) and eastwards (E), and whose
origin is located over the drilling point on the seabed.
By contrast, force and speed components with respect to
water are determined in a moving system related with the
ship’s body and the axes directed to the front and the
starboard of the ship with the origin placed at its gravity
center. These are shown in Fig. 1.
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Fig. 1. Ship’s co-ordinate systems.

The mathematical description of the plant is given
in the form of nonlinear state space and linear output
equations:

ẋ1 = x4 cosx3 − x5 sinx3 + Vc cosΨc,

ẋ2 = x4 sin x3 + x5 cosx3 + Vc sinΨc,

ẋ3 = x6,

ẋ4 = 0.088x2
5 − 0.132x4Vs + 0.958x5x6 + 0.958u1,

(1)

ẋ5 = −1.4x5Vs − 0.978x3
5/Vs − 0.543x4x6

+ 0.037x6 |x6| + 0.544u2,

ẋ6 = (0.258x5Vs − 0.764x4x5 − 0.162x6 |x6| + u3),
y1 = x1, y2 = x2, y3 = x3,

where Vs =
√

x2
4(t) + x2

5(t) is the translational velocity
of the ship measured with respect to water. The coefficient
a = k2

zz + 0.0431 describes the ship’s inertia moment
together with water associated with the angle motion of
the ship around its vertical axis, where kzz is the relative
inertia radius referenced to the ship’s length Lpp. Vc and
Ψc are, respectively, the velocity and direction of the sea
current as indicated in Fig. 1.

All the signals appearing in (1) are dimensionless,
i.e., referenced to the ship’s dimensions and displacement
as follows:

u1(t) =
Fx(t)
mg

, u2(t) =
Fy(t)
mg

,

u3(t) =
Mz(t)
mgLpp

,

x1(t) =
y1(t)
Lpp

, x2(t) =
y2(t)
Lpp

,

x3(t) [rad] , (2)

x4(t) =
vx(t)

√
gLpp

, x5(t) =
vy(t)

√
gLpp

,

x6 =
ωz(t)√
g�Lpp

,

together with the dimensionless time t = tr/
√

Lpp/g ≈
0.32 tr.

It should be noted that dividing by a signal
representing the ship’s translational velocity Vs(t) with
respect to water takes place in the above nonlinear ship
motion model. This accounts for undefined behavior of
the nonlinear model at zero-valued ship velocity, i.e.,
when dividing by Vs(t) = 0 occurs. This has some
consequences not only during system simulation, but also
for control system synthesis, since linear models become
undefined at Vs = 0. Hence, controllers with a structure
like that determined for normal operation conditions at
Vs(t) �= 0 cannot be found in this case. This is attributable
to the fact that hydrodynamic resistance disappears at
Vs(t) = 0, which substantially affects the character of the
described phenomena and brings about, among others, the
zeroing of respective terms in Eqn. (1). Such a situation
takes place when the ship is carried along by currents or
when the ship stands still over the drilling point in calm
water at Vc = 0.

According to the linear approach adopted in the
paper, the linearization of the model (1) is performed
for ship typical locations within the area of admissible
positions over the drilling point in steady state when
Vs(t) = −Vc. The nominal values of the state vector
xo and forces, as well as the moment uo enabling to
overcome hydrodynamic resistances of the ship’s hull,
given the known values of Vc �= 0 and Ψc, can
be calculated from the system of nonlinear algebraic
equations

0 = f(xo,uo, Vc, Ψc), (3)

yo = Cxo.

As a result of the linearization performed in the
whole range of the yaw angle x30 ∈ [−π, π] [rad], under
various sea current velocities Vc ∈ [0.05÷3.5] [knot] and
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at Ψc = π [rad], the linear state-space models are obtained

ẋ(t) = A[x(t) − xo] + B[u(t) − uo], (4)

y(t) − yo = C[x(t) − xo],

where

A =
[

∂

∂x
fT(x,u, ·)

]T

x=xo
u=uo

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

0 0 0 a14 a15 0
0 0 a23 a24 a25 0
0 0 0 0 0 1
0 0 0 a44 a45 a46

0 0 0 a54 a55 a56

0 0 0 a64 a65 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

0 0 0
0 0 0
0 0 0

0.958 0 0
0 0.544 0
0 0 1/a

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

C =

⎡

⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎦ ,

with the entries aij depending on the difference between
the sea current angle Ψc and values of the ship’s yaw angle
y30 = x30 adopted for the purpose of linearization, and
on the current velocity Vc. All the obtained models of the
ship are unstable with three invariable poles s1 = s2 =
s3 = 0.0 and three variable poles s4, s5, s6. Their matrix
transfer functions in the complex domain can be presented
in the form of a relatively right prime (r.r.p.) polynomial
Matrix Fraction Description (MFD),

T(s) = B1(s)A−1
1 (s), (5)

where

B1(s) =

⎡

⎣
b1 b2 0
b3 b4 0
0 0 1/a

⎤

⎦ ,

A1(s) =

⎡

⎣
s2 + a1s a2s a3s + a4

a5s s2 + a6s a7s + a8

a9s a10s s2 + a11

⎤

⎦ ,

with variable parameters bi, i = 1, 2, 3, 4 and aj , j =
1, 2, . . . , 11. The gain matrix of the plant is defined as

Kp = [B1(0)]
[
A−1

1 (0)
]

=

⎡

⎣
b1 b2 0
b3 b4 0
0 0 1/a

⎤

⎦

⎡

⎣
0 0 a4

0 0 a8

0 0 a11

⎤

⎦

−1

→ ∞, (6)

which demonstrates in general the integration property
of the control plant. However, this observation is not
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Fig. 2. Block diagram of the proposed control system structure.

applicable to all control paths, among others, to those
acting on the ship’s course angle. The coefficient a
appearing in Eqns. (1) and (6) depends on the extent to
which the ship is loaded and on the mass distribution
on board the ship. Since the numerator matrix B1(s) in
the transfer function (5) is a real matrix, all ship linear
models are minimum phase, i.e., non-minimum phase
transmission zeroes do not occur there.

3. Description of the proposed control
system structure

The block diagram of the control system for ship course
and position over the drilling point is depicted in Fig. 2.
The above control system for the nonlinear MIMO
plant with specified set points yref consists of a set of
multivariable modal controllers realized either as a single
adaptive controller with stepwise switchable parameter
values or as a set of controllers with a common input
e(t) and switchable outputs ũ(t). All modal controllers
making up the above structure are designed for different
ship linear models obtained for adopted operating points
of the plant at different sea current velocities Vc and yaw
angles y3o = x3o of the ship standing still over the drilling
point. The points are determined by nominal values of the
plant state vector xo and nominal values of the control
signals uo in steady states. These are found from the
system of algebraic equations (3). For such a kind of
plants, xo and uo depend exclusively on the yaw angle set
point y30, as well as on the velocity Vc and the sea current
angle Ψc.

In the proposed multi-controller structure, the
controller parameter values are changed (or controller
outputs are changed over, respectively) on the basis
of auxiliary variables measured. These are in the case
under study: the ship’s current transitional velocity Vs(t)
measured with respect to water (it is negative if the ship
sails astern, i.e., at x4(t) < 0) and the systematically
calculated difference between the sea current angle and
the ship’s yaw angle Ψc − x3(t). During the system
operation the incremental values ũ(t) generated by the
adaptive controller are added to the nominal values uo.

Modal controllers used in the proposed control
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system structure are multivariable dynamic systems with
parameters defined in time domain by

ẋr(t) = Arxr(t) + Bre(t), (7)

ũ(t) = Crxr(t) + Dre(t).

These can be presented in their natural form, which
is called “standard”, with the following matrices:

Ar = A− BF − LC, Br = L, (8)

Cr = −F, Dr = 0,

where F is the matrix of proportional feedbacks that
are related to state vector components (reconstructed
by the observer) of the plant linear models, and L is
the gain matrix of full order Luenberger observers that
reconstruct the state vector of the plant linear models
(4). Another possibility (although this is a necessity if
the polynomial approach with solving polynomial matrix
equations is employed) is to present Eqn. (7) in an
appropriate canonical form (most common an observable
one) with the matrices

Aro, Bro, Cro and Dr = 0. (9)

Unlike the matrices in the “standard” form, these
are characterized by a minimal number of parameters
different from “0” or “1”. The above controllers represent
strictly causal dynamic systems with Dr = 0. In the
s-domain they are described by strictly proper matrices
of rational transfer functions in the form of relatively left
prime (l.r.p.) polynomial matrix fractions

Tc(s) = Cr(sIn − Ar)
−1Br (10)

= Cro(sIn − Aro)
−1Bro = M−1

2 (s)N2(s),

with the polynomial matrices: M2(s) ∈ R[s]m×m

is a nonsingular row-reduced denominator matrix and
N2(s) ∈ R[s]m×l is a numerator matrix that fulfills the
strict inequalities

degrjN2(s) < degrjM2(s), j = 1, 2, . . . , m, (11)

where degrj [·] denote row degrees of [·].
Static properties of MIMO modal controllers under

discussion depend directly on their gain matrices

Kc = Cr(−Ar)
−1Br = M−1

2 (0)N2(0), (12)

and the dynamic properties are determined by poles po-
le_reg, defined by the eigenvalues of the matrix Ar of
each of the controllers, which represent zeroes of the
determinants

detM2(s) = det [sIn − Ar] = 0. (13)

In general, the controllers considered can be stable
or unstable. By definition, they cannot exhibit integration

properties and should be stable in the proposed structure.
In the case under discussion these will be multivariable
(MIMO) controllers whose behavior is close to that PD
ones with time lag.

In order to limit the effect of excessive forces
and moments produced by the adaptive set of modal
controllers, we introduce constraints imposed on the
maximal values of control signals u(t) = ũ(t) + uo. In a
real ship control system, a block of propulsion distribution
among individual propellers and the main engine has been
used instead of a block for constraining control signals
u(t).

If the values of uo are known and the modal
controllers are properly designed (for the given operating
points), there exists a theoretical possibility that the
residual steady-state error will tend to zero est(t) →
0 as ũ(t) → 0. In real situations, the values uo can
be corrected manually in the block for compensation of
steady-state errors in such a way as to eliminate (or
reduce) possible deviations of the ship’s course and/or
position in steady state for the reason that the effect
of some environmental disturbances (wind, motion of
the sea) has been neglected here and/or the actual ship
operation conditions differ from the “nominal” adopted
for linearization. Another reason is the lack of knowledge
about “real” nominal values of control signals required to
maintain the ship’s position in steady state.

It should be noted that steady state errors may
be brought about not only by the effect of additional
long-lasting forces and moments turning the ship
produced by, among others, the (averaged) action of
wind and sea waves, but also for the reason that not all
paths of the ship’s multivariable model exhibit integration
properties. This is the case with modal PD controllers with
time lag (Bańka and Latawiec, 2009).

4. Methods of modal controller synthesis

The synthesis of modal controllers is based on using
the technique of pole placement in stable regions of the
s-plane. In the case of SISO, pole placement determines
the system dynamics in one control path only, so the
task is easy to accomplish and results of calculations are
unambiguous, i.e., they are independent of the structure of
source data.

The synthesis of modal controllers with MIMO
plants is much more complex, since the dynamics of many
control paths are to be shaped. The system poles in each
path may take different values in accordance with to the
dynamics required for each of the paths. This raises the
question of how to provide the location of a specific
pole for an appropriate path of the control system to be
designed. The task is not easy to perform and, as it turns
out, the final result depends not only on selecting an
appropriate design method, but also on setting a concrete



52 S. Bańka et al.

data structure used for the design. Additionally, the results
may depend on whether the poles are real or complex
and on the order in which the poles occur in the set
of data taken for design. In a polynomial approach it is
required to divide the set of pre-determined poles into
appropriate pole blocks with a specific number of poles in
each block. If the poles are conjugate complex, each pair
of them must be an element of the same block. This is
particularly essential for plants of odd order n, and also if
an odd number of poles is required for individual blocks
of adopted pole values. As a result, completely different
modal controllers may be obtained for the same input data
depending on the adopted design method and the adopted
data structure used for design.

The synthesis of modal controllers can be performed
directly in time domain with the plant linear models (4)
as a starting point and in s-domain using the polynomial
approach with the transfer function matrices (5) as
a starting point. Using the polynomial approach with
solving polynomial matrix equations usually yields causal
controllers described in s-domain by matrices of proper
rational transfer functions obtained directly from solutions
of Diophantine polynomial matrix equations. If we decide
on (strictly causal) modal controllers based on full-order
Luenberger observers, the design performed directly in
time domain (and also in s-domain without solving
polynomial matrix equations) boils down to separate
determination of the feedback matrix F, which forces the
closed-loop eigenvalues to the pole locations specified
by the adopted (stable) pole values pole_sys, and the
weight matrix L of the full-order Luenberger observer for
appropriately chosen observer poles pole_obs. The real
parts of the latter should be more negative than those
selected for the pole_sys set.

Assuming the modal control plant is given by the
linear MIMO system described by differential state-space
equations (4), the first step on the road to synthesizing a
modal control system in time domain is to determine the
state feedback gain matrix F ∈ Rm×n in

u(t) = −Fx(t), (14)

which shifts the poles of a linear plant model to desired
locations specified by the preassigned a priori values of
pole_sys. These correspond to respective eigenvalues λi,
i = 1, 2, . . . , n, of the matrix A and si, i = 1, 2, . . . , n,
for the matrix A − BF. The latter are the roots of the
characteristic equation

det [sIn − A + BF]

= sn + an−1s
n−1 + · · · + a1s + a0 = 0 (15)

with coefficients a0, a1, . . . , an−1 calculated from
preassigned eigenvalues si (poles pole_sys) of the matrix
A − BF.

The eigenvalues λi of the plant matrix A correspond
to the eigenvectors mi, i = 1, 2, . . . , n, which represent
the solution of the equation system

[A− λiIn]mi = 0 for i = 1, 2, . . . , n. (16)

Usually they are found by taking mi as a nonzero
(arbitrary) column of the adjugate matrix [A − Inλi]ad.
From them a matrix of eigenvectors

M =
[
m1 m2 . . . mn

]
(17)

can be created, which will be nonsingular, provided
mi are chosen as linear independent columns from
consecutive matrices [A− Inλi]ad for i = 1, 2, . . . , n.

Hence, the sought-for matrix F can be determined
in time domain through the eigenvalues of the matrices
A and A − BF or on the basis of eigenvectors
corresponding to eigenvalues of the matrices (Kaczorek,
1992). Determining the weight matrices L for full
order observers is carried out in a dual way by using
eigenvalues or eigenvectors of the matrices A and A −
LC, respectively.

4.1. Eigenvalues method. Making an exclusive use
of eigenvalues requires that the plant description (4)
be converted into the controllable second canonical
form with matrices Â = P̂AP̂−1 and B̂ = P̂B,
where characteristic nonzero rows occur having numbers
ni =

∑
di, i = 1, 2, . . . , m, and di are Kronecker

controllability indices of the plant. The form may be
obtained by a homothetic transformation with matrix P̂
created appropriately from the controllability matrix for
the pair (A,B) of the plant model (4).

Taking into consideration the nonzero rows of the
matrices Â and B̂, denoted respectively by Âni and B̂ni ,
ni =

∑
di, i = 1, 2, . . . , m, the following matrix is

created:

F̄ =

⎡

⎢
⎢
⎢
⎢
⎣

Ân1 − eT
n1+1

Ân2 − eT
n2+1

· · ·
Ânm−1 − eT

nm−1+1

Ânm − aT

⎤

⎥
⎥
⎥
⎥
⎦

, (18)

where eT
i is the i-th row of the identity matrix In,

and aT := [a0, a1, . . . , an−1] is the row made up of
coefficients of the characteristic polynomial (15), and the
matrix

B̂m =

⎡

⎢⎢
⎣

B̂n1

B̂n2

· · ·
B̂nm

⎤

⎥⎥
⎦ =

⎡

⎢
⎢⎢
⎣

1 ∗ · · · ∗
0 1 · · · ∗
· · · · · · . . . · · ·
0 0 · · · 1

⎤

⎥
⎥⎥
⎦

(19)

is formed from nonzero rows of the matrix B̂. Then the
sought-for feedback matrix F, which shifts the poles of
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the closed-loop system to desired locations on the left half
plane s ∈ C, can be determined from

F = B̂−1
m F̄P̂. (20)

This can be done by calling the function [F] =
modal(A,B,C,D, pole_sys), which represents an
implementation of the above described procedure in the
Polynomial Toolbox for MATLAB. Determining weight
matrices L ∈ Rn×l for the full-order Luenberger observer
in time domain can be carried out by utilizing the already
mentioned function modal.m in a dual way, namely, by
calling [L] = modal(A′,C′,B′,D, pole_obs)′.

4.2. Eigenvectors method. In the event that matrix A
has different eigenvalues λi, i = 1, 2, . . . , n, the eige-
nvectors method comes down to determining the matrix
of eigenvectors (17) and creating a diagonal matrix

Λ =

⎡

⎢
⎢
⎢
⎣

λ1 − s1 0 · · · 0
0 λ2 − s2 · · · 0

· · · · · · . . . · · ·
0 0 · · · λn − sn

⎤

⎥
⎥
⎥
⎦

, (21)

whose elements are differences between eigenvalues λi of
the matrix A and roots si of the characteristic equation
(15). Then the feedback matrix F can be calculated
directly from

F = MΛM−1. (22)

However, this way of calculating the feedback matrix
becomes complicated if eigenvalues of the plant matrix
A are complex or multiple real, and if, for some reason
or other, such eigenvalues are preassigned for the control
system to be designed. The standard function place.m of
the Control Toolbox for MATLAB/Simulink represents
an implementation of the above-mentioned procedure
with restrictions imposed on the maximal multiplicity of
preassigned poles pole_sys, which may not excess the
number of plant inputs m.

Determining weight matrices L ∈ Rn×l for the
full-order Luenberger observer in time domain can be
carried out utilizing the already mentioned function pla-
ce.m in a dual way, namely, by respective calling [L] =
place(A′,C′, pole_obs)′, where pole_obs is the set of
eigenvalues (poles) si, i = 1, 2, . . . , n, specified for the
matrix A − LC.

It is easy to note that calculations performed with the
use of the above functions do not ensure that eigenvalues
of A − BF and A − LC, i.e., the poles pole_sys and
pole_obs, will be located in a priori specified control
system paths since in MIMO systems many different
matrices A − BF and A − LC of identical determinants
det(sIn −A + BF) and det(sIn −A + LC) may exist.
The actual pole location can be verified only through
simulations of the designed control system, preferably

with a modal controller in its standard form (8). Then the
pole location can be assessed whether or not it is proper
from observations of time responses of state variables
for the plant model and the Luenberger observer, where
xr(t) = x̂(t) → x(t) for t → ∞.

If we use the eigenvector method, the final result may
additionally depend on the order the elements in sets po-
le_sys and pole_obs are listed due to the freedom of choice
of the sequence of eigenvectors mi, i = 1, 2, . . . , n, in
(16). This means that, depending on the method used,
many different matrices F and L may exist for the same
poles pole_sys and pole_obs yielding, as a result, entirely
different modal controllers (7).

Furthermore, when employing synthesis methods in
time domain, there is no impediment to make use of
different functions, e.g., place.m of the eigenvector me-
thod while determining the matrix F and modal.m of
the eigenvalue method when finding the matrix L or
vice versa, which further extends the range of solutions
possible to obtain. However, this makes the results of
design ambiguous in the sense that many different modal
controllers are obtained for the same input data.

4.3. Polynomial method. The matrices F and L can
be found using the polynomial approach without solving
polynomial matrix equations utilizing the well-known
Wolovich structure theorem (Wolovich, 1974). According
to this theorem and the procedure described by Bańka
(2007) as well as Bańka and Dworak (2011a), these
matrices can be determined directly from the following
relationships:

C1(s) − A1(s) = −F(s) = −FP̂Ŝ(s) (23)

and
C2(s) − A2(s) = S̃(s)P̃L, (24)

where C1(s) ∈ R[s]m×m and C2(s) ∈ R[s]l×l are
generated on the basis of specified (stable) pole values of
pole_sys and pole_obs, respectively.

The structure of the polynomial matrices C1(s) and
C2(s) should comply with those of the denominator
matrices A1(s) and A2(s) of the plant transfer function
matrix (5), that is, the matrix C1(s) generated on the basis
of poles pole_sys should have a column matrix of leading
coefficients

Γc(C1(s)) = Γc(A1(s)), (25)

with degciC1(s) = degciA1(s) = di, i = 1, 2, . . . , m,
and the row structure of the matrix C2(s) generated
from the poles pole_obs should comply with that of the
polynomial matrix A2(s), namely,

Γr(C2(s)) = Γr(A2(s)) (26)

at degrjC2(s) = degrjA2(s) = d̄j , j = 1, 2, . . . , l.
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The matrix A2(s) is the denominator matrix of the
plant transfer function matrix (5) converted to the dual
(r.l.p.) form of transfer matrix T(s) = A−1

2 (s)B2(s).
The polynomial matrices Ŝ(s) and S̃(s) occurring in

(23) and (24) have the following form:

ŜT (s)

=

⎡

⎢
⎢
⎢
⎣

1 s · · · sd1−1 · · · 0 · · · 0
0 0 · · · 0 · · · 0 · · · 0
...

... · · · ... · · · ... · · · ...
0 0 · · · 0 · · · 1 · · · sdm−1

⎤

⎥
⎥
⎥
⎦

,

(27)

S̃(s)

=

⎡

⎢
⎢
⎢
⎣

1 s · · · sd̄1−1 · · · 0 · · · 0
0 0 · · · 0 · · · 0 · · · 0
...

... · · · ... · · · ... · · · ...
0 0 · · · 0 · · · 1 · · · sd̄l−1

⎤

⎥
⎥
⎥
⎦

.

(28)

The structure of Ŝ(s) depends on controllability
indices di, i = 1, 2, . . . , m,

∑
di = n, and that of

S̃(s) on plant observability indices d̄j , j = 1, 2, . . . , l,∑
d̄j = n. The matrices P̂ and P̃ are transformation

matrices obtained in the process of transforming the
original plant state-space equations (4) into the second
Luenberger-Brunovsky canonical forms, controllable and
observable, respectively.

Unlike the eigenvalue and the eigenvector methods,
where no possibility exists to locate intentionally the poles
in specified paths of the MIMO system to be designed, the
method considered here permits the poles pole_sys to be
assigned to plant inputs, and the poles pole_obs to plant
outputs. This can be done in the process of generating the
matrices C1(s) and C2(s) first in diagonal structures with
polynomials of orders equal to controllability indices di,
i = 1, 2, . . . , m, for the first matrix and to observability
indices d̄j , j = 1, 2, . . . , l, for the second matrix, and
then bringing these diagonal matrices to forms that satisfy
the conditions (25) and (26), respectively. To this end the
set of preassigned poles pole_sys should be divided into
subsets with di, i = 1, 2, . . . , m, elements, and the set of
pole_obs into l subsets with d̄j j = 1, 2, . . . , l, elements.
The sequence in which the individual pole subsets are
used in the process of system synthesis does matter and
has a pronounced effect on static and dynamic properties
of the obtained controllers. Although the above procedure
does not provide full possibility to locate the system and
observer poles in specified paths of the control system,
the design of modal control systems with MIMO plants is
made thereby easier.

4.4. Polynomial matrix equations method. In the
above presented methods the synthesis of MIMO modal
controllers has been based on separately finding the
matrices F and L for which, according to (8), their
“standard” state-space equations have been formulated.
These equations can be converted to appropriate
state-space canonical forms with the matrices (9), and
then, if desired, the matrices of controller transfer
functions (10) can be determined on their basis.

However, instead of separately calculating the
matrices F and L when designing modal controllers in
s-domain, a more typical polynomial procedure may be
employed, where the controller transfer function matrix
Tc(s) = M−1

2 (s)N2(s) is directly obtained at one go by
solving the Diophantine left polynomial matrix equation

M2(s)A1(s) + N2(s)B1(s) = Δ(s) = Q(s)C1(s),
(29)

where A1(s) and B1(s) are known polynomial matrices
describing the control plant (5), and M2(s) and N2(s) are
a pair of unknown polynomial matrices that Eqn. (29) is
to be solved for. In the case of MIMO systems obtaining
minimal solutions of Eqn. (29) (of minimal degree with
respect to the matrix N2(s)), which should satisfy the
conditions degrjN2(s) ≤ degrjM2(s), j = 1, 2, . . . , m,
is much more complex than in the case of SISO systems.
In SISO systems, Q(s) and C1(s) are generated in a
simple way as stable Hurwitz polynomials on the basis of
preassigned respective pole values pole_obs and pole_sys.
For solutions of the polynomial equation (29) to exist,
only the necessary condition is to be met that roots of
these polynomials be separable with those of polynomials
A1(s) and possibly B1(s).

However, in MIMO systems the polynomial matrix
Δ(s) = Q(s)C1(s) in addition to that it should be relative
right prime (r.r.p.) with matrices A1(s) and B1(s), it
should also have a row-column-reduced structure with a
nonsingular matrix of the highest (diagonal) coefficients
(Callier and Kraffer, 2005; Bańka, 2007)

Γh(Δ(s)) = Γr(Q(s))Γc(C1(s)) (30)

= Γr(M2(s))Γc(A1(s)).

The matrices Q(s) and C1(s) should have
determinants detQ(s) and detC1(s) with zeroes
equal to the preassigned poles, i.e., pole_obs for the
observer and pole_sys for the system.

In selecting the matrices Q(s) and C1(s) we have
a great freedom of choice of their structure, since, as
previously, many different polynomial matrices may exist
of the given dimensions with identical determinants.
In the method proposed here the matrix C1(s) can
be generated as in the polynomial method, i.e., in
accordance with the column structure of the denominator
matrix A1(s). A circumstance that may present some
problems is the choice of an appropriate structure of the
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matrix Q(s) so that the structure of the matrix Δ(s) is
row-column-reduced, which guarantees that the obtained
solutions will have the form of proper transfer function
matrices (10) for each sought modal controller.

This is not an easy task and requires great skills
or additional a priori information acquired, for example,
in the process of system synthesis in time domain.
Fortunately, the matrix Q(s) in systems with controllers
of full order n may frequently have a diagonal structure
with polynomials of orders r̄j = degrjQ(s), j =
1, 2, . . . , m, selected so that

∑
r̄j = n. As was reported

by Bańka (2007), it is also possible to obtain solutions
of Eqn. (29) in the form of strict proper transfer
function matrices for full-order controllers. However, this
is feasible if the polynomial matrix is selected in a special
way, and in general, only for plant models described by
the strict proper transfer function matrices (5) (Callier and
Kraffer, 2005; Bańka, 2007).

Furthermore, Eqn. (29) may also deliver modal
controllers of reduced order built on the basis of functional
Luenberger observers of reduced order n1 = m(ν − 1),
where ν = max{d̄j, j = 1, 2, . . . , l}. Then the matrix
Q(s) assumes a regular structure, i.e., with identical row
degrees r̄j = degrjQ(s) = ν − 1;

∑
r̄j = n1 (Bańka,

2007; Wolovich, 1974). In this case the controllers of
reduced order n1 = m(ν − 1) will always be obtained
in the form of matrices of proper transfer functions. They
can be realized in time domain exclusively in canonical
observable forms of state-space equations with Dro �= 0.

Additionally, it might be good to mention that there
exists a possibility to design modal control systems by
solving the Diophantine (dual) right polynomial matrix
equation

A2(s)M1(s) + B2(s)N1(s) = Δ̃(s) = C2(s)Z(s)
(31)

with the use of equivalent polynomial descriptions
concerning the plant and the controller in the forms
T(s) = A−1

2 (s)B2(s) and Tc(s) = N1(s)M−1
1 (s),

and with an appropriately chosen row-column-reduced
matrix Δ̃(s) ∈ R[s]l×l, where zeroes of the matrix C2(s)
correspond to the preassigned values of pole_obs, and
zeroes of the matrix Z(s) correspond to the values of
pole_sys (Bańka, 2007). These will not be considered
in this paper, as well as structures with reduced-order
controllers, mainly because matrices Dro �= 0 occur in
time domain realizations of the matrix transfer function
of such controllers, thus increasing quite significantly the
number of parameters to be tuned.

5. Synthesis of ship modal controllers

In the case of linear models obtained in the form of
state-space equations (4) or transfer function matrices
(5) for the drillship Wimpey Sealab given by nonlinear

state-space equations (1) with the effects of wind gusts
and wave action having been neglected for clarity’s
sake, each of the above discussed synthesis methods
leads to yielding strict causal modal full-order controllers
described by the space-state equations (7) with matrices
Dro = 0, which are defined by the strict proper transfer
function matrices (10) in s-domain. In order to obtain
solutions with the minimal number of parameters whose
values are different from “0” or “1”, the state-space
equations for all controllers to be yielded will be presented
exclusively in canonical forms with matrices (9). The
following sets of stable pole values have been adopted for
the system and the full-order Luenberger observer:

pole_sys

= {−0.40,−0.45,−0.14,−0.15,−0.15,−0.16}
and

pole_obs

= {−0.80,−0.90,−0.28,−0.30,−0.30,−0.32}.
Such a choice of the poles pole_sys was performed

experimentally to obtain control processes without
excessive overshoots on the course and the ship’s
coordinate position with “reasonable” times needed to
achieve steady-state control conditions and possible
without crossing the limits on the control signals. On
the other hand, the values of pole_obs were chosen with
negative values of its real parts, twice larger than the
negative values of the corresponding values of pole_sys
that ensure the vanishing of transitional processes in
the Luenberger observer two times faster than processes
occurring in particular paths of the closed-loop control
system.

Employing the above synthesis methods yielded four
different sets of 3650 modal controllers described
by the state-space equations (7) in the second
Luenberger–Brunovsky canonical observable form
with the matrices

Aro =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

0 a12 0 a14 0 a16

1 a22 0 a24 0 a26

0 a32 0 a34 0 a36

0 a42 1 a44 0 a46

0 a52 0 a54 0 a56

0 a62 0 a64 1 a66

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

, (32)

Bro =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

b51 b52 b53

b61 b62 b63

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

Cro =

⎡

⎣
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎦ , Dro =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ .
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They have 36 variable entries: aij , i = 1, 2, . . . , 6,
j = 2, 4, 6, and bij , i = 1, 2, . . . , 6, j = 1, 2, 3, dependent
on the ship’s velocity Vs = sign(x4)

√
x2

4 + x2
5 and on

deviations of the ship’s yaw angle y30 = x30 from the sea
current angle Ψc. The controllers have been synthesized
for velocities lying in the range Vs ∈ [−4.9÷4.9] [knots]
with the resolution of 0.2 [knot] over the entire range of
round angle, that is, over the range Ψc − x30 ∈ [0 ÷
360◦] with the resolution of 0.0873[rd], for the adopted
ship relative “radius of gyration” kzz = 1/4.

As might be expected, the use of different synthesis
methods for modal controllers yielded different results
for the same data taken for calculations. The differences
in the obtained results are fundamental both in terms
of constructing from them an adaptive controller
with stepwise varying parameters (or a switchable
multi-controller structure) and also in terms of operation
quality provided by these controllers in the designed
control system. Nonetheless, all the obtained modal
controllers are stable exhibiting a time lag affected PD
behavior. Their dynamic and static properties for different
ship velocities Vs and yaw angles Ψc − x3 within the
group of controllers obtained by one of the discussed
design methods experience some fluctuations, since they
have variable poles pole_reg defined as eigenvalues of the
matrices Aro and variable gain matrices

Kc =

⎡

⎣
k11 k12 k13

k21 k22 k23

k31 k32 k33

⎤

⎦ = Cro(−Aro)
−1Bro. (33)

It is worth noting that, despite employing always
the same pole values pole_sys and pole_obs without
introducing any changes in their sequence, there have
been obtained entirely different sets of controllers with
varying entries of Aro and Bro, which yield different
(variable) gain matrices Kc for these controllers at varying
(over different ranges) values of always stable poles po-
le_reg. The variable entries of matrices Aro, Bro and Kc

may be depicted in the form of 3-D surfaces as functions
of ship velocity Vs and yaw angles Ψc − x3.

The synthesis results both the most unreliable in
operation and the most difficult to realize an adaptive
controller (or a switchable multi-controller structure) have
been obtained by means of the eigenvalues method. They
will not be shown in the paper. On the other hand, the best
control responses, i.e., smooth and overshoot-free ones,
were provided by controllers obtained by the eigenvector
method. Unfortunately, the parameters of such obtained
controllers depend in a complex way on the ship’s velocity
Vs and yaw angles Ψc−x3, which makes realization of the
proposed control system structure difficult. The character
of parameter variability for controllers obtained by this
method is illustrated by 3-D surfaces published earlier by
Bańka et al. (2011a).

The most promising results both in terms of ease
of realization of the proposed control system structure
and also in terms of the quality of controller operation
in the multi-controller structure are delivered by the poly-
nomial matrix equation method. The controllers obtained
by this method are characterized by moderately “smooth”
surfaces of parameters variation and, at the same time,
meet sufficiently the quality requirements placed on
control of the ship’s nonlinear model. The variability of
entries of matrices Aro, Bro versus the ship’s velocity
Vs and yaw angle Ψc − x3 obtained by this method
is illustrated by 3-D surfaces shown in Figs. 3 and 4,
respectively.

For comparison, 3-D surfaces for all entries of gain
matrices Kc of modal controllers obtained by means of
all the above-mentioned synthesis methods (except for
results yielded by the eigenvalue method, which were
unacceptable from every point of view) are depicted in
Figs. 5–7.

From these plots it can be seen that parameters of
all obtained modal controllers change their values (both
the absolute value and the sign) at different values of yaw
angle y3 = x3 and the ship’s velocity Vs. Particularly
violent changes, especially for controllers obtained by the
eigenvector method, take place in the vicinity of values
that correspond to yaw angles 0◦, 90◦, 180◦ and 270◦ and
at the ship’s velocities close to Vs = 0. This particularly
concerns parameters which constitute the last columns
of matrices Aro and Bro and the last column of gain
matrix Kc (not presented here), i.e., the entries having
a direct influence on signals associated with the ship’s
course control.

For parameters of controllers obtained by the
remaining methods, i.e., the polynomial and the polyno-
mial matrix equation methods, the yielded surfaces are
already more smooth except for controllers obtained by
the eigenvalue method. The latter exhibit sharp spikes (not
presented here) in canonical forms for yaw angles equal to
90◦ and 270◦ occurring at high ship velocities Vs.

All of this makes a quite complex picture of
problems connected with implementation of the proposed
multi-controller structures of linear modal controllers
designed for steady states, but actually utilized for control
transients. This is possible as evidenced below by results
of simulations carried out with the ship’s nonlinear model
(1) for all obtained sets of modal controllers realized here
as a single adaptive controller with tuned parameters.

6. Results of simulation tests

All simulation tests have been carried out without regard
for the effect produced by the wind and wave action
in the presence of sea current of Vc = 2 [knots] at
Ψc = 180◦ with the use of the ship’s nonlinear model
(1) that describes low frequency varying ship motions in
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Fig. 3. Entries of the matrix Aro vs. ship velocity and yaw angle obtained by the polynomial matrix equation method.
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Fig. 4. Entries of the matrix Bro vs. ship velocity and yaw angle obtained by the polynomial matrix equation method.
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Fig. 5. Entries of the matrix Kc vs. ship velocity and yaw angle obtained by the polynomial matrix equation method.

3DOF. The tests have been conducted for many different
initial states defined by appropriate ship positions, yaw
angle and ship initial velocities. In typical situations, that
is, when the ship sailed bow on against the current at
Vs �= 0, all controllers behaved quite correctly yielding
time responses without excessive oscillations experienced
by the control signals u(t). In that case the ship could
always be brought to the drilling point and assumed the
preset yaw angle, and then she could be moved to any
specified position. This is demonstrated by time responses
depicted in Fig. 8 obtained with controllers found by the
eigenvector and the polynomial matrix equation methods.

During these simulations the ship was brought to the
drilling point from a position at a distance of about 100
[m] (r = 1) distant situated on the left below the drilling
point with the adopted initial yaw angle x3(0) = 35◦ and
velocity components x4(0) and x5(0), which corresponds
to the ship’s sailing bow on against the current Vs(0) =
Vc = 2 [knots]. After reaching the drilling point with
the specified yaw angle equaling y3ref = x30 = 0◦ after
150 dimensionless time units (corresponding to about 7.5
min. of real time), the yaw angle was changed to y3ref =
x30 = 60◦. Then at t = 200 of time units the reference
values have been changed stepwise for both ship position
coordinates so that the ship moved through a distance of
about 100 [m] from the right over the drilling point and

come to a standstill at a distance of 100 [m] with a velocity
of Vs = Vc = 2 [knots] relative to water and bringing
the ship’s yaw angle y3(t) = x3(t) to the preset value
y3ref = x30 = 60◦.

However, more interesting and instructive are
responses obtained for a typical situations when the ship
sails stern-first against the current, especially at changes
in the sign of the linear ship velocity Vs in the vicinity
of Vs = 0. This may happen when the ship is brought
to the drilling point with the current (conditioned, for
example, by an unfavorable direction of the wind or sea
waves being in opposition to the sea current direction Ψc)
or when changing the ship’s yaw angle over the drilling
point caused by a change in the wind or waves direction.

To investigate the matter, the remaining simulations
have been performed for the ship situated initially about
100 [m] on the left over the drilling point with initial yaw
angle x3(0) = 125◦ and velocity components x4(0) and
x5(0), which corresponds at the beginning of simulations
to moving astern at Vs(0) = −Vc = −2 [knots]. In these
simulations the preset ship yaw angles y3ref = x30 over
the drilling point, as well as making later changes in the
yaw angle and ship final positions, have been performed
just in the same way as earlier, keeping as far as possible
the same time conditions for manoeuvring.

Simulation results obtained for sets of controllers
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Fig. 6. Entries of the matrix Kc vs. ship velocity and yaw angle obtained by the eigenvector method.
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Fig. 7. Entries of the matrix Kc vs. ship velocity and yaw angle obtained by the polynomial method.
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Fig. 8. Plots of controlled variables and control signals u(t) in the process of bringing the ship to the drilling point bow on against the
current.

designed by the eigenvector and the polynomial matrix
equation methods are shown in Fig. 9.

Steady-state errors in each of the tested systems have
been eliminated by applying nominal values uo calculated
from the system of equations (3) for preset final ship
positions at the yaw angle y3ref = x30 = 60◦.

The time responses presented above feature smaller
overshoots and shorter settling times than those delivered
by other (switchable) structures described in earlier papers
(e.g., Bańka et al., 2010a; 2010b). A drawback to these
responses is that the responses of control signals u(t)
are (oscillating) nonsmooth, caused mainly by stepwise
changes in parameter values of the controller in the
vicinity of “operating points” that cause trouble.

7. Concluding remarks

It follows from the simulation tests carried out that the
proposed concept of control of a nonlinear model of
a MIMO drillship by the use of an adaptive structure
of a linear MIMO controller with tuned parameters on
the basis of two auxiliary measured signals is feasible.
It can also be realized by a set of linear MIMO
modal controllers in a multi-controller structure with

switchable outputs. Modal controllers, which must be
stable in these systems, though predesigned for steady
states, operate properly despite the fact that they actually
operate in transient states (in a quasi-steady-state mode).
Nevertheless, stepwise changes of parameter values in
an adaptive single controller, as well as the switching
over of controller outputs in a multi-controller structure,
are accompanied by “nonsmooth” responses of control
signals u(t). This especially concerns control transients
taking place at the ship’s velocities close to Vs = 0 and/or
at yaw angles corresponding to values close to 0◦, 90◦,
180◦ and 270◦. The propellers and main engine of a real
ship will not be able to realize such control signals. Hence,
such a problem is a main aim of researching the solutions
that could give a chance to obtain smoother surfaces of
parameters change shown in Figs. 3 and 4.

Apart from using different design method as well
as employing different description forms of designed
modal controllers, the possibility of replacing the obtained
(original) surfaces of parameter change with the surface
generated by means of artificial neural networks exists.
As training data for neural networks the obtained surfaces
of parameter changes can be used. Such a controller with
“neural” parameters should provide a “smoother” system
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Fig. 9. Plots of controlled variables and control signals u(t) obtained for the ship’s approaching the drilling point with the current.

operation (without any switching over) and also

• generalize the parameter values of matrices Aro

and Bro to untrained (unknown) values following
from quantization of signals Vs and Ψc − x30 with
acceptable resolution,

• smooth out “ridges” and “precipices” seen on the
surfaces that describe variable controller parameters,

• eliminate the problem of ambiguity in operation
of controllers, which assume different parameter
values in the process of switching over depending on
whether the auxiliary signals Vs(t) and Ψc − x3(t)
increase or decrease.

A first attempt of replacing a discussed linear
structure of controller with tuned parameters (or a
switchable structure of modal controllers) with an
adaptive “neural” controller trained on the basis of known
parameter values contained in matrices Aro and Bro,
designed by the eigenvector method, has been presented
by Bańka et al. (2011b). Such an approach will be taken
into consideration during further research.
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