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This paper introduces a set of comprehensive general reasoning rules about single faults based on a diagnostic matrix. The
reasoning scheme unifies inference about faults based on a conventional binary diagnostic matrix, a two- and three-valued
fault isolation system as well as on their fuzzy counterparts. There are introduced and defined notions of alternative and
dominant fault signatures, fuzzy fault signatures as well as a matrix of alternative signatures. This matrix is supposed to be
used instead of the classic diagnostic one. It is also shown that dominant fault signatures are transformable into alternative
ones. Finally, three variants of concise general reasoning rules of faults are given. Three examples illustrate key point issues
of the paper. The first example refers to a medical diagnostic case. It shows an instance of dominant fault signatures and, in
fact, proposes a rational approach for planning diagnostic tests. The other examples describe the fuzzy reasoning approach
employing a matrix of fuzzy alternative signatures applicable for use with multi-valued fuzzy diagnostic signals. Future
works are outlined in the summary section.
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1. Introduction

Principally, model based diagnostics searches for, and
afterwards makes profits from, relations between faults
and residuals or their derivatives. Hence, model based
diagnostics is focused on seeking for those relations,
generation of residuals by means of modelling, residual
processing and inferring about faults. This paper deals
with the process of inferring about faults. Modelling and
residual generation approaches are principally beyond the
scope of this paper. Essentially, this paper contributes to
a generalised reasoning scheme about faults based on the
diagnostic matrix under assumption of the occurrence of
single faults.

The main objective of this paper is an attempt to give
a concise general description of reasoning about faults
based on four known Fault Isolation (FI) approaches,
namely, the structure matrix (Gertler, 1998) called further
the Binary Diagnostic Matrix (BDM), the multi-valued
Fault Information System (FIS) (Kościelny and Bartyś,
2000), and their fuzzy counterparts, i.e., the fuzzy
diagnostic matrix (Kościelny and Bartyś, 2003; Syfert,
2006) and the Fuzzy Fault Information System (F-FIS)

(Kościelny et al., 1999; Kościelny and Syfert, 2006).
In fact, all seemingly different FI approaches stated

above are based on the process of inverse causal
reasoning. This implies that one may try to search for a
sufficiently general reasoning scheme that matches all of
them. In this context, the right choice seems to be rule
based fuzzy reasoning because of its inherent ability of
handling uncertain information. Formulas introduced in
this paper apply under the following two restrictions:

(i) the systems considered are exclusively with single
faults;

(ii) exclusively parallel reasoning scheme is considered.

The explanation of the above stated assumptions is
given below. For many years, researchers have tackled the
problems of detection and isolation of single and multiple
faults. The results have been published in many papers,
surveys and books (Frank, 1990; Gertler, 1997; 1998;
Patton et al., 2000; Venkatasubramanian et al., 2003;
Blanke et al., 2003; Korbicz et al., 2004; Isermann, 2006;
Korbicz and Kościelny, 2010, Chen and Patton, 2012).
The majority of the known Fault Detection and Isolation
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(FDI) methods were developed under the assumption of
appearance of single faults. This assumption introduces
a significant simplification in fault isolation. To a certain
extent, the assumption (i) is acceptable because the
probability of occurrence of a single fault is much
higher than probability of occurrence of multiple faults.
Parallel reasoning is commonly applied in theory and
practice of FI (Korbicz et al., 2004, Chapter 3; Korbicz
and Kościelny, 2010, Chapter 5). In some cases, it is
reasonable to apply the serial reasoning scheme about
faults. But it is easy to show that serial reasoning is, in
fact, a sequence of parallel reasoning processes triggered
by successively available symptoms of the fault. In this
case, the assumption (ii) is acceptable.

The notation of fault signatures for the parallel
reasoning scheme was presented indirectly by Syfert
(2006) in the context of reasoning about faults based
on a set of conditional statements. In his paper, Syfert
did not drill out this issue further. Kościelny and Syfert
(2006) introduced and defined a complex fault signature
as well as reasoning about faults based on complex
diagnostic rules. In fact, reasoning schemes described in
the above-mentioned papers are equivalent.

We present here a slightly different approach. Firstly,
a new definition of alternative fault signatures is given. In
fact, this definition is also equivalent to those presented
by Syfert (2006) as well as Kościelny and Syfert (2006).
Secondly, we introduce the definition of dominant fault
signatures. No references are known to the author in this
area. Introduction of dominant fault signatures allows
designing new general unified fuzzy inferring approaches
applicable for process and biomedical diagnostics.
Thirdly, we benefit from the statement that fuzzy
reasoning is advantageous over the classical one because
of its inherent generalisation features. In this context,
we prove that classical approaches are to a certain
extent particular cases of fuzzy reasoning. Moreover,
fuzzy approaches give the opportunity of easy handling
of uncertainties of diagnostic signal values and/or rules
(Kościelny and Syfert, 2006).

The paper is structured as follows. A brief
overview of diagnostic matrix approaches is presented in
Section 2. The definition of an alternative fault signature
as well as the definition of a diagnostic matrix of
alternative signatures are introduced in Section 3. This
section is recapitulated with an important conclusion
about generality features of the diagnostic matrix of
alternative signatures in the sense that it may be
used for representation of any binary diagnostic matrix
or multi-valued FIS. Section 4 introduces an original
definition to dominant fault signatures and brings an
important final conclusion about signature equivalence
stating that any dominant fault signature is transformable
to a set of alternative signatures.

Additionally, we propose three alternative general

reasoning approaches about faults in mixed, dominant
and alternative forms supported by the presentation of
an appropriate medical example. Section 5 introduces
the definition of fuzzy diagnosis and a substantial
statement that crisp diagnosis is a particular case of fuzzy
diagnosis. This describes fuzzy diagnosing as a more
general approach than crispy counterparts. The fuzzy
alternative fault signature defined in this section as well
as the conformity degree of the actual values of fuzzy
diagnostic signals with the alternative fuzzy diagnostic
fault signature sets fundamentals for generalising and
reformulating the fault isolation process towards fuzzy
terms. A technical example is also presented. A short
summary is presented in Section 6.

2. Diagnostic matrix approaches in FI

A fundamental issue with reasoning about faults is the
knowledge of the relation RFS (1) between set of faults
fi ∈ F, ∀i ∈ {1, . . . , n} and a set of diagnostic
signals sj ∈ S, ∀j ∈ {1, . . . ,m} (Korbicz et al.,
2004, Chapter 2). Diagnostic signals are derived from
residuals by the application of appropriate evaluation
processing approaches. The problem of acquisition of
this knowledge, as well as methods of acquisition and
evaluation of diagnostic signals, will not be addressed
here. However, for simplicity, assume that the relation
RFS is known. The relation RFS is defined as the
Cartesian product of the sets F and S,

RFS ⊂ F × S. (1)

Hence, the relation RFS is indeed a set of n · m ordered
pairs (bi-element relations) 〈fi, sj〉. According to the
geometrical interpretation of the Cartesian product, the
relation is the set of n · m points of the plane defined
in the F and S coordinates. It is possible to spread out a
three dimensional mesh over theF×S plane by attributing
diagnostic signal values vj,i of all diagnostic signals sj for
all fi faults.

The three-dimensional mesh is easily transformable
to the form of a two-dimensional m · n matrix V of the
diagnostic signal values vj,i. Hence, V = [vj,i]m×n. In
the simplest case, the diagnostic signals are two-valued,
i.e., the relation faults–symptoms may have the form of a
binary diagnostic matrix (Gertler, 1998; Kościelny, 2001).
In this case, the set of values of diagnostic signals includes
only two elements: v = {0, 1}, vj,i ∈ {v}. Multi-valued
and fuzzy residual evaluation with a constant or adaptive
threshold (Patton et al., 1989; Korbicz et al., 2004) is also
used for evaluation of residuals. As results from (1), each
fault fi ∈ F ; ∀i ∈ {1, . . . , n} is associated with one and
only one i-th column Vi of a binary diagnostic matrix V

Vi = [v1,i, v2,i, . . . , vj,i]T . (2)
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The characteristic vector Vi containing diagnostic
signal values associated with the particular fault is called
the i-th fault signature. For notational simplicity, the
diagnostic matrix V will be further comprehensively
represented in this paper as a block matrix of fault
signatures Vi,

V = [Vi]n×1. (3)

An example of a binary diagnostic matrix is shown
in Table 1, where five signatures are attributed to five
faults f1 to f5. Each signature is interpreted as a specific
pattern of diagnostic signals values attributed to each fault.
Hence, it is profitable for reasoning about faults if those
patterns are unique. However, it should be noted that, in
practice, this condition typically does not necessarily hold
(see, e.g., the signature of faults f2 and f3 in Table 1):

The following fault signatures are obtained from
Table 1:

V1 = [0, 1, 1, 0, 0, 0]T , V2 = [1, 0, 0, 0, 0, 0]T ,

V3 = [1, 0, 0, 0, 0, 0]T , V4 = [1, 1, 0, 0, 0, 0]T ,

V5 = [0, 1, 0, 1, 1, 1]T .

Reasoning about faults by means of a binary
diagnostic matrix is based on well specified approaches
of parallel, serial, serial-parallel reasoning (Korbicz et al.,
2004, Chapter 3). In the case of application of parallel
reasoning, fault isolation relies on searching for the
identity of the vector of actual values of diagnostic signals
Va with all fault signatures Vi. For example, if the vector
of diagnostic signals Va = [1, 0, 0, 0, 0, 0]T , then V2 = Va

and V3 = Va. Hence, the actual diagnosis D (set of
actually isolated single faults) is the following: D =
{f2, f3}.

Both the faults are isolated but, of course, are
not distinguishable. Kościelny (2001), searching for
enforcement of fault distinguishability, introduced a fault
information system and a Fuzzy Fault Information System
(F-FIS). He noticed that evaluation of residuals may
be at least three, instead of two-valued. This gave an
opportunity to handle mixed multi-valued diagnostic
signal values, which made this approach more flexible
when compared with the classic binary diagnostic matrix
approach. Kościelny proposed the use of the FIS for
reasoning about faults similar to the binary diagnostic

Table 1. Example of a binary diagnostic matrix.
S/F f1 f2 f3 f4 f5

s1 0 1 1 1 0
s2 1 0 0 1 1
s3 1 0 0 0 0
s4 0 0 0 0 1
s5 0 0 0 0 1
s6 0 0 0 0 1

matrix, although by applying a different inference scheme.
This may be explained in an example of the mixed two-
and three-valued FIS shown in Table 2. In this case,
v = {−1, 0,+1} for diagnostic signals {s1, s6} and v =
{0, 1} for the remaining signals {s2, s3, s4, s5}.

If, for example, the vector of actual values of
diagnostic signals Va = [+1, 0, 0, 0, 0, 0]T , then only
V2 = Va and V3 = Va. Hence, the actual diagnosis D =
{f2, f3}. However, by a given constant set of diagnostic
signals it is possible to get a better diagnosis D = {f2}
if Va = [−1, 0, 0, 0, 0, 0]T , i.e., the sign of the value of v1
will change. This allows hoping, under some conditions,
to achieve better fault distinguishability compared with
results of reasoning achieved by an application based
on the binary diagnostic matrix approach. Please note
that faults f2 and f3 are weakly distinguishable and
are conditionally distinguishable iff v1 = −1. But if
Va = [+1, 0, 0, 0, 0, 0]T , then faults f2 and f3 remain
thereinafter not distinguishable.

3. Alternative fault signature

The parallel reasoning scheme about faults based on a
binary diagnostic matrix is transformable to the set of n
conditional statements:

if ([Vi]n×1 = [Va]n×1) then (fi ∈ D). (4)

Please note that the binary diagnostic matrix does not
determine the order in which the rules will be analysed.
Hence, the analysis of the set of rules given in (4) may
be carried out in any order. However, it is reasonable to
analyse all the rules because of the possibility of losing
information on fault distinguishability. For convenient
description of the transformation process of an FIS to a set
of conditional statements similar to (4), firstly we define
the notion of an alternative fault signature.

Definition 1. The alternative fault signature is any block
matrix column containing a relevant specific pattern of
all diagnostic signals values accompanying this particular
fault.

This means that each fault may be associated with
more than one signature. Let the cardinality of the set of
all alternative signatures assigned to each i-th fault be ci

Table 2. Example of a mixed two- and three-valued FIS.
S/F f1 f2 f3 f4 f5

s1 0, +1 −1, +1 +1 +1 0
s2 1 0 0 1 1
s3 1 0 0 0 0
s4 0 0 0 0 1
s5 0 0 0 0 1
s6 0 0 0 0, +1 +1
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and each k-th alternative fault signature be denoted by
[V k

i ]n×1. Then the reasoning scheme about faults based
on an FIS may be expressed in the form of a set of n
conditional statements:

if (∃ci

k=1[V
k
i ]n×1 = [Va]n×1) then (fi ∈ D). (5)

Each conditional statement (5) owns its specific
complex premise consisting of ci alternatives of primary
Boolean premises. Let us note that by substituting ci =
1 in (5) we obtain (4). Here, without any doubt, the
reasoning rule (5) enhances the generality of reasoning
compared to the rule (4). It is worth stressing that it
is possible to imagine the reasoning rule (5) where the
number of primary premises does not unconditionally
match ci. In fact, this means that the set of n rules (5)
is not always reversibly transformable to the FIS. Hence,
a set of alternative fault signatures allows a more general
notation for the relation RFS than the FIS.

Definition 2. The diagnostic matrix of alternative signa-
tures VA is a block matrix consisting of all alternative fault
signatures:

VA = [. . . [V k
i ]n×1 . . . ]1×q, q =

n∑

i=1

ci, (6)

where ci is the number of alternative fault signatures
associated with the i-th fault.

Conclusion 1. The FIS and the binary diagnostic matrix
are special cases of a diagnostic matrix of alternative
signatures. In that sense, this matrix may be understood as
a form of general representation of any binary diagnostic
matrix or multi-valued FIS.

An example of the transformation of an FIS depicted
in Table 2 into a diagnostic matrix of alternative signatures
is given in Table 3.

4. Dominant fault signature

In the practice of diagnostics of complex biological
organisms, in some cases and under some conditions,
reasoning about faults may be successfully carried out by

Table 3. Example of transformation of the FIS from Table 2 into
a diagnostic matrix of alternative signatures.

S/F f1
1 f2

1 f1
2 f2

2 f1
3 f1

4 f2
4 f1

5

s1 +1 0 −1 +1 +1 +1 +1 0
s2 1 1 0 0 0 1 1 1
s3 1 1 0 0 0 0 0 0
s4 0 0 0 0 0 0 0 1
s5 0 0 0 0 0 0 0 1
s6 0 0 0 0 0 0 1 1

consideration of specifically chosen subsets of diagnostic
signals. In these cases, missing values of some diagnostic
signals may not influence the result of fault isolation at
all. For the description of the observation stated above,
we introduce the term of dominant diagnostic signals.

Definition 3. The set of dominant diagnostic signals
of the fault fi is any minimal subset Sri

di of the set of
diagnostic signals S that is sufficient to unambiguously
isolate this fault.

The number ri of subsets Sri

di is limited by cardinality
of the set of all alternative signatures assigned to i-th fault,
ri ∈ [0, . . . , ci].

All elements of each Sri

di are called dominant
diagnostic signals of the i-th fault.

Definition 4. The dominant fault signature V ri

di of the
fault fi is a signature containing all dominant diagnostic
signal values and for which “don”t carry” values of
diagnostic signals are replaced by zero values.

Let us consider an example of the binary diagnostic
matrix of alternative signatures of the fault fi shown in
Table 4. Here, X denotes any value of the diagnostic
signal.

The following three sets of dominant diagnostic
signals and three sets of dominant signatures result from
Table 4:

S1
d1 = {s1, s2, s3}, S2

d1 = {s4},
S3

d1 = {s4, s6}, V 1
d1 = [1, 0, 1, 0, 0, 0]T ,

V 2
d1 = [0, 0, 0, 1, 0, 0]T , V 3

d1 = [0, 0, 0, 1, 0, 1]T .

Conclusion 2. Any dominant fault signature is
transformable to the set of alternative signatures
containing the values of all diagnostic signals.

The dominant signature V 1
d1 = [1, 0, 1, 0, 0, 0]T from

the example given above is equivalent to the set of the

Table 4. Example of a binary diagnostic matrix with dominant
fault signatures.

S/F f1
1 f2

1 f3
1 f4

1 f5
1

s1 1 X X 1 0
s2 0 X X 1 1
s3 1 X X 1 1
s4 X 1 1 0 0
s5 X X X 1 1
s6 X X 1 1 1
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following eight alternative signatures:

V 1
1 = [1, 0, 1, 0, 0, 0]T , V 2

1 = [1, 0, 1, 0, 0, 1]T ,

V 3
1 = [1, 0, 1, 0, 1, 0]T , V 4

1 = [1, 0, 1, 0, 1, 1]T ,

V 5
1 = [1, 0, 1, 1, 0, 0]T , V 6

1 = [1, 0, 1, 1, 0, 1]T ,

V 7
1 = [1, 0, 1, 1, 1, 0]T , V 8

1 = [1, 0, 1, 1, 1, 1]T .

Dominant signatures allow us to use a concise
notation of alternative signatures. But, in fact, the
knowledge about dominant signatures is in practice much
more important. This will be thereinafter explained. For
each set Sdi, let us design an m-element characteristic set
Ψdi, where the binary elements equal to 1 are assigned
to all the elements from the set S that belong to the set
of dominant diagnostic signals, and the binary values 0
are assigned to all the remaining elements. Hence, for
each set of dominant diagnostic signals of the fault fi, the
following holds:

Sdi = {(sj ∈ S : ψdi,j = 1)}, ∀j ∈ {1, . . . ,m}, (7)

and
Ψdi = {ψdi,j}, ∀j ∈ {1, . . . ,m}. (8)

Let us now define alternative and dominant premises.

Definition 5. The alternative premise pai of the
conditional statement reasoning about fault fi is a
Boolean alternative of comparisons results of all sets of
alternative fault signatures [V k

i ]n×1 with the set of actual
values of diagnostic signals [Va]n×1,

pai =
ci⋃

k=1

pk
ai, (9)

where

pk
ai =

{
0 if [V k

i ]n×1 �= [Va]n×1,

1 if [V k
i ]n×1 = [Va]n×1

(10)

Definition 6. A dominant premise pdi of the conditional
statement reasoning about fault fi is a Boolean alternative
of all the results of comparison of the dominant fault
signature, with all l sets of actual values of dominant
diagnostic signals [V l

a ]n×1 = [Va]n×1 ∩ [V l
di]n×1,

pdi =
li⋃

l=1

pl
di, (11)

where li is a count of dominant signatures of the fault fi

and

pl
di =

{
0 if [V l

di]n×1 �= [V l
a ]n×1,

1 if [V l
di]n×1 = [V l

a ]n×1.
(12)

Lemma 1. The dominant and alternative premises are
equivalent.

Proof. By definition, each dominant fault signature is
transformable to a set of alternative signatures. But each
alternative fault signature is simultaneously a dominant
one. Hence, dominant and alternative premises are
equivalent. �

Let us come back to the example given above. We
have the dominant signature V 1

d1 = [1, 0, 1, 0, 0, 0]T

and a set of actual diagnostic values equal to Va =
[1, 0, 1, 1, 0, 1]T . The dominant signature V 1

d1 may be
transformed to the set of eight alternative signatures.
Hence, in the worst case, true value of the alternative
premise may be found after eight comparisons. It might
also be found earlier. Let us assume that the mean value of
the number of comparisons equals 4. In the same example,
the true value of the dominant premise is found after
only two operations: a modification of the set of actual
values of diagnostic signals and one comparison. Here,
the number of operations does not depend on values of
the signatures. Taking into account the substitutions (9),
(11) and Lemma 1, the rule (5) will be rewritten in the
following three alternative general comprehensive forms:

(i) unified mixed form,

if (pdi∨pai) then (fi ∈ D); (13)

(ii) unified dominant form,

if (pdi) then (fi ∈ D); (14)

(iii) unified alternative form,

if (pai) then (fi ∈ D). (15)

The rule (13) summarizes parallel reasoning about
faults as a process of searching for the true value of
either dominant or alternative fault premises. The rule
(13) has significant practical meaning. It allows feasible
planning of sequences of diagnostic tests in off-line mode
diagnostics. It is reasonable to perform diagnostic tests of
the diagnostic signals belonging to the sets of dominant
fault signatures in the first instance.

Example 1. Consider the diagnostics of a carcinoma re-
nal case. Carcinoma renal is a kidney cancer responsible
for about 80% of cases. The majority of renal cancers
are asymptomatic. This implies consideration of rich sets
of alternative signatures in the diagnostic process, which
makes unambiguous diagnosis hard. Hopefully, for kidney
diagnostics, in 10–15% of cases, a set of three symptoms:
kidney tumour, kidney pain and haematuria, is generally
indicative in more advanced states of the disease. These
three symptoms (triad) play the dominant role in kidney
cancer diagnostics. Therefore, this triad of symptoms
conditionally forms a dominant signature of the kidney
cancer disease.
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Of course, it is not reasonable to assume that this
particular dominant triad is specific only and only for the
carcinoma renal case. The same triad may be revealed in
different diseases and it may also play a dominating role.
In such cases, dominant signatures may be alternative as
well, and the mixed form (13) of reasoning about faults is
recommended for applications. �

An extract of the diagnostic matrix of alternative
signatures of carcinoma renal is shown in Table 5. Here,
the first dominant signature is represented by the set
of diagnostic signals {s1, s2, s3}. An examination of a
tissue specimen from a biopsy is considered essentially
in oncology for proper identification of cancer. Hence,
the result of histopathology examination of kidney tumour
tissue forms the next dominant signature. It is represented
in Table 5 by the single set of diagnostic signals {s4}.
Sometimes biopsy is not possible or is ordered as a
secondary diagnostic test to confirm suspicions of cancer
disease.

As can be seen from Table 5, there are two sets (l1 =
2) of dominant diagnostic signals S1

d1 and S2
d1:

S1
d1 = {s1, s2, s3}, S2

d1 = {s4}. (16)

From (7) and the definition (4), we deduce the following
dominant signatures of the fault f1:

V 1
d1 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T16×1,

V 2
d1 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T16×1.

(17)

Assume that at time instant t0 there are results
available of five diagnostic tests only:

V t0
a

= [1, 1, 1,−, 0,−,−,−, 1,−,−,−,−,−,−,−]T16×1.

Table 5. Extract of a diagnostic matrix that exemplify diagnos-
tics of the carcinoma renal case (fc1

1 : carcinoma renal,
X: “don’t carry”, lack of diagnostic test).

S/F f1
1 f2

1 f3
1 . . . fc1

1 Diagnostic tests

s1 1 X 1 . . . 0 kidney tumour
s2 1 X 0 . . . 0 kidney pain
s3 1 X 1 . . . 0 haematuria
s4 X 1 − . . . − histopathology
s5 X X 1 . . . 1 weight loss
s6 X X 1 . . . 1 polycythaemia
s7 X X 0 . . . 0 anaemia
s8 X X 1 . . . 1 hypercalcaemia
s9 X X 0 . . . 1 night sweats
s10 X X 1 . . . 1 hypertension
s11 X X 1 . . . 1 high ESR
s12 X X 1 . . . 1 myositis
s13 X X 1 . . . 1 amyloidosis
s14 X X 1 . . . 1 creatinine
s15 X X 0 . . . 1 leg swelling
s16 X X 0 . . . 1 hyperthermia

Is it possible in this situation to infer about the car-
cinoma renal case? In the classical dynamic reasoning
approach, it is possible to do this. But in this reasoning
case, the lack of some diagnostic signals generally impairs
fault distinguishability. If there are defined dominant
signatures, inferring about the carcinoma renal case
is recommended at each stage of the acquisition of
diagnostic signals. The fault is ambiguously isolated and
the process of fault isolation may be stopped immediately
after achieving the value of dominant signature equal to 1.

Please note that the value of the dominant premise in
(13) or (14) equals 1 for a given set of dominant signatures
(17) and a set of available results of diagnostic tests V t0

a ,

pd1 = 1 ∨ 0 = 1. (18)

If, for example, at time instant t1, the set of diagnostic
signals is

V t1
a

= [1, 1,−,−, 0,−,−,−, 1, 0,−,−,−,−,−,−]T16×1,

then the value of the dominant premise is pd1 = 0 and
process of diagnostics of the carcinoma renal case should
be continued.

5. Fuzzy fault signatures

In practice, results of evaluation of diagnostic signals
are more or less uncertain. This is caused by many
factors such as measurement errors, measuring noise,
application of imprecise models for residual generation,
etc. This, in fact, should be addressed in reasoning
about faults. Reasoning about faults taking into account
uncertain symptoms was discussed by Syfert (2006),
Kościelny et al. (1999) as well as Korbicz et al. (2004),
and found many applications in process industries, e.g.,
in diagnostics of a sugar juice evaporation station, the
steam-water line of a boiler in a power station, or a
pneumatic actuator-positioner control valve assembly.

It is clear that rules (13)–(15) are not general
enough to be used directly for description of fuzzy
reasoning about faults. Below it will be shown that these
rules, after appropriate modifications, may be applied to
fuzzy reasoning, too. Firstly, let us assign the binary
characteristic function Φ of the diagnosis set D that
assigns each fault fi ∈ F a Boolean value φi:

{
φi = 0 ⇔ fi /∈ D,
φi = 1 ⇔ fi ∈ D.

(19)

The introduction of the characteristic function allows
us to reformulate the general conditional reasoning
statement (15) to its alternative form (20) convenient for
further discussion,

if (pai = 1) then (φi = 1). (20)
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Here, the Boolean premise reflects an alternative of all
results of comparison of the set of actual fault diagnostic
signals with all alternative fault signatures.

Definition 7. The fuzzy diagnosis DF is a fuzzy set
defined on a space of faults DF ⊆ F . Because cardinality
of the set of faults F is equal to n, the fuzzy diagnosis is
the set of n pairs,

DF =
n∨

i=1

〈μi/fi〉, ∀fi ∈ F, (21)

where μi ∈ [0, 1].
Let us transform (20) to a fuzzy reasoning rule about

the fault fi based on Mamdani’s implication:

if (pF
ai = τi) then (μi = τi), (22)

where pF
ai is the fuzzy alternative premise of fault fi ∈ F,

τi is the fuzzy rule activation level τi ∈ [0, 1], μi is the
membership function of the fuzzy diagnosis.

Conclusion 3. A crisp diagnosisD is a particular case of
a fuzzy diagnosis DF for which τi ∈ [0, 1]. In that sense,
fuzzy diagnosis about faults is more general. Calculation
of fuzzy alternative premises is a separate problem in
(Korbicz et al., 2004, Chapter 11) beyond the scope of
this paper.

Example 2. Let us consider a multi-valued fault
information system with crisp fault signatures as shown
in Table 2. Now, let each residual be fuzzy evaluated by
means of specific symmetric fuzzy sets with the exception
that for evaluation of two-valued residuals the absolute
value of the residual is used instead of its signed value.

�

Definition 8. The fuzzy diagnostic signal sF is a
p-valued linguistic variable defined in the residual space
of discourse.

Remark 1. The general reasoning rule (22) formally does
not make restrictions on the value of p.

Let fuzzy diagnostic signals sets be defined by Π
shaped membership functions as depicted in Fig. 1. For
simplicity, all appropriate fuzzy values (fuzzy sets) of all
fuzzy diagnostic signals in this example are identical.

Definition 9. The fuzzy diagnostic signal value vF of
a fuzzy diagnostic signal sF is a p-tuple value of the
membership functions values 〈μ1, μ2, . . . , μp〉 assigned to
the particular residual value rj .

Let us assume that at time instant t the following
set of normalised residuals was obtained: Ra =
{0.7, 1.0,−0.4, 0.3, 0.5,−0.1}. In part, the problem of
normalization of residuals was tackled by Bartyś et al.

(2005). Fuzzy values of these residuals (actual fuzzy
diagnostic values vF

aj) are shown in Table 6. For example,
if vF

a1 = 〈0.0, 0.1, 0.9〉 then normalised residual ra1 = 0.7
is considered non-negative (degree = 0.0), in part close to
zero (degree = 0.1), and in some part positive (degree =
0.9).

Definition 10. The fuzzy alternative fault signature SF

is an m-valued linguistic variable defined in the space of
discourse being the values of fuzzy diagnostic signals S
that contain a relevant specific pattern of all the fuzzy
diagnostic signal values accompanying the occurrence of
the particular fault.

Fig. 1. Example of two- and three-valued fuzzy evaluation of
the j-th residual (rj : normalised value of the j-th resid-
ual, N, Z, P : fuzzy values of the linguistic variable rj).

Let fuzzy alternative fault signatures of all faults be
known (Table 7). For example, in Table 7 there are two
alternative fuzzy signatures SF

1,1 = {P, P, P, Z, Z, Z}
and SF

1,2 = {Z,P, P, Z, Z, Z} of fault f1 and only one
alternative fuzzy signature SF

5,1 = {Z,P, Z, P, P, P} of
fault f5.

Let us now create Table 8 as a copy of Table 7, in
which symbols of fuzzy alternative fault signatures SF

from Table 7 are replaced appropriately by the values of
actual fuzzy diagnostic signals from Table 6. Additionally,
we define the following three candidate measures of the
conformity degrees τi,k of the actual values of fuzzy
diagnostic signals V F

a with the k-th alternative fuzzy
diagnostic fault signature of fault fi in



414 M. Bartyś

Table 6. Actual fuzzy diagnostic signals values of a multi-
valued fuzzy fault information system.
V F /sF N Z P Ra p

vF
a1 0.0 0.1 0.9 0.7 3

vF
a2 0.0 0.0 1.0 1.0 2

vF
a3 0.0 0.7 0.3 −0.32 2

vF
a4 0.0 0.9 0.1 0.3 2

vF
a5 0.0 0.5 0.5 0.5 2

vF
a6 0.0 1.0 0.0 −0.1 3

Table 7. Fuzzy alternative fault signatures of a multi-valued
fuzzy fault information system.

SF /F f1
1 f2

1 f1
2 f2

2 f1
3 f1

4 f2
4 f1

5

sF
1 P Z N P P P P Z

sF
2 P P Z Z Z P P P

sF
3 P P Z Z Z Z Z Z

sF
4 Z Z Z Z Z Z Z P

sF
5 Z Z Z Z Z Z Z P

sF
6 Z Z Z Z Z P P P

(i) mean value,

τi,k =
1
m

m∑

j=1

sF
i,k,j ; (23)

(ii) product value,

τi,k =
m∏

j=1

sF
i,k,j ; (24)

(iii) minimum value,

τi,k =
m∧

j=1

sF
i,k,j . (25)

Let the conformity degree τi of the i-th fault of the
actual values of fuzzy diagnostic signals V F

a with all fuzzy
diagnostic fault signatures of fault fi be defined as the
maximum of τi,k values:

τi =
ci,k∨

k=1

τi,k, (26)

where ci,k is the number of the alternative fault signatures
associated with the i-th fault.

In fact, τi is an activation level of the fuzzy rule (22)
inferring about fault fi. Call this level the certainty degree
the i-th fault.

The mean value (23) of the conformity degrees τi,k
is characterised by low-pass features. This is beneficial in
real applications because it introduces to a certain extent
immunity against spurious diagnoses due to undesired
disturbances in actual values of diagnostic signals. On the

other hand, it flattens the conformity degrees of the faults,
which can be easily seen from Table 8.

The fuzzy diagnosis DF obtained for a given set of
actual residual valuesRa from Table 6 by application of a
measure of conformity (23) is

DF = {0.60/f1, 0.83/f2, 0.83/f3, 0.77/f4, 0.33/f5}.

This diagnosis indicates all isolated faults assigning
to them some factors that may be interpreted as similarity
degrees of the fuzzy fault signatures to the fuzzy actual
values of diagnostic signals. By arbitrarily choosing some
acceptable similarity threshold value T , it is possible to
highlight most certain faults. In our case, if we choose the
similarity threshold T = 0.70, then

DF
T=0.7 = {0.83/f2, 0.83/f3, 0.77/f4}.

Applying (24) and (25), we obtain respectively

DF
PROD = {0.28/f2, 0.28/f3, 0.12/f4},
DF

MIN = {0.50/f2, 0.50/f3, 0.30/f4}.

Basically all the three examined measures of
conformity bring similar diagnoses in the theoretical
example considered. Let us examine now a more practical
example.

Example 3. Consider now an intelligent
electro-pneumatic final control element (Fig. 2),
nowadays commonly used in industrial practice. This
element is an assembly consisting of the following three
main components: a positioner, a spring-and-diaphragm
pneumatic servomotor, and a control valve. The control
valve acts on the flow of the fluid passing through the
pipeline installation. The pneumatic actuator carries out
a change in the position of the control valve plug, thus
acting on a fluid flow rate. The spring-and-diaphragm
pneumatic servomotor is an air driven device in which
the compressed air produced by the electro-pneumatic
transducer E/P acts upon the flexible diaphragm to
provide a linear motion X of the servomotor stem. The
positioner is a device applied to control valve stem
positions. �

Table 8. Fuzzy alternative fault conformity degrees of a multi-
valued fuzzy fault information system.

SF /F f1
1 f2

1 f1
2 f2

2 f1
3 f1

4 f2
4 f1

5

sF
1 0.9 0.1 0.0 0.9 0.9 0.9 0.9 0.1

sF
2 0.3 0.3 0.7 0.7 0.7 0.3 0.3 0.3

sF
3 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0

sF
4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.1

sF
5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

sF
6 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
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Fig. 2. Structure of the electro-pneumatic final control element
considered.

The actuator may be considered a set of two
subsystems. The first subsystem consists of a positioner
and a pneumatic actuator. This subsystem is a closed loop
system that transforms the external set point signal SP
into the physical position X of the stem of the pneumatic
actuator. The external set point signal SP is delivered
from an external control system by an analogue or a
digital communication link. The stem position X is used
as the position feedback signal for the internal controller
of the positioner. The second subsystem transforms
servomotor linear stem displacement X into the medium
flow rate F according to the specific flow characteristics
of the control valve. Internally, there are only three
physical measurements available. In this example, we will
assume that faults of all these measurements will not be
considered.

When discussing the embedded diagnostics of a final
control element, it is obvious that the set point value SP ,
the process value PV as well as the control value CV
signals are available and may play the role of virtual
measurements. In this example we will assume also that
SP , PV and CV signals are fault free. This indirectly
implies that positioner controller is also faultless. The list
of available measurements and the list of faults in the final
control element considered are respectively presented in
Tables 9 and 10.

The five faults selectively affect the final control
element parts. The causal graph of the final control

Table 9. List of available measurements.
No Symbol Description

1 Ps Air supply pressure
2 P Air pressure in the chamber
3 X Actuator stem displacement

element depicted in Fig. 3 illustrates the influence of these
faults on the graph’s transitions.

The set of four residuals {r1, r2, r3, r4} shown in
Table 11 is proposed for model-based fault detection
purposes. Residuals are calculated based on simple soft
computing partial models depicted in Table 11.

Let us apply now two- and three-valued fuzzy
evaluation of residuals from Table 11 based on the
fuzzy set definitions presented in Fig. 1. Prior to the
explanation of fuzzy diagnosing, let us construct a fuzzy
fault information system (Table 12).

Please notice that if the value of air supply pressure
Ps drops down below some critical level then the final
control element switches immediately to an inoperable
state despite the values of all remaining diagnostic
signals. In this context, the signal s1 plays the dominant
role: S1

d1 = {s1}. Introduction of dominant diagnostic

Table 10. List of faults considered.
Fault Description Type

f1 Supply air pressure external
f2 E-P transducer internal
f3 Pneumatic actuator internal
f4 Position feedback internal
f5 Control valve external

Fig. 3. Causal graph of the electro-pneumatic final control ele-
ment.

Table 11. List of residuals and diagnostic signals.
Symbol Residual Affected by

s1 r1 = P̂s − f(Ps) f1

s2 r2 = P̂ − f(CV ) f1, f2, f3

s3 r3 = X̂ − f(P ) f3, f5

s4 r4 = P̂ V − f(X) f4

Table 12. Multi-valued fuzzy fault information system.
S/F f1 f2 f3 f4 f5

s1 P N N N N
s2 N, P N, P Z, N Z Z
s3 Z Z P Z P
s4 Z Z Z P Z
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signals allows us to prioritize diagnostic threads in
order to optimize diagnostic process performance. This
is particularly important in the case of application of
an external diagnostic system. The actual membership
function values of diagnostic signals of the multi-valued
fuzzy fault information system is presented in Table 13.

Now we will design fuzzy alternative fault signatures
(Table 14) based on Definition 9.

Next, we substitute fuzzy sets terms from Table 14 by
actual membership function values of diagnostic signals
from Table 13. The results are presented in Table 15 in
the form of a matrix of fuzzy alternative fault conformity
degrees.

Finally, the fuzzy diagnosis DF in the form (21)
obtained for a given set of actual residual values Ra from
Table 13 by application of the measure of conformity (23)
is as follows:

DF = {0.88/f1, 0.63/f2, 0.33/f3, 0.23/f4, 0.33/f5}.
If we choose the same value of the similarity

threshold T = 0.70 as in Example 2, then

DF
T=0.7 = {0.88/f1}.

Applying (24) and (25), from Table 15 we obtain
respectively

DF
PROD = {0.57/f1},
DF

MIN = {0.70/f1}.

Table 13. Sample actual fuzzy diagnostic signals values of a
multi-valued fuzzy fault information system.

V F /sF N Z P Ra p

vF
a1 0.0 0.0 1.0 0.9 2

vF
a2 0.0 0.1 0.9 0.7 3

vF
a3 0.0 0.7 0.3 −0.32 2

vF
a4 0.0 0.9 0.1 0.3 2

Table 14. Fuzzy alternative fault signatures of a fuzzy fault in-
formation system.

SF /F f1
1 f2

1 f1
2 f2

2 f1
3 f1

4 f2
4 f1

5

sF
1 P P Z Z Z Z Z Z

sF
2 N P N P Z N Z Z

sF
3 Z Z Z Z P P Z P

sF
4 Z Z Z Z Z Z P Z

Table 15. Fuzzy alternative fault conformity degrees of a multi-
valued fuzzy fault information system.

SF /F f1
1 f2

1 f1
2 f2

2 f1
3 f2

3 f1
4 f1

5

sF
1 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

sF
2 0.0 0.9 0.0 0.9 0.1 0.0 0.1 0.1

sF
3 0.7 0.7 0.7 0.7 0.3 0.3 0.7 0.3

sF
4 0.9 0.9 0.9 0.9 0.9 0.9 0.1 0.9

Also in this example, all three examined measures
of conformity brought similar diagnoses. In contrast to
(23), the product (24) and minimum (25) operations are
sensitive to incidental zero values of diagnostic signals,
which may reflect in the flickering of diagnoses. On the
other hand, the necessity of an arbitrary choice of fixed
or adaptive values of the trigger level is disadvantageous
for this approach. Hence, if the actual values of diagnostic
signals are carefully validated in the pre-processing phase
prior to applying FI, then the mean value (23) of the
conformity degree should not be considered in practice to
be the best choice.

6. Summary

There were defined alternative and dominant fault
signatures. It was proven that dominant fault signatures
are convertible to alternative ones. Knowledge about
dominant fault signatures makes it possible to speed up
the reasoning process and allows rational planning of
diagnostic tests in off-line diagnostics. It was proven that
fuzzy reasoning about faults based on a diagnostic matrix
of alternative fault signatures has better generalization
features compared with its crisp counterparts.

It was shown, that fault isolation system may be
decomposed into a matrix of alternative fuzzy signatures.
However, inverse transformation is not always possible.

Finally, three general forms of reasoning about faults
are presented: uniform alternative, uniform dominant and
mixed. All forms apply to crisp and fuzzy reasoning about
faults.

Future works will be focused on searching for a
generalized description of reasoning about multiple faults.
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Korbicz, J., Kościelny, J. M., Kowalczuk, Z. and Cholewa,
W. (Eds.) (2004). Fault Diagnosis. Models, Ar-
tificial Intelligence, Applications, Springer-Verlag,
Berlin/Heildelberg/New York, NY.

Korbicz, J. and Kościelny, J.M. (Eds.) (2010). Modelling,
Diagnostics and Process Control. Implementation in the
DiaSter System, Springer-Verlag, Berlin/Heildelberg.
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Kościelny, J.M. and Bartyś, M. (2000). Application of
information system theory for actuator diagnosis, IFAC
Symposium on Fault Detection, Supervision and Safety
for Technical Processes, Budapest, Hungary, Vol. 2,
pp. 949–954.
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