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Results of transfer function analysis for a class of distributed parameter systems described by dissipative hyperbolic partial
differential equations defined on a one-dimensional spatial domain are presented. For the case of two boundary inputs, the
closed-form expressions for the individual elements of the 2×2 transfer function matrix are derived both in the exponential
and in the hyperbolic form, based on the decoupled canonical representation of the system. Some important properties of
the transfer functions considered are pointed out based on the existing results of semigroup theory. The influence of the
location of the boundary inputs on the transfer function representation is demonstrated. The pole-zero as well as frequency
response analyses are also performed. The discussion is illustrated with a practical example of a shell and tube heat
exchanger operating in parallel- and countercurrent-flow modes.
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1. Introduction

Distributed Parameter Systems (DPSs) represent a large
class of dynamical systems in which process variables
depend not only on time but also on the spatial variables,
which express the geometry of the system. In practice,
almost all industrial processes fall into this category,
while the existence of the so-called Lumped Parameter
Systems (LPSs) results mainly from the adoption of a
simplified model of the reality, in which spatial effects
are neglected or averaged. Typical examples of a
DPS include heat transfer and fluid flow phenomena,
as well as processes occurring in chemical reactors,
semiconductor manufacturing, polymer processing, air
pollution monitoring and many others (Friedly, 1972; Wu
and Liou, 2001; Bounit, 2003; Bartecki, 2007; 2009;
Zavala-Rio et al., 2009; Li and Qi 2010; Ucinski, 2012;
Patan, 2012).

Based on the phenomenological models of the
processes, established usually on the basis of the
mass or energy conservation balance laws, one obtains
their mathematical description, mostly in the form of
Partial Differential Equations (PDEs) (Evans, 1998;
Mattheij et al., 2005). Depending on the nature of
the modeled phenomena, the equations can be of the
parabolic type (which are typical for unsteady heat

conduction and diffusion problems), hyperbolic type
(representing convection, advection and wave propagation
phenomena) or elliptic type (describing steady-state
physical phenomena, e.g., electrostatic, magnetostatic
or gravitational fields). Mathematical models of DPSs
obtained on the basis of PDEs are described in an
infinite-dimensional state space, usually in a Hilbert
space, and their transfer functions have the form of
irrational functions, as opposed to the rational ones
describing the dynamic properties of LPSs (Callier and
Winkin, 1993; Rabenstein, 1999; Grabowski and Callier,
2001a; Zwart, 2004; Curtain and Morris, 2009).

Comparative analyses of rational and irrational
transfer functions show many essential differences
between them, and one of the most important concerns
the number of their poles and zeros. In the case of
rational transfer functions, the number of poles and zeros
is finite and corresponds to the number of polynomial
roots appearing in the numerator and the denominator
of the transfer function, respectively. On the other
hand, irrational transfer functions, due to the presence of
functions which are periodic for the imaginary argument
(as, e.g., exponential or hyperbolic ones), may have an
infinite number of poles and/or zeros. However, some
of them have neither poles nor zeros, as is in the case of
the well-known transfer function of a time delay system,
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G(s) = e−τs. Another striking difference concerns the
behavior of the transfer functions in the limit cases, e.g.,
when the argument s tends to infinity. In the case of proper
rational functions the limit is zero, while for irrational
ones the limits at the infinity may depend on the chosen
direction on the complex plane. For example, in the case
of the above-mentioned transfer function G(s)=e−τs, the
limit at infinity calculated along the real axis equals zero,
while calculated along the imaginary one does not exist
due to the periodicity of the exponential function for the
imaginary argument (Curtain and Morris, 2009).

The knowledge of transfer functions enables the
design of control systems using frequency response
techniques, and this statement refers both to the LPS and
the DPS (Jovanović and Bamieh, 2006). However, due
to the mathematical complexity and the above-mentioned
peculiarities of irrational transfer functions, their analysis
is more difficult, and possible applications more limited
than in the case of finite-dimensional models. Therefore,
in order to enable the implementation of the techniques
developed over the years and still commonly used for
the synthesis of control systems, infinite-dimensional DPS
models are usually replaced by their finite-dimensional
approximations (Filbet and Shu, 2005; Contou-Carrere
and Daoutidis, 2008; Ding et al., 2009; Jones and
Kerrigan, 2010). These approximations often require a
further reduction using, for example, techniques based on
the Principal Component Analysis (PCA) (Park and Cho,
1996; Li and Qi, 2010; Bartecki, 2011; 2012a; 2012b).
However, regardless of the approximation method used,
the starting point for the synthesis of a control system
should be based on a possibly accurate description of the
DPS, taking into account its infinite-dimensional nature,
e.g., a model in the form of an irrational transfer function.

The paper presents the results of transfer function
analysis for a certain class of DPSs in which the mass,
heat and energy transport phenomena occur. This class
of systems, among which one can mention, e.g., heat
exchangers, transport pipelines, irrigation channels or
electrical transmission lines, is usually described by a
PDE of the hyperbolic type and known under the common
name of the hyperbolic systems of conservation laws
(Friedly, 1972; Delnero et al., 2004; Bounit, 2003;
Kowalewski, 2009; Bartecki and Rojek, 2005; Bartecki,
2007; 2009). Their dynamical properties have been
intensively studied in the literature in recent years. For
example, Zwart et al. (2010) prove that hyperbolic
boundary control systems are well-posed if and only
if the state operator generates a strongly continuous
one-parameter semigroup. Furthermore, they show that
the corresponding transfer function is regular, i.e., has a
limit for the argument s going to infinity. Litrico and
Fromion (2009a; 2009b) use a frequency domain method
for the boundary control of hyperbolic conservation laws
and show that the resulting transfer functions belong to the

so-called Callier–Desoer algebra, for which the Nyquist
theorem provides necessary and sufficient conditions for
the input-output closed-loop stability. The problems of
robust control of hyperbolic PDE systems have been
studied extensively, e.g., by Christofides and Daoutidis
(1998a; 1998b) or Litrico et al. (2007). Interesting results
on the stability and well-posedness analysis of the class
of systems considered were presented recently, e.g., by
Xu and Sallet (2002), Bounit (2003), Coron et al. (2007),
Dos Santos et al. (2008), Chentouf and Wang (2009),
Diagne et al. (2012), as well as Jacob and Zwart (2012).

The structure of the article is as follows. After
Introduction, Section 2 reviews the mathematical model
of the discussed class of DPSs in the form of a set of
PDEs and formulates its hyperbolicity conditions. Next,
the analysis is focused on the systems with two distributed
state variables and boundary-type control. Based on
the semigroup approach, some known theoretical results
of well-posedness and stability for the given class of
dissipative hyperbolic systems are recalled. Section 3
starts with a discussion of some known properties of
the transfer functions of DPSs with boundary inputs.
The closed-form expressions for the individual elements
of the 2×2 transfer function matrix are derived based
on the decoupled canonical system of two hyperbolic
PDEs. In Section 4, a shell and tube heat exchanger
operating in parallel- and countercurrent-flow modes is
presented as a typical example of the hyperbolic DPS
with boundary inputs considered. Based on the derived
transfer functions, selected frequency responses of the
heat exchanger are also presented here. The article
concludes with a summary of new results and directions
for further research.

2. Hyperbolic systems

2.1. General case. Many of the above-mentioned
DPSs can be described, after possible linearization in a
given operating point, by the following system of linear
homogeneous PDEs of the first order (see Christofides
and Daoutidis, 1998b; Evans, 1998; Strikwerda, 2004;
Mattheij et al., 2005; Chentouf and Wang, 2009; Diagne
et al., 2012):

E
∂w (l, t)

∂t
+ F

∂w (l, t)
∂l

= Ww (l, t) , (1)

where w(l, t) : Q → R
n is a vector function representing

the spatio-temporal distribution of the n state variables

w(l, t) =
[
w1(l, t) w2(l, t) . . . wn(l, t)

]T
, (2)

defined on a set Q = Ω×Θ, where Ω = [0, L] ⊂ R is the
domain of the spatial variable l, Θ = [0, +∞) ⊂ R is the
domain of the time variable t, and E, F, W ∈ R

n×n are
matrices with constant entries.



A general transfer function representation for a class of hyperbolic distributed parameter systems 293

Assuming that for det(E) �= 0 and det(F ) �= 0 there
exists a non-singular transformation matrix S ∈ R

n×n

such that the following equation holds:

S−1FE−1S = Λ, (3)

where Λ is a diagonal matrix, pre-multiplying both the
sides of (1) by S−1 and using the following identity

E−1SS−1E ≡ I, (4)

Eqn. (1) can be transformed into the form

S−1E
∂w (l, t)

∂t
+ S−1FE−1SS−1E

∂w (l, t)
∂l

= S−1Ww (l, t) .

(5)

Then, taking into account (3) and (4) and introducing the
transformed state variable vector x(l, t) defined as

x(l, t) = S−1Ew(l, t), (6)

Eqn. (1) can be finally written as follows:

∂x (l, t)
∂t

+ Λ
∂x (l, t)

∂l
= Kx (l, t) , (7)

where
K = S−1WE−1S. (8)

Remark 1. Owing to the diagonal form of the matrix
Λ, each equation of the system (7) contains both temporal
and spatial derivatives of the same state variable xi(l, t),
for i = 1, 2, . . . , n. Therefore, this system is commonly
referred to as decoupled or weakly coupled, i.e., coupled
only through the terms that do not contain derivatives, as
opposed to the original system (1) which in general can be
strongly coupled.

Definition 1. (Mattheij et al., 2005) The system (1) is
said to be hyperbolic if all the eigenvalues of the matrix
FE−1 are real and different from zero. Additionally, if
all the eigenvalues are distinct, then Eqn. (1) is said to be
strictly hyperbolic.

Therefore, the strict hyperbolicity of the system
means that the matrix Λ in (7) takes the following form:

Λ = diag (λ1, . . . , λp, λp+1, . . . , λn) , (9)

where λi ∈ R \ {0} for i = 1, 2, . . . , n, represents the
eigenvalues of the matrix FE−1 arranged in descending
order,

λ1 > . . . > λp > 0 > λp+1 > . . . > λn, (10)

with p ≤ n representing the number of positive
eigenvalues.

The matrix S in (3) can be presented as follows:

S =
[
s1 . . . sp sp+1 . . . sn

]
, (11)

where si ∈ R
n for i = 1, 2, . . . , n denotes the

corresponding column eigenvectors of the matrix FE−1.

Remark 2. If the matrix FE−1 is symmetric, then the
system (1) is hyperbolic. In the case of hyperbolic PDEs
describing physical phenomena mentioned in Section 1,
its eigenvalues usually represent the wave propagation
velocities (as for the electrical transmission line) or mass
and energy transport rates (as for the shell and tube heat
exchanger).

2.2. Initial and boundary conditions. In order to
obtain a unique solution of (7), one must specify the
appropriate initial and boundary conditions. The initial
conditions represent the initial (i.e., determined for t = 0)
distribution of the values of all n state variables for the
whole set Ω,

x(l, 0) = x0(l), (12)

where x0(l) : Ω → R
n is a given vector function.

On the other hand, the boundary conditions represent
the requirements to be met by the solution x(l, t) at the
boundary points of Ω. In general, these conditions may
take the form of a linear combination of the Dirichlet and
Neumann boundary conditions, as the so-called boundary
conditions of the third kind (Dooge and Napiorkowski,
1987; Christofides and Daoutidis, 1997; Sutherland and
Kennedy, 2003; Ancona and Coclite, 2005). For the
class of hyperbolic systems considered, we assume the
Dirichlet boundary conditions, which can be written in the
following compact way (see Xu and Sallet, 2002; Diagne
et al., 2012):

[
x+(0, t)

x−(L, t)

]

=

[
P00 P01

P10 P11

][
x+(L, t)

x−(0, t)

]

+

[
R0

R1

]

u (t)

(13)
with

x+ =

⎡

⎢
⎣

x1

...
xp

⎤

⎥
⎦ , x− =

⎡

⎢
⎣

xp+1

...
xn

⎤

⎥
⎦ . (14)

The vector function u(t) ∈ L2([0, +∞); Rr) in (13)
expresses the inhomogeneity of the boundary conditions
which can be identified with r external inputs to the
system, including control signals as well as external
disturbances. The constant matrices P00 ∈ R

p×p, P01 ∈
R

p×(n−p), P10 ∈ R
(n−p)×n, P11 ∈ R

(n−p)×(n−p)

express boundary feedbacks and reflections, whereas
R0 ∈ R

p×r and R1 ∈ R
(n−p)×r represent the effect of the

external inputs u(t) on the boundary conditions x+(0, t)
and x−(L, t), respectively.

2.3. Second-order systems. Among many different
kinds of DPSs, an important class is constituted by
the systems with two spatio-temporal state variables
which can be described, after appropriate assumptions,
by a second-order hyperbolic PDE. The following typical
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examples can be mentioned here (Górecki et al., 1989;
Gvozdenac, 1990; Miano and Maffucci, 2001; Arbaoui
et al., 2007; Dos Santos et al., 2008; Bartecki, 2009):

• the voltage u(l, t) and the current i(l, t) in the
electrical transmission line,

• the pressure p(l, t) and the flow q(l, t) of the medium
transported through the pipeline,

• the temperatures ϑ1(l, t) and ϑ2(l, t) of the heating
and the heated fluid in the case of a shell and tube
heat exchanger.

In the case of the above-mentioned systems,
Eqn. (7) takes, after possible previous linearization and
diagonalization, the form of the following two PDEs:

∂x1(l, t)
∂t

+λ1
∂x1(l, t)

∂l
=k11x1(l, t)+k12x2(l, t) , (15)

∂x2(l, t)
∂t

+λ2
∂x2(l, t)

∂l
=k21x1(l, t)+k22x2(l, t) , (16)

where k11, k12, k21, k22 are constant elements of the
matrix K given by (8).

It is assumed here that the only external influence
on the state variables is given by the boundary conditions
(13) and no boundary feedbacks nor reflections are present
in the system, i.e., P00, P01, P10, P11 in (13) are all
zero matrices. The second important assumption is that
the system is given directly by the two weekly coupled
PDEs (15) and (16), or is considered in terms of the
transformed state variables (6). Two cases often occurring
in practice are studied here: in the first one, both boundary
conditions are given for the same edge (l = 0) of Ω,
and in the second the input function u(t) acts on the two
different edges, l = 0 and l = L, respectively. Such a
situation occurs, e.g., in the case of shell and tube heat
exchangers, for which two different flow configurations
are possible (Bartecki and Rojek, 2005; Bartecki, 2007;
Delnero et al., 2004; Gvozdenac, 1990; Zavala-Río et al.,
2009; Maidi et al., 2010). Therefore, two new definitions
are now introduced in order to discriminate between the
two above-mentioned classes of boundary inputs.

Definition 2. The boundary inputs of the system (15)
and (16) will be referred to as congruent for the following
parameter values of Eqn. (13): n = l = p = 2 and R0 =
I2, which leads to the input vector of the form

u(t)=
[
u1 (t) u2 (t)

]T =
[
x1 (0, t) x2 (0, t)

]T
. (17)

Definition 3. The boundary inputs to the system (15) and
(16) will be referred to as incongruent for the following
parameter values of Eqn. (13): n = l = 2, p = 1, R0 =

[1 0] and R1 = [0 1], which leads to the input vector of
the form

u(t)=
[
u1 (t) u2 (t)

]T =
[
x1 (0, t) x2 (L, t)

]T
. (18)

Remark 3. Taking into account (10), it can be noticed
that the congruent boundary inputs should be imposed for
λ1 > 0 and λ2 > 0, while the incongruent ones for λ1 > 0
and λ2 < 0.

The above assumptions about the form of the
boundary conditions representing the external influences
on the system have their practical reasons. For example,
in the case of the above-mentioned shell and tube heat
exchanger operating in the so-called parallel-flow mode,
the temperatures of the heated and the heating fluid are
given for the same geometric point of the exchanger. On
the other hand, the temperatures of the fluids flowing into
the exchanger operating in the countercurrent-flow mode
are specified for its two opposite sides.

2.4. State and output equations. Ignoring for the
moment the boundary inputs, Eqn. (1) can be written
in the following homogeneous abstract Cauchy form
(Curtain and Zwart, 1995):

dx(t)
dt

= Ax(t), x(0) = x0, (19)

with the state variable x(t) belonging to the Hilbert space
X = L2(Ω, Rn) and the operator A : X ⊃ D(A) → X
which can be expressed based on (7) as

Ah = −Λ
dh

dl
+ Kh. (20)

Considering the second-order system (15) and (16), the
domain D(A) is given for h = [h1, h2]T by

D(A)=
{
h ∈ H1(Ω)×H1(Ω)

∣
∣ h1(0)=h2(0)=0

}
,

(21)
for λ1 > 0, λ2 > 0, and by

D(A)=
{
h ∈ H1(Ω)×H1(Ω)

∣
∣ h1(0)=h2(L)=0

}
,

(22)
for λ1 > 0, λ2 < 0, with H1(Ω) the Hilbert–Sobolev
space of functions, whose distributional derivatives lie in
L2(Ω).

Assumption 1. The matrix K in (7) is symmetric and
negative-semidefinite, i.e., it fulfills ξT Kξ ≤ 0 for any
ξ ∈ R

n.

Remark 4. Assumption 1, together with the proper
boundary conditions, ensures the so-called dissipativity
of the operator A in (20) (Phillips, 1957; Lumer and
Phillips, 1961; Xu and Sallet, 2002; Chentouf and Wang,
2009; Tucsnak and Weiss, 2006). This means that the
associated physical model has no internal energy sources
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and the boundary conditions are such that no energy enters
the model through the boundaries. These conditions
are satisfied by many chemical engineering systems like
tubular reactors and heat exchangers.

Theorem 1. (Rauch and Taylor, 1974; Lumer and
Phillips, 1961) Let the assumptions on the hyperbolicity
be satisfied for the system (7). Then for each x0 ∈ X the
system has a unique solution

x(·, t) ∈ C ([0, +∞) ; X) . (23)

Moreover, if the system is dissipative, the semigroup of
bounded linear operators T (t) from X into itself such that
x(·, t) = T (t)x0, generated by the operator A (20), is
contractive, i.e., it fulfills

‖T (t)‖L(X) ≤ 1 for all t ≥ 0. (24)

Considering the second-order system (15) and (16),
the boundary inputs introduced in Definitions 2 and 3 can
be included as an inhomogeneity into (19), giving as a
result the following state equation (see Curtain and Weiss,
2006):

dx(t)
dt

= Ax(t) + Bu(t), x(0) = x0, (25)

where u(t) ∈ L2([0, +∞); R2), and

Bu(t) =
[
λ1δ (0)u1 (t)
λ2δ (0)u2 (t)

]
(26)

or

Bu(t) =
[
λ1δ (0)u1 (t)
λ2δ (L)u2 (t)

]
, (27)

where B is the control operator for the case of the
congruent and incongruent boundary inputs, respectively.
In the above formulation, the input points are modeled as
a Delta distribution at the extremities l = 0 and l = L (see
Tucsnak and Weiss, 2006; 2009; Maidi et al., 2010).

The state equation (25) can be completed by the
following output equation:

y(t) = Cx(t), (28)

where y is in the Hilbert space Y and C is a linear output
(observation) operator. This operator can be taken as
identity, giving as a result a “distributed output”, i.e.,

y(t) = x(t), (29)

or as a pointwise output operator with

Cx(t) =

⎡

⎢⎢
⎣

L∫

0

δ (L)x1 (ξ, t) dξ

L∫

0

δ (L)x2 (ξ, t) dξ

⎤

⎥⎥
⎦ =

[
x1 (L, t)
x2 (L, t)

]
(30)

or

Cx(t) =

⎡

⎢
⎢
⎣

L∫

0

δ (L)x1 (ξ, t) dξ

L∫

0

δ (0)x2 (ξ, t) dξ

⎤

⎥
⎥
⎦ =

[
x1 (L, t)
x2 (0, t)

]
, (31)

which can be treated as “opposite boundary” counterparts
of the input operators (26) and (27), with y(t) ∈
L2([0, +∞); R2).

Although the above formulation of input and output
operators seems to be soundly justified by practical
considerations (e.g., inlet and outlet points of a shell and
tube heat exchanger are usually located on its extreme
opposite ends), it causes some mathematical difficulties
since B and C are unbounded, δ(0), δ(L) /∈ L2(Ω).
However, as will be shown in the next section, the
notion of the transfer function can be preserved for some
class of distributed parameter systems with a certain
unboundedness of the control and observation operators.

3. Transfer function description

3.1. Definition and properties.

Definition 4. (Curtain and Zwart, 1995) The trans-
fer function G(s) of the linear system described by
the state and output equations (25) and (28), is the
L(R2, R2)-valued function of a complex variable given by

y(s) = G(s)u(s) for Re(s) > α, (32)

where y(s) and u(s) are the Laplace transforms of y(t)
and u(t), respectively, and α is a real parameter such
that e−αu (·) ∈ L2

(
[0, +∞) ; R2

)
produces e−αy (·) ∈

L2
(
[0, +∞) ; R2

)
for every u.

Assuming temporarily that both B and C are
bounded linear operators: B ∈ L (R2, X

)
and C ∈

L (X, R2
)
, the transfer function G(s) of the system is

given by (Callier and Winkin, 1993; Curtain and Zwart,
1995)

G(s) = C (sI − A)−1
B for Re(s) > ω0, (33)

where (sI − A)−1 ∈ L (X, D (A)) is the resolvent of
A, i.e., the Laplace transform of the semigroup T (t)
generated by A, and ω0 is the growth constant of this
semigroup.

The above definition of the transfer function can
be extended to a more general class of systems, where
some unboundedness of the input and output operators
is possible, as shown by Salamon (1987), Curtain et al.
(1992), Callier and Winkin (1993), Grabowski and Callier
(2001a; 2001b), or Cheng and Morris (2003). Such
general systems are interesting since they allow, e.g.,
the exact boundary control as well as the pointwise
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observation, as considered in Section 2.4. To this end,
the notion of the so-called admissibility of the input and
output operators has been introduced in the literature. The
mild solution of (25) and (28) can be written, assuming
t ≥ 0, in the following general form (Curtain and
Zwart, 1995):

x(t) = T (t)x0 +

t∫

0

T (t − τ)Bu(τ) dτ, (34)

y(t) = CT (t)x0 + C

t∫

0

T (t− τ)Bu(τ) dτ, (35)

where T (t) is the semigroup generated by A (20). Without
going too far into details, it may be stated that the operator
B for which the integral term in (34) lies in X for every
u ∈ L2

(
[0, t1] , R2

)
and some t1 > 0 is called an admis-

sible input operator. Similarly, the operator C for which
one can uniquely define a function y ∈ L2

(
[0, t1] , R2

)

for some t1 > 0 and all x0 ∈ X , is called an admis-
sible output operator (Curtain et al., 1992; Weiss, 1994;
Staffans and Weiss, 2000).

If both B and C are admissible operators, the system
(34) and (35) is called a Pritchard–Salamon system
(Pritchard and Salamon, 1984; Curtain et al., 1992). Since
the admissibility of the studied unbounded operators
B and C for the semigroup T (t) generated by A in
(20) has been already proved (see, e.g., Tucsnak and
Weiss, 2006) one may state that the dissipative hyperbolic
systems considered belong to the Pritchard–Salamon
class. Moreover, as proved by Curtain (1988), if A
generates a C0-semigroup T (t), either μ-exponential
stabilizability or μ-exponential detectability of this
semigroup is sufficient for the given systems to belong
to the Callier–Desoer class B(μ), for which the Nyquist
theorem provides necessary and sufficient conditions for
input-output closed-loop stability (Callier and Winkin,
1993; Curtain and Zwart, 1995; Sasane, 2002). The above
statement holds true even if B and C are unbounded
operators, which is the case considered here. The same
has been proved by Litrico and Fromion (2009a) for a very
particular hyperbolic system of conservation laws, based
on the transfer function decomposition into an unstable
finite dimensional part and a stable infinite dimensional
part.

From the semigroup analysis performed in
Section 2.4 we have that the transfer functions of
the hyperbolic systems considered are in H∞, i.e., they
are analytic and bounded in the open right half of the
complex plane, Re(s) > 0. As shown by Callier and
Winkin (1993) as well as Curtain and Zwart (1995),
it is possible for a boundary control system to obtain
a closed form expression for the transfer function by
taking the Laplace transforms of the original partial

differential equation and solving the resulting boundary
value problem. This approach will be applied here to the
analysed class of hyperbolic DPSs.

3.2. General transfer function matrix. After Laplace
transform Lt with respect to the variable t, the general
system (7) can be written as

∂x(l, s)
∂l

= Λ−1 (K − sI)x(l, s) + Λ−1x(l, 0), (36)

where x(l, 0) represents the initial conditions (12).
Introducing, for the sake of brevity, the matrix P (s) of
the following form:

P (s) = Λ−1 (K − sI) , (37)

the general solution of (36) is given by

x(l, s)=Λ−1

l∫

0

eP (s)(l−ξ)x(ξ, 0) dξ + eP (s)lx(0, s),

(38)
where the first term on the right-hand side represents the
response to the initial conditions at t = 0 and the second
the response to the boundary conditions at l = 0.

Equation (38) can be identified with the state
transition equation (34), except that the former is in the
Laplace transform domain whereas the latter in the time
domain. Moreover, the role of the input function u(t)
in (34) is played by the Laplace-transformed boundary
conditions x(0, s) in (38). Therefore, assuming the case
of the distributed output (29), the matrix eP (s)l in (38),
which is the resolvent of the operator A,

R (s, A)=(sI−A)−1 = eP (s)l for Re (s)>0, (39)

can be referred to as a general n × n transfer function
matrix G(l, s) of the system (7) with n boundary inputs
imposed at l = 0 and the parameter l indicating the spatial
position for which the transfer function is to be evaluated.

In order to calculate the matrix exponential eP (s)l in
(39), we assume that P (s) can be diagonalized as follows:

P (s) = Ψ(s)Φ(s)Ψ−1(s), (40)

where Φ(s) is a diagonal matrix of eigenvalues of
P (s) and Ψ(s) consists of its (column) eigenvectors.
Consequently, Eqn. (38) can be written in the following
form:

x(l, s)=Λ−1

l∫

0

G(l−ξ, s)x(ξ, 0) dξ +G(l, s)x(0, s),

(41)
where

G(l, s) = eP (s)l = Ψ(s)eΦ(s)lΨ−1(s). (42)
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3.3. Transfer function matrices of the second-
order system. In the case of the second-order system
described by (15) and (16), one can distinguish two
lumped input signals represented by the boundary
conditions (17) or (18), and two output signals
representing the distribution of the state variables x1(l, t)
and x2(l, t) (see Eqn. (29)). For the purpose of further
analysis, the following two definitions are introduced,
based on the well-known notion of the transfer function
as the ratio of the Laplace transform of the output signal
to the Laplace transform of the input signal under the
assumption that the other input signals as well as all initial
conditions are equal to zero.

Definition 5. The transfer function matrix of the system
described by Eqns. (15) and (16) is defined for the case
of the congruent boundary inputs (17) as the matrix of the
following form:

G(l, s) =

[
G11(l, s) G12(l, s)

G21(l, s) G22(l, s)

]

, (43)

where

G11(l, s) =
x1(l, s)
x1(0, s)

, G21(l, s) =
x2(l, s)
x1(0, s)

, (44)

for x2(0, s) = 0, and

G12(l, s) =
x1(l, s)
x2(0, s)

, G22(l, s) =
x2(l, s)
x2(0, s)

, (45)

for x1(0, s) = 0, all for zero initial conditions, x1(l, 0) =
x2(l, 0) = 0.

Definition 6. The transfer function matrix of the system
described by Eqns. (15) and (16) is defined for the case of
the incongruent boundary inputs (18) as the matrix of the
following form:

Ḡ(l, s) =

[
Ḡ11(l, s) Ḡ12(l, s)

Ḡ21(l, s) Ḡ22(l, s)

]

, (46)

where

Ḡ11(l, s) =
x1(l, s)
x1(0, s)

, Ḡ21(l, s) =
x2(l, s)
x1(0, s)

, (47)

for x2(L, s) = 0, and

Ḡ12(l, s) =
x1(l, s)
x2(L, s)

, Ḡ22(l, s) =
x2(l, s)
x2(L, s)

, (48)

for x1(0, s) = 0, all for zero initial conditions, x1(l, 0) =
x2(l, 0) = 0.

The vector of Laplace transforms of the state
variables

x(l, s) =
[
x1(l, s) x2(l, s)

]T
(49)

Fig. 1. Block diagram of the transfer function model for the
congruent boundary inputs.

can therefore be determined for the congruent boundary
inputs, assuming zero initial conditions, based on the
following equation:

x(l, s) = G(l, s)u(s) (50)

for u(s) = [x1(0, s) x2(0, s)]T , which is obviously a
particular case of (41). A block diagram of the transfer
function model for the congruent boundary inputs is
presented in Fig. 1.

On the other hand, for the case of the incongruent
boundary inputs (see Fig. 2), the formula for the vector of
the state variables takes the following form:

x(l, s) = Ḡ(l, s)u(s) (51)

for u(s) = [x1(0, s) x2(L, s)]T . Referring to the
analysis presented in Section 3.2, the matrix P (s) in (37)
takes for the case considered the following form:

P (s)=

[
p11(s) p12

p21 p22(s)

]

=

⎡

⎢
⎣

k11 − s

λ1

k12

λ1
k21

λ2

k22 − s

λ2

⎤

⎥
⎦ , (52)

and its eigendecomposition (40) results in the following
matrix of eigenvalues:

Φ(s) = diag (φ1(s), φ2(s)) , (53)

with
φ1,2(s) = α(s) ± β(s), (54)

where

α(s) =
1
2

(p11(s) + p22(s)) (55)

and

β(s) =
1
2

√
(p11(s) − p22(s))

2 + 4p12p21. (56)

Assuming as an example k11 < 0, k22 < 0 and
k12 = k21 = 0 in (15) and (16) for the case of the
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Fig. 2. Block diagram of the transfer function model for the in-
congruent boundary inputs.

congruent boundary inputs (17), we immediately obtain,
based on (52) and (42), the transfer function matrix G(l, s)
in the diagonal form,

G(l, s) =

[
κ1(l)e−sτ1(l) 0

0 κ2(l)e−sτ2(l)

]

, (57)

where

κ1(l) = e
k11
λ1

l
, κ2(l) = e

k22
λ2

l
, (58)

τ1(l) =
l

λ1
, τ2(l) =

l

λ2
. (59)

The above representation should be
considered a particular case of the two separate
proportional-time-delay systems. Furthermore, assuming
also k11 = k22 = 0, we obtain two pure time-delay
systems, G11(l, s) = e−sτ1(l) and G22(l, s) = e−sτ2(l).

In the next subsection the analytical closed form
expressions for the individual elements of the transfer
function matrices G(l, s) and Ḡ(l, s) are derived for
the general case of the non-zero parameters, taking
into account the two different forms of the boundary
conditions introduced in Section 2.3.

3.4. Analytical expressions for the transfer functions.

Proposition 1. The transfer functions included in the
matrix G(l, s) in (43) take for the case of the congruent
boundary inputs (17) the following form:

G11(l, s) =
φ1(s) − p22(s)
φ1(s) − φ2(s)

eφ1(s)l

− φ2(s) − p22(s)
φ1(s) − φ2(s)

eφ2(s)l,

(60)

G12(l, s) =
p12

φ1(s) − φ2(s)

(
eφ1(s)l − eφ2(s)l

)
, (61)

G21(l, s) =
p21

φ1(s) − φ2(s)

(
eφ1(s)l − eφ2(s)l

)
, (62)

G22(l, s) =
φ1(s) − p11(s)
φ1(s) − φ2(s)

eφ1(s)l

− φ2(s) − p11(s)
φ1(s) − φ2(s)

eφ2(s)l,

(63)

where p11(s), p12, p21 and p22(s) are elements of the
matrix P (s) in (52) and φ1(s), φ2(s) are its eigenvalues
given by (53)–(56).

Proof. By applying the Laplace transform Lt to (15)
and (16), one obtains, assuming zero initial conditions
x1(l, 0) = 0 and x2(l, 0) = 0, the following equations:

λ1
∂x1 (l, s)

∂l
=(k11−s)x1 (l, s) + k12x2 (l, s) , (64)

λ2
∂x2 (l, s)

∂l
=k21x1 (l, s) + (k22−s)x2 (l, s) . (65)

Taking the Laplace transform again, now with respect to
the spatial variable l,

x (q, s) = Ll

{
x (l, s)

}
(66)

and taking into account that

Ll

{
∂x(l, s)

∂l

}
= qx(q, s) − x(0, s) (67)

transforms Eqns. (64) and (65) into the following form:

x1 (q, s) =
q − k22−s

λ2

M(q, s)
x1 (0, s) +

k12
λ1

M(q, s)
x2 (0, s) ,

(68)

x2 (q, s) =
k21
λ2

M(q, s)
x1 (0, s) +

q − k11−s
λ1

M(q, s)
x2 (0, s) ,

(69)

where M(q, s) is the characteristic polynomial of the
matrix P (s)

M(q, s) = det (qI − P (s)) =
= (q − φ1 (s)) (q − φ2 (s)) .

(70)

Finding the inverse Laplace transform of (68) and
(69) with respect to q by taking advantage of the following
property (Friedly, 1972):

L−1
q

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(q)
T (q)

=
S(q)

N∏

j=1

(q − λj)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
N∑

j=1

S(λj)
dT (q)

dq

∣
∣
∣
q=λj

eλjt,

(71)
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where S(q) and T (q) represent polynomials in q of degree
M and N > M , respectively, and λj is a single root of
T (q), yields the following form of the equations:

x1 (l, s)=G11(l, s) x1(0, s)+G12(l, s)x2(0, s) , (72)

x2 (l, s)=G21(l, s) x1(0, s)+G22(l, s)x2(0, s) , (73)

where the expressions on G11(l, s), G12(l, s), G21(l, s)
and G22(l, s) are given by (60)–(63). �

Lemma 1. For any x, y, z ∈ C such that z �= 0 and
z �= y, the following identity holds:

ex − y

z
e−x =

z − y

z

(
coshx +

z + y

z − y
sinh x

)
. (74)

Proof. By using the well-known identities

sinh x =
ex − e−x

2
(75)

and

cosh x =
ex + e−x

2
, (76)

the right-hand side of (74) can be transformed in the
following way:

z − y

z

(
coshx +

z + y

z − y
sinh x

)

=
z − y

2z

(
ex + e−x +

z + y

z − y

(
ex − e−x

)
)

=
z − y

2z

(
2z

z − y
ex − 2y

z − y
e−x

)

= ex − y

z
e−x.

(77)

�

Proposition 2. The transfer functions (60)–(63) can be
expressed in the following equivalent form using the hy-
perbolic functions:

G11(l, s) = eα(s)l
(

cosh β(s)l

+
α(s) − p22(s)

β(s)
sinh β(s)l

)
,

(78)

G12(l, s) =
p12

β(s)
eα(s)l sinhβ(s)l, (79)

G21(l, s) =
p21

β(s)
eα(s)l sinhβ(s)l, (80)

G22(l, s) = eα(s)l
(

cosh β(s)l

+
α(s) − p11(s)

β(s)
sinh β(s)l

)
,

(81)

where α(s) and β(s) are given by (55) and (56).

Proof. The transfer function G11(l, s) described by
(60) can be transformed using (54) and Lemma 1 into the
following form:

G11(l, s)

=
φ1(s)

φ1(s) − φ2(s)
eα(s)leβ(s)l

− p22(s)
φ1(s)−φ2(s)

eα(s)leβ(s)l

− φ2(s)
φ1(s) − φ2(s)

eα(s)le−β(s)l

+
p22(s)

φ1(s)−φ2(s)
eα(s)le−β(s)l

=
φ1(s)

φ1(s) − φ2(s)
eα(s)l

(
eβ(s)l − φ2(s)

φ1(s)
(s)e−β(s)l

)

− p22(s)
φ1(s) − φ2(s)

eα(s)l
(
eβ(s)l − e−β(s)l

)

= eα(s)l

(
coshβ(s)l +

φ1(s) + φ2(s)
φ1(s) − φ2(s)

sinhβ(s)l
)

− 2
p22(s)

φ1(s) − φ2(s)
eα(s)lsinhβ(s)l.

(82)

Then, by making the substitutions φ1(s) − φ2(s) =
2β(s) and φ1(s) + φ2(s) = 2α(s), one obtains the
hyperbolic form (78) of G11(l, s). Due to the obvious
symmetry, one can similarly obtain the hyperbolic version
(81) of G22(l, s). On the other hand, for the transfer
function G12(l, s) we have

G12(l, s) =
p12

φ1(s) − φ2(s)
eα(s)l

(
eβ(s)l − e−β(s)l

)

= 2
p12

φ1(s) − φ2(s)
eα(s)l sinhβ(s)l

=
p12

β(s)
eα(s)l sinh β(s)l,

(83)

and, in a similar fashion, we come to the hyperbolic form
(80) of G21(l, s). �

Remark 5. By making in the transfer functions (60)–(63)
the substitution l = 0, one obtains eφ1(s)l = eφ2(s)l = 1
and finally G11(0, s) = 1, G12(0, s) = 0, G21(0, s) = 0,
G22(0, s) = 1. This result means that for l = 0, a given
output variable xi(l, t) is identically equal to the relevant
boundary input ui(t), without any cross-interactions from
the second boundary input (see Fig. 1). Analogous results
can be obtained based on the analysis of the hyperbolic
form (78)–(81) of the transfer functions. In this case one
obtains, for l = 0, eα(s)l = 1, sinhβ(s)l = 0 and
coshβ(s)l = 1, which leads to the same values of the
transfer functions.
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Proposition 3. The transfer functions included in the ma-
trix Ḡ(l, s) in (46) for the case of the incongruent bound-
ary inputs (18) take the following form:

Ḡ11(l, s)

=
eφ2(s)Leφ1(s)l (φ1(s) − p22(s))

eφ2(s)L(φ1(s) − p22(s)) − eφ1(s)L(φ2(s) − p22(s))

− eφ1(s)Leφ2(s)l (φ2(s) − p22(s))
eφ2(s)L(φ1(s) − p22(s)) − eφ1(s)L(φ2(s) − p22(s))

,

(84)

Ḡ12(l, s)

=
p12

(
eφ2(s)l − eφ1(s)l

)

eφ2(s)L(φ2(s) − p11(s)) − eφ1(s)L(φ1(s) − p11(s))
,

(85)

Ḡ21(l, s)

=
p21

(
eφ2(s)Leφ1(s)l − eφ1(s)Leφ2(s)l

)

eφ2(s)L(φ1(s) − p22(s)) − eφ1(s)L(φ2(s) − p22(s))
,

(86)

Ḡ22(l, s)

=
eφ2(s)l (φ2(s) − p11(s)) − eφ1(s)l (φ1(s) − p11(s))
eφ2(s)L (φ2(s) − p11(s)) − eφ1(s)L (φ1(s) − p11(s))

,

(87)

where p11(s), p12, p21 and p22(s) are elements of the
matrix P (s) in (52) and φ1(s), φ2(s) are its eigenvalues
given by (53)–(56).

Proof. The solution of the set of the differential equations
(64) and (65), now with the incongruent boundary
conditions (see Definition 3), is given in the following
form:

x1 (l, s)=Ḡ11(l, s)x1(0, s)+Ḡ12(l, s)x2(L, s) , (88)

x2 (l, s)=Ḡ21(l, s)x1(0, s)+Ḡ22(l, s)x2(L, s) , (89)

where the expressions for Ḡ11(l, s), Ḡ12(l, s), Ḡ21(l, s)
and Ḡ22(l, s) are given by (84)–(87). �

Proposition 4. The transfer functions (84)–(87) can be
expressed in the following equivalent form using the hy-
perbolic functions:

Ḡ11(l, s)

=
eα(s)lβ(s) cosh β(s)(l − L)

β(s) cosh β(s)L − (α(s) − p22(s)) sinh β(s)L

+
eα(s)l (α(s) − p22(s)) sinhβ(s)(l − L)

β(s) cosh β(s)L − (α(s) − p22(s)) sinh β(s)L
,

(90)

Ḡ12(l, s)

=
p12eα(s)(l−L) sinh β(s)(l)

β(s) cosh β(s)L + (α(s) − p11(s)) sinh β(s)L
,

(91)

Ḡ21(l, s)

=
p21eα(s)l sinh β(s)(l − L)

β(s) cosh β(s)L − (α(s) − p22(s)) sinh β(s)L
,

(92)

Ḡ22(l, s)

=
eα(s)(l−L)β(s) cosh β(s)l

β(s) cosh β(s)L + (α(s) − p11(s)) sinh β(s)L

+
eα(s)(l−L) (α(s) − p11(s)) sinh β(s)l

β(s) cosh β(s)L + (α(s) − p11(s)) sinh β(s)L
.

(93)

Proof. The result is derived as in the case of the proof of
Result 2, i.e., using (54) and Lemma 1. �

Remark 6. In the case of the incongruent boundary
inputs one obtains Ḡ11(0, s) = 1, Ḡ12(0, s) = 0,
Ḡ21(L, s) = 0 and Ḡ22(L, s) = 1 (see Fig. 2).

3.5. Pole-zero analysis. The pole-zero analysis can be
started with the simplified form of the analysed transfer
functions, discussed at the end of Section 3.3, i.e., for
k12 = k21 = 0. In this case we obtain φ1(s) = p11(s),
φ2(s) = p22(s) and the transfer functions are given by
the matrix (57) with G12(l, s) = G21(l, s) = 0 and
G11(l, s), G22(l, s) in the pure exponential form having
neither poles nor zeros. Similar results can be obtained
for the case of the incongruent inputs.

Considering the more general case of the non-zero
parameters, one can suppose that the poles of the transfer
functions (60)–(63) and (84)–(87) occur when

φ1(s) = φ2(s) (94)

with

s1,2 =
k22λ1 − k11λ2

λ1 − λ2
± 2

√−k12k21λ1λ2

λ1 − λ2
. (95)

However, Eqn. (94) expresses also the condition for
“zeroing” all transfer function numerators. Thus, since
the poles and zeros are defined for the reduced form of
the transfer function, we can state that all the transfer
functions considered have no poles. Furthermore, transfer
functions G11(l, s), G22(l, s) and their incongruent
counterparts have no zeros either. The above results can
be regarded as a generalization of the results obtained for
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the simplified form of the transfer functions considered in
Section 3.3.

Slightly different is the case of the “crossover”
channels G12(l, s) and G21(l, s), for which the condition
for the occurrence of zeros is

eφ1(s)l = eφ2(s)l. (96)

Thus, due to the periodicity of the exponential function
along the imaginary axis, this condition means that the
transfer functions considered have infinitely many zeros
as stated in the following result.

Proposition 5. The transfer functions G12(l, s),
G21(l, s) and Ḡ12(l, s) have infinitely many zeros of the
following form:

z
(k)
1,2 (l) =

k22λ1 − k11λ2

(λ1 − λ2)
±

± 2
√
−λ2

1λ
2
2k

2π2 − λ1λ2k12k21l2

(λ1 − λ2) l

(97)

for k ∈ N.

Proof. Based on (79), (80) and (91), one can observe that
the zeros of these transfer functions are given as the roots
of the following equation:

sinh β (s) l = 0, (98)

which is satisfied for

β (s) l = kπi, k ∈ Z. (99)

Taking into account (56), Eqn. (99) can be transformed to

(p11(s) − p22(s))
2 + 4p12p21 = −4k2π2

l2
. (100)

Using the relationships in (52) and finding the solution of
(100) in terms of s gives as a result the expression (97).

�

Remark 7. The zeros z
(0)
1,2(l) for k = 0 in (97) are

canceled by the poles s1,2 in (95), which is easy to show
by inserting k = 0 into (97) and comparing to (95).

Result 1. Taking into account (92), the zeros of the
transfer function Ḡ21(l, s) should satisfy the condition
sinh β (s) (l − L) = 0. Thus, in order to determine their
values, one should replace in (97) the variable l with l−L.

3.6. Frequency responses. Based on the knowledge
of the transfer functions it is possible to determine the
frequency responses of the individual channels of the
system under consideration. For this purpose, one should
replace in the relationships (60)–(63) and (84)–(87), or
in their hyperbolic equivalents (78)–(81) and (90)–(93),

the operator variable s with the expression iω, where
ω is the angular frequency. As a result, one obtains
the corresponding frequency responses Gij (l, iω) of the
channel connecting the i-th output to the j-th input, i, j =
1, 2.

The graphical representation of these responses can
take the form of three-dimensional graphs, taking into
account the dependence of the frequency response on
both the angular frequency ω and the spatial variable l.
Another possibility is the representation in the form of
the classical two-dimensional plots, determined for the
fixed value of the spatial variable (Jovanović and Bamieh,
2006; Bartecki, 2007; 2009; Litrico and Fromion, 2009a).
Considering as an example the Bode plot of the frequency
response, the expressions for the logarithmic gain and
phase take the following form:

Lij (l, ω) = 20 log
∣
∣Gij (l, iω)

∣
∣ (101)

and
ϕij (l, ω) = arg

[
Gij (l, iω)

]
, (102)

where the expressions for the modulus and argument of
the frequency response are as follows:

∣
∣Gij(l,iω)

∣
∣=
√

Re2
{
Gij(l,iω)

}
+Im2

{
Gij(l,iω)

}

(103)
and

arg
[
Gij (l, iω)

]
= atan

Im
{
Gij (l, iω)

}

Re
{
Gij (l, iω)

} . (104)

4. Examples

For a practical illustration of the above discussed issues,
this section performs a transfer function analysis of a
shell and tube heat exchanger, which can be considered a
typical DPS whose mathematical description, after some
assumptions, takes the form of Eqns. (15) and (16). The
analysis is performed for both the exchanger operating in
the parallel-flow mode, for which the boundary conditions
have the form specified in Definition 2, and for the
countercurrent-flow mode, with boundary conditions of
the form adopted in Definition 3. Having derived,
based on Eqns. (60)–(63) and (84)–(87), the transfer
functions of the exchanger, the pole-zero analysis is
performed. Selected frequency responses for the parallel
and countercurrent flow modes are also presented, both
in the form of three-dimensional graphs as well as the
classical two-dimensional Bode and Nyquist plots.

4.1. Parallel-flow heat exchanger. Under some
simplifying assumptions, the dynamic properties of a
shell and tube heat exchanger can be described, based on
the thermal energy balance equations, by the following
PDE system (Bartecki and Rojek, 2005; Bartecki, 2007;
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Delnero et al., 2004; Gvozdenac, 1990; Zavala-Río et al.,
2009; Maidi et al., 2010):

∂ϑ1(l,t)
∂t

+v1
∂ϑ1(l,t)

∂l
=α1

(
ϑ2(l,t)−ϑ1(l,t)

)
, (105)

∂ϑ2(l,t)
∂t

+v2
∂ϑ2(l,t)

∂l
=α2

(
ϑ1(l,t)−ϑ2(l,t)

)
, (106)

where the 1- and 2- sub-indexed figures represent
the tube-side and shell-side fluid variables/coefficients,
respectively; specifically, ϑ1(l, t) and ϑ2(l, t) are the
temperature variations, v1 and v2 are the velocities, α1

and α2 are the heat transfer coefficients.
Referring Eqns. (105) and (106) to Eqn. (1), one

obtains the following vector of the state variables:

w(l, t) =
[
ϑ1(l, t) ϑ2(l, t)

]T
, (107)

and the following matrices of constant coefficients:

E=
[
1 0
0 1

]
, F=

[
v1 0
0 v2

]
, W=

[−α1 α1

α2 −α2

]
.

(108)

Since FE−1 is diagonal, Eqns. (105) and (106) are
decoupled in the differential part and the diagonalization
procedure described by Eqns. (3)–(8) is not necessary.
Assuming v1 = 1 m · s−1, v2 = 0.2 m · s−1, α1 = α2 =
0.05 s−1 in (105) and (106), one obtains the following
matrices of the system (7):

Λ = F =
[
1 0
0 0.2

]
, (109)

K = W =
[−0.05 0.05

0.05 −0.05

]
, (110)

with λ1 = v1 = 1, λ2 = v2 = 0.2 being the
eigenvalues of the system, and K symmetric and negative
semi-definite, which makes the system dissipative.

The fluid inlet temperatures ϑ1i, ϑ2i can be taken
as the input signals, which in the given case of
the parallel-flow corresponds the following congruent
boundary conditions:

ϑ1 (0, t) = ϑ1i (t) , (111)

ϑ2 (0, t) = ϑ2i (t) . (112)

The transfer functions of the heat exchanger are given
by Eqns. (60)–(63) or, equivalently, by (78)–(81) and
represent the ratio of the Laplace transform of the fluid
temperature along the spatial axis to the Laplace transform
of the fluid temperature in the inlet section of the
exchanger, i.e., for l = 0:

ϑ1(l, s) = G11(l, s)ϑ1(0, s) + G12(l, s)ϑ2(0, s), (113)

ϑ2(l, s) = G21(l, s)ϑ1(0, s) + G22(l, s)ϑ2(0, s), (114)

Fig. 3. Real part of the frequency response function G11(l, iω)
for the parallel-flow heat exchanger.

Fig. 4. Imaginary part of the frequency response function
G11(l, iω) for the parallel-flow heat exchanger.

where ϑi(l, s) = Lt{ϑi(l, t)} is the Laplace transform
of the function representing the distribution of the
temperature of the i-th fluid, i = 1, 2.

According to the results presented in Section 3.5, all
the transfer functions of the heat exchanger considered
have no poles. Additionally, transfer functions G11(l, s)
and G22(l, s) have no zeros either. On the other hand, for
the transfer functions G12(L, s), G21(L, s) and parameter
values (109)–(110) we obtain, based on Proposition 5,
infinitely many pairs of zeros of the following form:

z
(1)
1,2 ≈ −0.0289± 0.3187i, (115)

z
(2)
1,2 ≈ −0.0289± 0.6306i, (116)

etc.
Figures 3 and 4 show three-dimensional graphs of

the real and imaginary parts of the frequency response
G11(l, iω) of the exchanger operating in the parallel-flow
mode, determined based on (60) for the assumed
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Fig. 5. Bode plot of the frequency response G12(L, iω) for the
parallel-flow heat exchanger.

Fig. 6. Nyquist plot of the frequency response G12(L, iω) for
the parallel-flow heat exchanger.

parameter values (109) and (110). One can observe
characteristic oscillations caused by the aforementioned
periodicity of the exponential function for the imaginary
argument.

Next, Fig. 5 shows classical, two-dimensional Bode
plots of the heat exchanger frequency responses G12(l, s),
determined for l = L based on Eqns. (61) and
(101)–(104). The Nyquist plot for the same transfer
function channel is presented in Fig. 6. As seen
from the Bode plot, the increase in the frequency of
the sinusoidal input signal initially causes a decrease
in the amplitude of the output signal, and then it
gives rise to a local maximum. To a lesser extent
it affects the phase characteristics. As the frequency
increases, the phenomenon repeats itself, which can be
also observed as characteristic “loops” on the Nyquist
plot. These oscillations are closely associated with the
wave phenomena taking place inside the exchanger pipes
(Friedly, 1972). On can notice a relationship between the

zeros of the transfer functions G12(l, s) and G21(l, s) and
the shape of the corresponding frequency responses. For
example, the imaginary parts of the zeros z(k) = α + ωki
calculated for k = 1, 2 in (115) and (116) correspond to
the frequency values ωk for which the local minima occur
on the amplitude plot in Fig. 5.

4.2. Countercurrent-flow heat exchanger. In the
countercurrent mode of operation, the fluids involved
in the heat exchange enter the exchanger from its
opposite ends. The PDEs describing the dynamics of
the heat exchanger have the same form (105)–(106) as
for the parallel-flow mode, and the difference in the
mathematical description consists in the opposite signs of
fluid velocities (v1 > 0, v2 < 0) as well as in the different
boundary conditions

ϑ1 (0, t) = ϑ1i (t) , (117)

ϑ2 (L, t) = ϑ2i (t) . (118)

This situation represents the case of the incongruent
boundary inputs (18). Assuming the parameter values
(110) and the following values of fluid velocities: v1 =
1 m · s−1, v2 = −0.2 m · s−1, one obtains, based on (97),
the following values of the zeros of the transfer function
Ḡ12(L, s):

z
(1)
1,2 ≈ −0.0406± 0.2064i, (119)

z
(2)
1,2 ≈ −0.0406± 0.4174i, (120)

etc., and the same values for the zeros of the transfer
function Ḡ21(0, s).

Figures 7 and 8 show the three-dimensional graphs
of the real and the imaginary parts of the frequency
response Ḡ21(l, iω) of the exchanger operating in the
countercurrent-flow mode. Unlike in the case of the
parallel mode, due to the reversal of the flow direction for
the second fluid, the largest amplitude of the oscillations
occurs now at l = 0. Figure 9 shows classical Bode
plots of the heat exchanger frequency responses Ḡ22(l, s),
determined based on Eqns. (87) and (101)–(104) for the
outlet point of the the second fluid, i.e., for l = 0. The
Nyquist plot of the same frequency response is shown in
Fig. 10.

An analysis of the frequency responses of the heat
exchanger exhibits typical characteristics of systems with
distributed delay (Górecki et al., 1989). In particular,
in the case of the “straightforward” transfer functions
G11(l, s), G22(l, s) and their incongruent counterparts,
one can notice the dominant influence of the transport
delay in the fluid flow. The amplitude damping of the
sinusoidal oscillations in the real and imaginary parts
of the frequency response is relatively small, which is
reflected in the circular-shaped Nyquist plot, similar to
the one of the pure delay system (see Figs. 9 and 10).
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Fig. 7. Real part of the frequency response function Ḡ21(l, iω)
for the countercurrent-flow heat exchanger.

Fig. 8. Imaginary part of the frequency response function
Ḡ21(l, iω) for the countercurrent-flow heat exchanger.

On the other hand, in the case of the “crossover” transfer
functions G12(l, s) and G21(l, s), the damping of the
input signal with increasing frequency is much greater, as
for the “straight-forward” channels (see Figs. 5 and 6).

5. Conclusion

In the article, a general analytic form of the transfer
functions for a class of DPSs of hyperbolic type
with two boundary inputs and two distributed outputs
has been derived and analyzed. As shown here,
taking into account the spatio-temporal dynamics of
these systems significantly affects their transfer function
representation. Unlike in the case of lumped systems,
the transfer functions derived for the DPS contain
irrational functions, e.g., exponential and/or hyperbolic
ones. The “non-standard” form of these transfer functions
causes some peculiarities which do not appear in the
rational-form case, such as an infinite number of poles

Fig. 9. Bode plot of the frequency response Ḡ22(0, iω) for the
countercurrent-flow heat exchanger.

Fig. 10. Nyquist plot of the frequency response Ḡ22(0, iω) for
the countercurrent-flow heat exchanger.

and/or zeros. Also the spatial location of the input signals,
represented by the appropriate boundary conditions,
significantly influences the form of the transfer functions.
Two kinds of Dirichlet boundary conditions have been
examined: congruent, where both inputs are given at the
same point of the spatial domain, and incongruent, where
each input is located in a different point of the domain.

The results of the transfer function analysis have
been illustrated on the example of a shell and tube heat
exchanger operating in parallel- and countercurrent-flow
modes, considered to be a typical example of a
hyperbolic DPS with congruent and incongruent boundary
inputs, respectively. Based on the transfer function
representation, the zero-pole analysis has been performed
and the selected frequency responses of the exchanger
have been shown. They have been presented both in
the form of three-dimensional graphs, taking into account
the spatio-temporal specificity of the system, and as the
classical two-dimensional Bode and Nyquist plots derived
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for a fixed value of the spatial variable. A specific feature
of the obtained frequency responses are the oscillations,
closely associated with the presence of the exponential
and hyperbolic functions which are periodic along the
imaginary axis.

The transfer function representation discussed here
has been obtained based on the system of hyperbolic
equations in the decoupled canonical form. Thus, the use
of the word “general” in the paper title might appear to
be somewhat excessive. However, it can be shown that
the transfer function matrix for the case of the strongly
coupled system can be obtained from its decoupled
counterpart via relatively simple transformations, giving
as a result transfer functions formulated directly in their
physical context. The problem will be addressed in one of
the future articles together with some practical examples
such as, e.g., electrical transmission line or transport
pipeline.

The future works could also include, e.g.,
consideration of the effects of the boundary feedback
and/or reflection on the transfer function description,
as well as determination of a general form of the
spatio-temporal responses for the individual transfer
function channels, both for the congruent and incongruent
boundary inputs. Another issue to be thoroughly
examined, which is very important from the control
synthesis point of view, is selecting an appropriate
method for the transfer functions and spatio-temporal
responses approximation using finite-dimensional
models. The analysis of the approximated models can be
difficult since the irrational transfer functions presented
here are not nuclear in general, i.e., they do not have a
nuclear Hankel operator. It stems from the fact that the
semigroup T (t) considered is stable but not analytic, as
shown, e.g., by Curtain and Sasane (2001). Therefore, no
theoretical upper bound is known for the H∞ errors in the
rational approximants produced by truncated balanced
realizations and optimal Hankel-norm approximation
(Sasane, 2002). In the non-linear case, the approximated
models could be based, e.g., on the approximation
properties of artificial neural networks (Bartecki, 2010;
2012a).

Acknowledgment

The author gratefully acknowledges helpful comments
from the anonymous reviewers.

References
Ancona, F. and Coclite, G.M. (2005). On the boundary

controllability of first-order hyperbolic systems, Non-
linear Analysis: Theory, Methods & Applications
63(5–7): e1955–e1966.

Arbaoui, M.A., Vernieres-Hassimi, L., Seguin, D. and
Abdelghani-Idrissi, M.A. (2007). Counter-current tubular

heat exchanger: Modeling and adaptive predictive
functional control, Applied Thermal Engineering
27(13): 2332–2338.

Bartecki, K. (2007). Comparison of frequency responses of
parallel- and counter-flow type of heat exchanger, Pro-
ceedings of the 13th IEEE IFAC International Confer-
ence on Methods and Models in Automation and Robotics,
Szczecin, Poland, pp. 411–416.

Bartecki, K. (2009). Frequency- and time-domain analysis of
a simple pipeline system, Proceedings of the 14th IEEE
IFAC International Conference on Methods and Mod-
els in Automation and Robotics, Międzyzdroje, Poland,
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